1
|
YANG PIAO, SHEYKHHASAN MOHSEN, HEIDARI REZA, CHAMANARA MOHSEN, DAMA PAOLA, AHMADIEH-YAZDI AMIRHOSSEIN, MANOOCHEHRI HAMED, TANZADEHPANAH HAMID, MAHAKI HANIE, KALHOR NASER, DIRBAZIYAN ASHKAN, AL-MUSAWI SHARAFALDIN. FOXR2 in cancer development: emerging player and therapeutic opportunities. Oncol Res 2025; 33:283-300. [PMID: 39866234 PMCID: PMC11753994 DOI: 10.32604/or.2024.052939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/26/2024] [Indexed: 01/28/2025] Open
Abstract
Cancer, a leading cause of global mortality, remains a significant challenge to increasing life expectancy worldwide. Forkhead Box R2 (FOXR2), identified as an oncogene within the FOX gene family, plays a crucial role in developing various endoderm-derived organs. Recent studies have elucidated FOXR2-related pathways and their involvement in both tumor and non-tumor diseases. Dysregulation of FOXR2 has been linked to numerous malignant tumors, spanning the brain, nervous system, thyroid, osteosarcoma, Hodgkin lymphoma, colorectal, liver, pancreatic, lung, breast, ovarian, prostate, female genital tract, endometrial, and uterine cancers. Despite extensive research on FOXR2 dysregulation, its practical applications remain underexplored. This review delves into the mechanisms underlying FOXR2 dysregulation during oncogenesis and its implications for cancer diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- PIAO YANG
- Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, OH, USA
| | - MOHSEN SHEYKHHASAN
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - REZA HEIDARI
- Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - MOHSEN CHAMANARA
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran
- Student Research Committee, AJA University of Medical Sciences, Tehran, Iran
| | - PAOLA DAMA
- Research Fellow School of Life Sciences, University of Sussex, Brighton, UK
| | - AMIRHOSSEIN AHMADIEH-YAZDI
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - HAMED MANOOCHEHRI
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - HAMID TANZADEHPANAH
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - HANIE MAHAKI
- Vascular & Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - NASER KALHOR
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research, Qom, Iran
| | - ASHKAN DIRBAZIYAN
- Department of Microbiology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
2
|
Ronsley R, Cole B, Ketterl T, Wright J, Ermoian R, Hoffman LM, Margol AS, Leary SES. Pediatric Central Nervous System Embryonal Tumors: Presentation, Diagnosis, Therapeutic Strategies, and Survivorship-A Review. Pediatr Neurol 2024; 161:237-246. [PMID: 39447443 DOI: 10.1016/j.pediatrneurol.2024.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/28/2024] [Accepted: 09/29/2024] [Indexed: 10/26/2024]
Abstract
Central nervous system (CNS) embryonal tumors represent a diverse group of neoplasms and have a peak incidence in early childhood. These tumors can be located anywhere within the CNS, and presenting symptoms typically represent tumor location. These tumors display distinctive findings on neuroimaging and are staged using magnetic resonance imaging of the brain and spine as well as evaluation of cerebrospinal fluid. Diagnosis is made based on an integrated analysis of histologic and molecular features via tissue sampling. Risk stratification is based on integration of clinical staging and extent of resection with histologic and molecular risk factors. The therapeutic approach for these tumors is multimodal and includes surgery, chemotherapy, and radiation, tailored to the individual patient factors (including age) and specific tumor type. Comprehensive supportive care including management of nausea, nutrition support, pain, fertility preservation, and mitigation of therapy-related morbidity (including hearing protection) is imperative through treatment of CNS embryonal tumors. Despite advances in therapy and supportive care, the long-term consequences of current treatment strategies are substantial. Integration of less toxic, molecularly targeted therapies and a comprehensive, multidisciplinary approach to survivorship care are essential to improving survival and the overall quality of life for survivors.
Collapse
Affiliation(s)
- Rebecca Ronsley
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington; Division of Hematology, Oncology and Bone Marrow Transplant, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington; Fred Hutch Cancer Center, Seattle, Washington.
| | - Bonnie Cole
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington; Department of Laboratories, Seattle Children's Hospital, Seattle, Washington
| | - Tyler Ketterl
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington; Division of Hematology, Oncology and Bone Marrow Transplant, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington; Fred Hutch Cancer Center, Seattle, Washington
| | - Jason Wright
- Department of Radiology, University of Washington School of Medicine and Seattle Children's Hospital, Seattle, Washington
| | - Ralph Ermoian
- Department of Radiation Oncology, University of Washington, Seattle, Washington
| | - Lindsey M Hoffman
- Center for Cancer and Blood Disorder, Phoenix Childrens Hospital, Arizona
| | - Ashley S Margol
- Keck School of Medicine of University of Southern California, Cancer and Blood Disease Institute at Children's Hospital Los Angeles, Los Angeles, California
| | - Sarah E S Leary
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington; Division of Hematology, Oncology and Bone Marrow Transplant, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington; Fred Hutch Cancer Center, Seattle, Washington
| |
Collapse
|
3
|
Gupta A, Gupta P, Chatterjee D, Gupta N, Bhatia V. Extracranial metastasis from a frontal embryonal tumor to the parotid: Cytomorphologic features of a rare occurrence. Diagn Cytopathol 2024; 52:E226-E231. [PMID: 38877851 DOI: 10.1002/dc.25370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 10/02/2024]
Abstract
Embryonal tumors of the central nervous system (CNS) are rare and aggressive malignancies accounting for less than 1% of all central nervous system tumors. The occurrence of metastasis to extracranial sites, especially the parotid region, is highly uncommon. We present a rare case of metastatic frontal embryonal tumor (ET) in the parotid region. A 9-year-old boy presented with a progressively enlarging left parotid mass. Past history revealed that he was a known case of a frontal lobe embryonal tumor. Fine-needle aspiration cytology (FNAC) combined with immunocytochemistry from the parotid revealed a metastatic embryonal tumor. This case report highlights the importance of considering metastatic tumors in evaluating parotid masses, even in pediatric patients, and emphasizes the diagnostic potential of FNAC in diagnosing such rare and unusual tumors for prompt and appropriate patient management.
Collapse
Affiliation(s)
- Anjali Gupta
- Department of Cytology and Gynecological Pathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Parikshaa Gupta
- Department of Cytology and Gynecological Pathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Debajyoti Chatterjee
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Nalini Gupta
- Department of Cytology and Gynecological Pathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Vikas Bhatia
- Department of Radiodiagnosis and Imaging, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
4
|
Dinikina YV, Zheludkova OG, Belogurova MB, Spelnikov DM, Osipov NN, Nikitina IL. Personalized treatment options of refractory and relapsed medulloblastoma in children: literature review. JOURNAL OF MODERN ONCOLOGY 2024; 25:454-465. [DOI: 10.26442/18151434.2023.4.202521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Medulloblastoma (MB) is the most common malignant tumor of the central nervous system in pediatric patients. Despite the complex anticancer therapy approach, refractory and relapsing forms of the disease remain fatal in most cases and account for approximately 30%. To date, repeated surgery, radiation, and chemotherapy can be used as life-prolonging treatment options; nevertheless, it should be emphasized that there are no standardized approaches based on existing data of molecular variants of MB. It is obvious that only a deep understanding of the biological mechanisms in association with clinical aspects in refractory and relapsing forms of MB would make it possible to personalize second- and subsequent-line therapy in order to achieve maximum efficiency and minimize early and long-term toxicity. The article presents the current understanding of prognostic factors in relapsed/refractory forms of MB, methods of modern diagnostics, as well as existing and perspective treatment options based on the biological and clinical aspects of the disease.
Collapse
|
5
|
Patel N, Keating G, Solanki GA, Syed HR, Keating RF. Medulloblastomas, CNS embryonal tumors, and cerebellar mutism syndrome: advances in care and future directions. Childs Nerv Syst 2023; 39:2633-2647. [PMID: 37632526 DOI: 10.1007/s00381-023-06112-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/28/2023]
Abstract
Central nervous system (CNS) embryonal tumors, commonly found in pediatric patients, represent a heterogeneous mix of lesions with an overall poor (though improving) prognosis. Medulloblastomas are by far the most frequently encountered and most widely studied subtype, though others include atypical teratoid/rhabdoid tumors (AT/RTs), embryonal tumor with multilayered rosettes (ETMRs), and CNS neuroblastomas, FOX-R2 activated. The classification, diagnosis, and treatment of these lesions have evolved drastically over the years as their molecular underpinnings have been elucidated. We describe the most recent 2021 WHO Classification system, discuss current understanding of the genetic basis, and demonstrate current thinking in treatment for these highly complex tumors. Since surgical resection continues to remain a mainstay of treatment, preventing and managing surgical complications, especially cerebellar mutism syndrome (CMS), is paramount. We describe the current theories for the etiology of CMS and two centers' experience in mitigating its risks. As our surgical toolbox continues to evolve along with our understanding of these tumors, we hope future patients can benefit from both improved overall survival and quality of life.
Collapse
Affiliation(s)
- Nirali Patel
- Department of Neurosurgery, Children's National Hospital, Washington, DC, USA
| | - Gregory Keating
- Department of Neurosurgery, Children's National Hospital, Washington, DC, USA
| | - Guirish A Solanki
- Department of Pediatric Neurosurgery, Birmingham Children's Hospital, Birmingham, UK
| | - Hasan R Syed
- Department of Neurosurgery, Children's National Hospital, Washington, DC, USA.
| | - Robert F Keating
- Department of Neurosurgery, Children's National Hospital, Washington, DC, USA
| |
Collapse
|
6
|
Damodharan S, Puccetti D. Pediatric Central Nervous System Tumor Overview and Emerging Treatment Considerations. Brain Sci 2023; 13:1106. [PMID: 37509034 PMCID: PMC10377074 DOI: 10.3390/brainsci13071106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Pediatric central nervous system (CNS) tumors are the most common solid tumor in children, with the majority being glial in origin. These tumors are classified by the World Health Organization (WHO) as either being low grade (WHO grade 1 and 2) or high grade (WHO grade 3 and 4). Our knowledge of the molecular landscape of pediatric brain tumors has advanced over the last decade, which has led to newer categorizations along with an expansion of therapeutic targets and options. In this review, we will give an overview of common CNS tumors seen in children along with a focus on treatment options and future considerations.
Collapse
Affiliation(s)
- Sudarshawn Damodharan
- Department of Pediatrics, Division of Pediatric Hematology, Oncology and Bone Marrow Transplant, University of Wisconsin School of Medicine & Public Health, Madison, WI 53792, USA
| | - Diane Puccetti
- Department of Pediatrics, Division of Pediatric Hematology, Oncology and Bone Marrow Transplant, University of Wisconsin School of Medicine & Public Health, Madison, WI 53792, USA
| |
Collapse
|
7
|
Shapiro JA, Gaonkar KS, Spielman SJ, Savonen CL, Bethell CJ, Jin R, Rathi KS, Zhu Y, Egolf LE, Farrow BK, Miller DP, Yang Y, Koganti T, Noureen N, Koptyra MP, Duong N, Santi M, Kim J, Robins S, Storm PB, Mack SC, Lilly JV, Xie HM, Jain P, Raman P, Rood BR, Lulla RR, Nazarian J, Kraya AA, Vaksman Z, Heath AP, Kline C, Scolaro L, Viaene AN, Huang X, Way GP, Foltz SM, Zhang B, Poetsch AR, Mueller S, Ennis BM, Prados M, Diskin SJ, Zheng S, Guo Y, Kannan S, Waanders AJ, Margol AS, Kim MC, Hanson D, Van Kuren N, Wong J, Kaufman RS, Coleman N, Blackden C, Cole KA, Mason JL, Madsen PJ, Koschmann CJ, Stewart DR, Wafula E, Brown MA, Resnick AC, Greene CS, Rokita JL, Taroni JN, Children’s Brain Tumor Network, Pacific Pediatric Neuro-Oncology Consortium. OpenPBTA: The Open Pediatric Brain Tumor Atlas. CELL GENOMICS 2023; 3:100340. [PMID: 37492101 PMCID: PMC10363844 DOI: 10.1016/j.xgen.2023.100340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/28/2023] [Accepted: 05/04/2023] [Indexed: 07/27/2023]
Abstract
Pediatric brain and spinal cancers are collectively the leading disease-related cause of death in children; thus, we urgently need curative therapeutic strategies for these tumors. To accelerate such discoveries, the Children's Brain Tumor Network (CBTN) and Pacific Pediatric Neuro-Oncology Consortium (PNOC) created a systematic process for tumor biobanking, model generation, and sequencing with immediate access to harmonized data. We leverage these data to establish OpenPBTA, an open collaborative project with over 40 scalable analysis modules that genomically characterize 1,074 pediatric brain tumors. Transcriptomic classification reveals universal TP53 dysregulation in mismatch repair-deficient hypermutant high-grade gliomas and TP53 loss as a significant marker for poor overall survival in ependymomas and H3 K28-mutant diffuse midline gliomas. Already being actively applied to other pediatric cancers and PNOC molecular tumor board decision-making, OpenPBTA is an invaluable resource to the pediatric oncology community.
Collapse
Affiliation(s)
- Joshua A. Shapiro
- Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Bala Cynwyd, PA 19004, USA
| | - Krutika S. Gaonkar
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Bioinformatics and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Stephanie J. Spielman
- Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Bala Cynwyd, PA 19004, USA
- Rowan University, Glassboro, NJ 08028, USA
| | - Candace L. Savonen
- Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Bala Cynwyd, PA 19004, USA
| | - Chante J. Bethell
- Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Bala Cynwyd, PA 19004, USA
| | - Run Jin
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Komal S. Rathi
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Bioinformatics and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yuankun Zhu
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Laura E. Egolf
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Bailey K. Farrow
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Daniel P. Miller
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yang Yang
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Tejaswi Koganti
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nighat Noureen
- Greehey Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Mateusz P. Koptyra
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nhat Duong
- Department of Bioinformatics and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Mariarita Santi
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jung Kim
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20850, USA
| | - Shannon Robins
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Phillip B. Storm
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Stephen C. Mack
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jena V. Lilly
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Hongbo M. Xie
- Department of Bioinformatics and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Payal Jain
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Pichai Raman
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Bioinformatics and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Brian R. Rood
- Children’s National Research Institute, Washington, DC 20012, USA
- George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| | - Rishi R. Lulla
- Division of Hematology/Oncology, Hasbro Children’s Hospital, Providence, RI 02903, USA
- Department of Pediatrics, The Warren Alpert School of Brown University, Providence, RI 02912, USA
| | - Javad Nazarian
- Children’s National Research Institute, Washington, DC 20012, USA
- George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
- Department of Pediatrics, University of Zurich, Zurich, Switzerland
| | - Adam A. Kraya
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Zalman Vaksman
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Allison P. Heath
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Cassie Kline
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Laura Scolaro
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Angela N. Viaene
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Xiaoyan Huang
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Gregory P. Way
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Steven M. Foltz
- Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Bala Cynwyd, PA 19004, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bo Zhang
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Anna R. Poetsch
- Biotechnology Center, Technical University Dresden, Dresden, Germany
- National Center for Tumor Diseases, Dresden, Germany
| | - Sabine Mueller
- Department of Neurology, Neurosurgery and Pediatrics, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Brian M. Ennis
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Michael Prados
- University of California, San Francisco, San Francisco, CA 94115, USA
| | - Sharon J. Diskin
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Siyuan Zheng
- Greehey Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Yiran Guo
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Shrivats Kannan
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Angela J. Waanders
- Division of Hematology, Oncology, Neuro-Oncology, and Stem Cell Transplant, Ann & Robert H Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ashley S. Margol
- Division of Hematology and Oncology, Children’s Hospital of Los Angeles, Los Angeles, CA 90027, USA
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Meen Chul Kim
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Derek Hanson
- Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA
- Hackensack University Medical Center, Hackensack, NJ 07601, USA
| | - Nicholas Van Kuren
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jessica Wong
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Rebecca S. Kaufman
- Department of Bioinformatics and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Noel Coleman
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Christopher Blackden
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kristina A. Cole
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer L. Mason
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Peter J. Madsen
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Carl J. Koschmann
- Department of Pediatrics, University of Michigan Health, Ann Arbor, MI 48105, USA
- Pediatric Hematology Oncology, Mott Children’s Hospital, Ann Arbor, MI 48109, USA
| | - Douglas R. Stewart
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20850, USA
| | - Eric Wafula
- Department of Bioinformatics and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Miguel A. Brown
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Adam C. Resnick
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Casey S. Greene
- Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Bala Cynwyd, PA 19004, USA
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jo Lynne Rokita
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Bioinformatics and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jaclyn N. Taroni
- Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Bala Cynwyd, PA 19004, USA
| | - Children’s Brain Tumor Network
- Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Bala Cynwyd, PA 19004, USA
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Bioinformatics and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Rowan University, Glassboro, NJ 08028, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
- Greehey Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20850, USA
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Children’s National Research Institute, Washington, DC 20012, USA
- George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
- Division of Hematology/Oncology, Hasbro Children’s Hospital, Providence, RI 02903, USA
- Department of Pediatrics, The Warren Alpert School of Brown University, Providence, RI 02912, USA
- Department of Pediatrics, University of Zurich, Zurich, Switzerland
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Biotechnology Center, Technical University Dresden, Dresden, Germany
- National Center for Tumor Diseases, Dresden, Germany
- Department of Neurology, Neurosurgery and Pediatrics, University of California, San Francisco, San Francisco, CA 94115, USA
- University of California, San Francisco, San Francisco, CA 94115, USA
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Hematology, Oncology, Neuro-Oncology, and Stem Cell Transplant, Ann & Robert H Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Division of Hematology and Oncology, Children’s Hospital of Los Angeles, Los Angeles, CA 90027, USA
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
- Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA
- Hackensack University Medical Center, Hackensack, NJ 07601, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pediatrics, University of Michigan Health, Ann Arbor, MI 48105, USA
- Pediatric Hematology Oncology, Mott Children’s Hospital, Ann Arbor, MI 48109, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pacific Pediatric Neuro-Oncology Consortium
- Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Bala Cynwyd, PA 19004, USA
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Bioinformatics and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Rowan University, Glassboro, NJ 08028, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
- Greehey Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20850, USA
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Children’s National Research Institute, Washington, DC 20012, USA
- George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
- Division of Hematology/Oncology, Hasbro Children’s Hospital, Providence, RI 02903, USA
- Department of Pediatrics, The Warren Alpert School of Brown University, Providence, RI 02912, USA
- Department of Pediatrics, University of Zurich, Zurich, Switzerland
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Biotechnology Center, Technical University Dresden, Dresden, Germany
- National Center for Tumor Diseases, Dresden, Germany
- Department of Neurology, Neurosurgery and Pediatrics, University of California, San Francisco, San Francisco, CA 94115, USA
- University of California, San Francisco, San Francisco, CA 94115, USA
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Hematology, Oncology, Neuro-Oncology, and Stem Cell Transplant, Ann & Robert H Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Division of Hematology and Oncology, Children’s Hospital of Los Angeles, Los Angeles, CA 90027, USA
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
- Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA
- Hackensack University Medical Center, Hackensack, NJ 07601, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pediatrics, University of Michigan Health, Ann Arbor, MI 48105, USA
- Pediatric Hematology Oncology, Mott Children’s Hospital, Ann Arbor, MI 48109, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Wu HW, Wu CH, Lin SC, Wu CC, Chen HH, Chen YW, Lee YY, Chang FC. MRI features of pediatric atypical teratoid rhabdoid tumors and medulloblastomas of the posterior fossa. Cancer Med 2023; 12:10449-10461. [PMID: 36916326 DOI: 10.1002/cam4.5780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/08/2023] [Accepted: 02/25/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Atypical teratoid rhabdoid tumor (AT/RT) occurs at a younger age and is associated with a worse prognosis than medulloblastoma; however, these two tumor entities are mostly indistinguishable on neuroimaging. The aim of our study was to differentiate AT/RT and medulloblastoma based on their clinical and MRI features to enhance treatment planning and outcome prediction. METHODS From 2005-2021, we retrospectively enrolled 16 patients with histopathologically diagnosed AT/RT and 57 patients with medulloblastoma at our institute. We evaluated their clinical data and MRI findings, including lesion signals, intratumoral morphologies, and peritumoral/distal involvement. RESULTS The age of children with AT/RT was younger than that of children with medulloblastoma (2.8 ± 4.9 [0-17] vs. 6.5 ± 4.0 [0-18], p < 0.001), and the overall survival rate was lower (21.4% vs. 66.0%, p = 0.005). Regarding lesion signals on MRI, AT/RT had a lower ADCmin (cutoff value ≤544.7 × 10-6 mm2 /s, p < 0.001), a lower ADC ratio (cutoff value ≤0.705, p < 0.001), and a higher DWI ratio (cutoff value ≥1.595, p < 0.001) than medulloblastoma. Regarding intratumoral morphology, the "tumor central vein sign" was mostly exclusive to medulloblastoma (24/57, 42.1%; AT/RT 1/16, 6.3%; p = 0.007). Regarding peritumoral invasion on T2WI, AT/RT was more prone to invasion of the brainstem (p < 0.001) and middle cerebellar peduncle (p < 0.001) than medulloblastoma. CONCLUSIONS MRI findings of a lower ADC value, more peritumoral invasion, and absence of the "tumor central vein sign" may be helpful to differentiate AT/RT from medulloblastoma. These distinct MRI findings together with the younger age of AT/RT patients may explain the worse outcomes in AT/RT patients.
Collapse
Affiliation(s)
- Hsin-Wei Wu
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Hung Wu
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Chieh Lin
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chih-Chun Wu
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsin-Hung Chen
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Division of Pediatric Neurosurgery, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Wei Chen
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medical Imaging and Radiological Technology, Yuanpei University of Medical Technology, Hsinchu City, Taiwan
| | - Yi-Yen Lee
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Division of Pediatric Neurosurgery, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Feng-Chi Chang
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
9
|
Kamenova M, Kaneva R, Genova K, Gabrovsky N. Embryonal Tumors of the Central Nervous System with Multilayered Rosettes and Atypical Teratoid/Rhabdoid Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1405:225-252. [PMID: 37452940 DOI: 10.1007/978-3-031-23705-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The 2016 WHO classification of tumors of the central nervous system affected importantly the group of CNS embryonal tumors. Molecular analysis on methylome, genome, and transcriptome levels allowed better classification, identification of specific molecular hallmarks of the different subtypes of CNS embryonal tumors, and their more precise diagnosis. Routine application of appropriate molecular testing and standardized reporting are of pivotal importance for adequate prognosis and treatment, but also for epidemiology studies and search for efficient targeted therapies. As a result of this approach, the term primitive neuroectodermal tumor-PNET was removed and a new clinic-pathological entity was introduced-Embryonal tumor with multilayered rosettes (ETMR). The group of CNS embryonal tumors include also medulloblastoma, medulloepithelioma, CNS neuroblastoma, CNS ganglioneuroblastoma, atypical teratoid/rhabdoid tumor (ATRT) and their subtypes. This chapter will focus mainly on ETMR and ATRT. Embryonal tumors with multilayered rosettes and the atypical teratoid/rhabdoid tumors are undifferentiated or poorly differentiated tumors of the nervous system that originate from primitive brain cells, develop exclusively in childhood or adolescence, and are characterized by a high degree of malignancy, aggressive evolution and a tendency to metastasize to the cerebrospinal fluid. Their clinical presentation is similar to other malignant, intracranial, neoplastic lesions and depends mainly on the localization of the tumor, the rise of the intracranial pressure, and eventually the obstruction of the cerebrospinal fluid pathways. The MRI image characteristics of these tumors are largely overlappingintra-axial, hypercellular, heterogeneous tumors, frequently with intratumoral necrosis and/or hemorrhages. Treatment options for ETMR and ATRT are very restricted. Surgery can seldom achieve radical excision. The rarity of the disease hampers the establishment of a chemotherapy protocol and the usual age of the patients limits severely the application of radiotherapy as a therapeutic option. Consequently, the prognosis of these undifferentiated, malignant, aggressive tumors remains dismal with a 5-year survival between 0 and 30%.
Collapse
Affiliation(s)
| | - Radka Kaneva
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical University, Sofia, Bulgaria
| | - Kamelia Genova
- Department of Image Diagnostic, University Hospital "Pirogov", Sofia, Bulgaria
| | - Nikolay Gabrovsky
- Department of Neurosurgery, University Hospital "Pirogov", Sofia, Bulgaria.
| |
Collapse
|
10
|
Lampros M, Alexiou GA. Brain and Spinal Cord Tumors of Embryonic Origin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1405:405-420. [PMID: 37452947 DOI: 10.1007/978-3-031-23705-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Embryonal tumors (ETs) of the central nervous system (CNS) comprise a large heterogeneous group of highly malignant tumors that predominantly affect children and adolescents. Currently, the neoplasms classified as ET are the medulloblastoma (MB), embryonal tumors with multilayered rosettes (ETMR), medulloepithelioma (ME), CNS neuroblastoma (NB), CNS ganglioneuroblastoma (GNB), atypical teratoid/rhabdoid tumors (AT/RT), and CNS embryonal tumors with rhabdoid features. All these tumors are classified as malignant-grade IV neoplasms, and the prognosis of patients with these neoplasms is very poor. Currently, except for the histological classification of MB, the recently utilized WHO classification accepts a novel molecular classification of MBs into four distinct molecular subgroups: wingless/integrated (WNT)-activated, sonic hedgehog (Shh), and the numerical Group3 and Group 4. The combination of both histological and genetic classifications has substantial prognostic significance, and patients are categorized as low risk with over 90% survival, the standard risk with 75-90% survival, high risk with 50-75% survival, and very high risk with survival rate lower than 50%. Children under three years are predominantly affected by AT/RT and represent about 20% of all CNS tumors in this age group. AT/RT is typically located in the posterior fossa (mainly in cerebellopontine angle) in 50-60% of the cases. The pathogenesis of this neoplasm is strongly associated with loss of function of the SMARCB1 (INI1, hSNF5) gene located at the 22q11.23 chromosome, or very rarely with alterations in (SMARCA4) BRG1 gene. The cells of this neoplasm resemble those of other neuronal tumors, and hence, immunochemistry markers have been utilized, such as smooth muscle actin, epithelial membrane antigen, vimentin, and lately antibodies for INI1. ETMRs are characterized by the presence of ependymoblastic rosettes formed by undifferentiated neuroepithelial cells and neuropil. The tumorigenesis of ETMRs is strongly related to the amplification of the pluripotency factor Chr19q13.41 miRNA cluster (C19MC) present in around 90% of the cases. Additionally, the expression of LIN28A is a highly sensitive and specific marker of ETMR diagnosis, as it is overexpressed in almost all cases of ETMR and is related to poor patient outcomes. The treatment of patients with ETs includes a combination of surgical resection, radiotherapy (focal or craniospinal), and chemotherapeutic agents. Currently, there is a trend to reduce the dose of craniospinal irradiation in the treatment of low-risk MBs. Novel targeted therapies are expected in the treatment of patients with MBs due to the identification of the main driver genes. Survival rates vary between ET types and their subtypes, with ganglioneuroblastoma having over 95% 5-year survival rate, while ATRT is probably linked with the worst prognosis with a 30% 5-year survival rate.
Collapse
Affiliation(s)
- Marios Lampros
- Department of Neurosurgery, University Hospital of Ioannina, Ioannina, Greece
| | - George A Alexiou
- Department of Neurosurgery, School of Medicine, University of Ioannina, 45500, Ioannina, Greece.
| |
Collapse
|
11
|
Salomão JFM, Protzenko T. Intracranial Tumors in the First Year of Life. Adv Tech Stand Neurosurg 2023; 46:23-52. [PMID: 37318568 DOI: 10.1007/978-3-031-28202-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Intracranial tumors in the first year of life are rare and, in this age group, are the second most common type of pediatric cancer after leukemias. As the more common solid tumor in neonates and infants, they present some peculiarities such as the high incidence of malignancies. Routine ultrasonography made easier to detect intrauterine tumors, but diagnosis can be delayed due to the lack or scarcity of recognizable symptoms. These neoplasms are often very large and highly vascular. Their removal is challenging, and there is a higher rate of morbidity and mortality than seen in older children, adolescents, and adults. They also differ from older children with respect to location, histological features, clinical behavior, and management. Pediatric low-grade gliomas represent 30% of the tumors in this age group and comprise circumscribed and diffuse tumors. They are followed by medulloblastoma and ependymoma. Other non-medulloblastoma embryonal neoplasms, former known as PNETS, are also commonly diagnosed in neonates and infants. Teratomas have an expressive incidence in newborns but decline gradually until the end of the first year of life. Immunohistochemical, molecular, and genomic advances are impacting the understanding and targeting of the treatment of some tumors, but, despite all these advances, the extent of resection remains the most important factor in the prognosis and survival of almost all types of tumors. The outcome is difficult to estimate, and 5-year survival ranges from one-quarter to three-quarters of the patients.
Collapse
Affiliation(s)
- José Francisco M Salomão
- Fernandes Figueira Institute - Oswaldo Cruz Foundation (IFF-Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Tatiana Protzenko
- Fernandes Figueira Institute - Oswaldo Cruz Foundation (IFF-Fiocruz), Hospital Municipal Jesus, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
12
|
Horwitz J, Huang A, McAuley D, Jansen GH, Johnston D. Embryonal Tumor With Multilayered Rosettes of the Parietooccipital Region: A Case Report. J Pediatr Hematol Oncol 2022; 44:e255-e259. [PMID: 33448719 DOI: 10.1097/mph.0000000000002048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/02/2020] [Indexed: 11/25/2022]
Abstract
Embryonal tumor with multilayered rosettes is a rare and highly malignant early childhood brain tumor. We report a case of embryonal tumor with multilayered rosettes in the parietooccipital region of a 2-year-old girl. Histopathology of the tumor demonstrated amplification of the 19q13.42 locus and strong positivity for LIN28A. Treatment was multimodal and included 3 surgical resections, adjuvant chemotherapy with autologous stem cell rescue, and focal radiotherapy. The use of the agents vorinostat and isotretinoin, and the addition of focal radiation have not been extensively described in this patient population, but may attribute to our patient's sustained remission at 2.5-years follow-up.
Collapse
Affiliation(s)
| | - Annie Huang
- Division of Pediatric Hematology/Oncology, Hospital for Sick Children, Toronto, Canada
| | | | - Gerard H Jansen
- Divisin of Anatomical Pathology, Eastern Ontario Regional Laboratory Association, Ottawa, ON
| | - Donna Johnston
- Pediatric Hematology/Oncology, Children's Hospital of Eastern Ontario
| |
Collapse
|
13
|
Wilmerding A, Bouteille L, Caruso N, Bidaut G, Etchevers HC, Graba Y, Delfini MC. Sustained experimental activation of FGF8/ERK in the developing chicken spinal cord models early events in ERK-mediated tumorigenesis. Neoplasia 2021; 24:120-132. [PMID: 34959031 PMCID: PMC8717438 DOI: 10.1016/j.neo.2021.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 11/15/2022]
Abstract
The MAPK/ERK pathway regulates a variety of physiological cellular functions, including cell proliferation and survival. It is abnormally activated in many types of human cancers in response to driver mutations in regulators of this pathway that trigger tumor initiation. The early steps of oncogenic progression downstream of ERK overactivation are poorly understood due to a lack of appropriate models. We show here that ERK1/2 overactivation in the trunk neural tube of the chicken embryo through expression of a constitutively active form of the upstream kinase MEK1 (MEK1ca), rapidly provokes a profound change in the transcriptional signature of developing spinal cord cells. These changes are concordant with a previously established role of the tyrosine kinase receptor ligand FGF8 acting via the ERK1/2 effectors to maintain an undifferentiated state. Furthermore, we show that MEK1ca-transfected spinal cord cells lose neuronal identity, retain caudal markers, and ectopically express potential effector oncogenes, such as AQP1. MEK1ca expression in the developing spinal cord from the chicken embryo is thus a tractable in vivo model to identify the mechanisms fostering neoplasia and malignancy in ERK-induced tumorigenesis of neural origins.
Collapse
Affiliation(s)
- Axelle Wilmerding
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), IBDM-UMR 7288, Case 907, Parc Scientifique de Luminy, Marseille Cedex 09 13288, France
| | - Lauranne Bouteille
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), IBDM-UMR 7288, Case 907, Parc Scientifique de Luminy, Marseille Cedex 09 13288, France
| | - Nathalie Caruso
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), IBDM-UMR 7288, Case 907, Parc Scientifique de Luminy, Marseille Cedex 09 13288, France
| | - Ghislain Bidaut
- INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Plateform Integrative Bioinformatics, Cibi, Aix-Marseille Univ, Marseille, France
| | - Heather C Etchevers
- Aix-Marseille Univ, INSERM, Marseille Medical Genetics, Institut MarMaRa, Marseille, France
| | - Yacine Graba
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), IBDM-UMR 7288, Case 907, Parc Scientifique de Luminy, Marseille Cedex 09 13288, France
| | - Marie-Claire Delfini
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), IBDM-UMR 7288, Case 907, Parc Scientifique de Luminy, Marseille Cedex 09 13288, France.
| |
Collapse
|
14
|
Hoogendijk R, van der Lugt J, van Vuurden D, Kremer L, Wesseling P, Hoving E, Karim-Kos H. Survival rates of children and young adolescents with CNS tumors improved in the Netherlands since 1990: A population-based study. Neurooncol Adv 2021; 4:vdab183. [PMID: 35591979 PMCID: PMC9113443 DOI: 10.1093/noajnl/vdab183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Introduction
Survival of children with central nervous system (CNS) tumors varies largely between countries. For the Netherlands, detailed population-based estimation of incidence, survival and mortality of pediatric CNS tumors are lacking but are needed to evaluate progress.
Methods
All CNS tumors diagnosed in patients <18 years during 1990-2017 were selected from the Netherlands Cancer Registry. Other than pilocytic astrocytomas, non-malignant tumors were included since 2000. Incidence and mortality trends were evaluated by Average Annual Percentage Change (AAPC). Changes over time in Five-year Observed Survival (5-year OS) were evaluated by Poisson regression models adjusted for follow-up time.
Results
Between 1990 and 2017, 2057 children were diagnosed with a malignant CNS tumor and 885 with a pilocytic astrocytoma. During 2000-17, 695 children were diagnosed with other non-malignant CNS tumors. Incidence rates of malignant tumors remained stable, while pilocytic astrocytomas and other non-malignant tumors increased by 2.0% and 2.4% per year, respectively. 5-year OS rates improved for all groups; however, improvement for malignant tumors was not constant over time. The contribution of malignant tumors located at the optic nerve tumors was 1% in 2000-09. However, shifting from pilocytic astrocytomas, increased to 6% in 2010-17, impacting survival outcomes for malignant tumors.
Conclusion
Survival rates of CNS tumors improved over time, but was not accompanied by a decreasing mortality rate. The observed temporary survival deterioration for malignant tumors appears to be related to changes in diagnostics and registration practices. Whether differences in treatment regimens contribute to this temporary decline in survival needs to be verified.
Collapse
Affiliation(s)
- Raoull Hoogendijk
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | | | - Leontien Kremer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pediatrics, Emma Children's Hospital/ Amsterdam University Medical Center/AMC, Amsterdam, The Netherlands
| | - Pieter Wesseling
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pathology, Amsterdam University Medical Centers/VUmc, Amsterdam, The Netherlands
| | - Eelco Hoving
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Henrike Karim-Kos
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Research, Netherlands Comprehensive Cancer Organization (IKNL), Utrecht, The Netherlands
| |
Collapse
|
15
|
Nambirajan A, Gurung N, Suri V, Sarkar C, Kumar A, Singh M, Sharma MC. C19MC amplification and expression of Lin28A and Olig2 in the classification of embryonal tumors of the central nervous system: A 14-year retrospective study from a tertiary care center. Childs Nerv Syst 2021; 37:1067-1075. [PMID: 33236184 DOI: 10.1007/s00381-020-04973-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/12/2020] [Indexed: 10/22/2022]
Abstract
INTRODUCTION CNS embryonal tumors (CET) other than medulloblastomas (MB) and atypical teratoid/rhabdoid tumors (AT/RTs), previously designated as 'central nervous system primitive neuroectodermal tumors' ('CNS PNETs'), are a heterogenous subset of tumors with poorly defined diagnostic criteria. Other than the subset of embryonal tumor with multilayered rosettes (ETMR) defined by C19MC amplification, most CETs are diagnosed by exclusion of other molecularly defined entities and histological mimics including MB, AT/RTs, and high-grade gliomas, and termed as CET, not otherwise specified (NOS) in the 2016 WHO classification. AIM To reclassify 'CNS PNETs' as per WHO 2016, and estimate the true proportion of CET, NOS in a tertiary healthcare setting, and to evaluate the diagnostic utility of C19MC amplification, Lin28A and Olig2 expression in the subclassification of CETs. METHODS Previously diagnosed cases of 'CNS PNETs' (2002-2016) were first evaluated by immunohistochemistry (IHC) for MIC2, RelaA, L1CAM, IDH1R132H, H3K27M, H3G34R, H3G34V, INI1, and BRG1 proteins and by fluorescence in-situ hybridization (FISH) for EWSR1 translocation to exclude histological mimics. The selected CETs (case cohort) and 79 histological mimics (comparison cohort) comprising of MB, AT/RT, pineal parenchymal tumors, Ewing sarcoma, esthesioneuroblastoma, intraocular medulloepithelioma, and H3G34R mutant high-grade glioma were subject to IHC for Olig2 and Lin28A, and FISH for C19MC amplification. RESULTS Twenty-two cases of 'CNS PNETs' were retrieved, all of which were negative for the first panel of markers and showed retained INI-1/BRG1 expression. Three of them (3/22, 13.6%) showed C19MC amplification (ETMR, C19MC-altered) with ETMR histology, Lin28A positivity, and Olig2 negativity. Among the remaining 19 CETs, one showed medulloepithelioma histology (Medulloepithelioma, NOS) and remaining were non-descript small round cell tumors (CET, NOS), all negative for Lin28A. Olig2 was positive in only 3 CETs (13.6%), all being CET, NOS. All tumors in the comparison cohort were negative for C19MC amplification, Lin28A and Olig2 except for 27% of ATRTs that were Lin28A positive. CONCLUSION ETMR, C19MC-altered constitute less than 14% of CETs, with majority remaining uncharacterized as CET, NOS. Lin28A is 100% sensitive for the detection of C19MC amplification; however, its specificity is limited by its expression in ATRTs. Olig2 expression is seen only in a small subset of CET, NOS and is of limited diagnostic utility.
Collapse
Affiliation(s)
- Aruna Nambirajan
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India, 110029
| | - Niteeka Gurung
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India, 110029
| | - Vaishali Suri
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India, 110029
| | - Chitra Sarkar
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India, 110029
| | - Amandeep Kumar
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India, 110029
| | - Manmohan Singh
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India, 110029
| | - Mehar Chand Sharma
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India, 110029.
| |
Collapse
|
16
|
Mayr L, Gojo J, Peyrl A, Azizi AA, Stepien NM, Pletschko T, Czech T, Dorfer C, Lambo S, Dieckmann K, Haberler C, Kool M, Slavc I. Potential Importance of Early Focal Radiotherapy Following Gross Total Resection for Long-Term Survival in Children With Embryonal Tumors With Multilayered Rosettes. Front Oncol 2020; 10:584681. [PMID: 33392079 PMCID: PMC7773839 DOI: 10.3389/fonc.2020.584681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/12/2020] [Indexed: 01/04/2023] Open
Abstract
Embryonal tumor with multilayered rosettes (ETMR) is a rare, aggressive embryonal central nervous system tumor characterized by LIN28A expression and alterations in the C19MC locus. ETMRs predominantly occur in young children, have a dismal prognosis, and no definitive treatment guidelines have been established. We report on nine consecutive patients and review the role of initiation/timing of radiotherapy on survival. Between 2006 and 2018, nine patients were diagnosed with ETMR. Diagnosis was confirmed histopathologically, immunohistochemically and molecularly. Median age was 25 months (5–38). Location was supratentorial in five, pineal in three, and brainstem in one. Seven patients had a gross total resection, one a partial resection and one a biopsy at initial diagnosis. Chemotherapy augmented with intrathecal therapy started a median of 10 days (7–20) after surgery. Only two patients who after gross total resection received radiotherapy very early on (six weeks after diagnosis) are alive and in complete remission 56 and 50 months after diagnosis. All remaining patients for whom radiotherapy was deferred until the end of chemotherapy recurred, albeit none with leptomeningeal disease. A literature research identified 228 patients with ETMR. Including our patients only 26 (11%) of 237 patients survived >36 months with no evidence of disease at last follow-up. All but two long-term (>36 months) survivors received radiotherapy, ten of whom early on following gross total resection (GTR). GTR followed by early focal radiotherapy and intrathecal therapy to prevent leptomeningeal disease are potentially important to improve survival of ETMR in the absence of effective targeted therapies.
Collapse
Affiliation(s)
- Lisa Mayr
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Johannes Gojo
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Andreas Peyrl
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Amedeo A Azizi
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Natalia M Stepien
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Thomas Pletschko
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Thomas Czech
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Christian Dorfer
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Sander Lambo
- Division of Pediatric Neurooncology, Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Karin Dieckmann
- Department of Radiotherapy, Medical University of Vienna, Vienna, Austria
| | - Christine Haberler
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Marcel Kool
- Division of Pediatric Neurooncology, Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Research Department, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Irene Slavc
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
17
|
Labuschagne JJ. 5-Aminolevulinic Acid-Guided Surgery for Recurrent Supratentorial Pediatric Neoplasms. World Neurosurg 2020; 141:e763-e769. [PMID: 32526366 DOI: 10.1016/j.wneu.2020.06.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND The use of 5-aminolevulinic acid (5-ALA) in pediatric neuro-oncology is considered off-label, and little data are available on its use in tumor recurrence surgery. Here we present our experience with 5-ALA fluorescence-guided surgery for recurrent supratentorial tumors in the pediatric population. METHODS Eleven pediatric patients presenting with recurrence of a supratentorial high-grade malignancy (5 glioblastoma [GBM], 6 non-GBM) underwent 5-ALA-assisted surgery. Biopsy specimens were obtained from pathological and normal-appearing areas of the tumor margin. RESULTS From the margin of the tumor displaying solid fluorescence, a total of 36 samples were obtained. All of these histological samples were found to harbor tumor cells. From areas of vague enhancement, a total of 49 histological samples were taken, of which 38 samples (77%) harbored tumor cells. There was no significant difference in the percentage of biopsy-positive vague fluorescent areas between the GBM cases (80%) and non-GBM cases (75%). A total of 59 biopsy specimens were taken from the tumor margin that appeared completely negative for fluorescence. On analysis, 24 (40.7%) of these specimens demonstrated tumor cells. There was no significant difference in the number of false-negative biopsies between the GBM group (40%) and the non-GBM group (41%). CONCLUSIONS The positive predictive value of solid fluorescence is high in recurrent disease but is substantially lower in areas of vague fluorescence. The rate of false-negative fluorescence is high. 5-ALA should be considered as an adjuvant in revision surgery with the aforementioned caveats in mind.
Collapse
Affiliation(s)
- Jason John Labuschagne
- Department of Neurosurgery, University of the Witwatersrand, Johannesburg and Department of Paediatric Neurosurgery, Nelson Mandela Children's Hospital, Johannesburg, South Africa.
| |
Collapse
|
18
|
Patterson JD, Henson JC, Breese RO, Bielamowicz KJ, Rodriguez A. CAR T Cell Therapy for Pediatric Brain Tumors. Front Oncol 2020; 10:1582. [PMID: 32903405 PMCID: PMC7435009 DOI: 10.3389/fonc.2020.01582] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/22/2020] [Indexed: 12/31/2022] Open
Abstract
Chimeric Antigen Receptor (CAR) T cell therapy has recently begun to be used for solid tumors such as glioblastoma multiforme. Many children with pediatric malignant brain tumors develop extensive long-term morbidity of intensive multimodal curative treatment. Others with certain diagnoses and relapsed disease continue to have limited therapies and a dismal prognosis. Novel treatments such as CAR T cells could potentially improve outcomes and ameliorate the toxicity of current treatment. In this review, we discuss the potential of using CAR therapy for pediatric brain tumors. The emerging insights on the molecular subtypes and tumor microenvironment of these tumors provide avenues to devise strategies for CAR T cell therapy. Unique characteristics of these brain tumors, such as location and associated morbid treatment induced neuro-inflammation, are novel challenges not commonly encountered in adult brain tumors. Despite these considerations, CAR T cell therapy has the potential to be integrated into treatment schema for aggressive pediatric malignant brain tumors in the future.
Collapse
Affiliation(s)
- John D Patterson
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Jeffrey C Henson
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Rebecca O Breese
- Department of General Surgery, Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
| | - Kevin J Bielamowicz
- Division of Hematology/Oncology, Department of Pediatrics, Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Analiz Rodriguez
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
19
|
Elborai Y, Almutereen M, Maher OM, Hafez H, Lee MA, Lehmann L. Changes in glomerular filtration rate and clinical course after sequential doses of carboplatin in children with embryonal brain tumors undergoing autologous stem cell transplantation. J Egypt Natl Canc Inst 2020; 32:9. [PMID: 32372349 DOI: 10.1186/s43046-020-00024-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/07/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Treatment for malignant embryonal brain tumors in young children usually employs cycles of standardly dosed cisplatinum followed by high-dose carboplatinum-containing conditioning with single or tandem autologous stem cell rescue (HDC-ASCR). High-dose carboplatin is potentially nephrotoxic, and additive platinum exposure may acutely impact renal function. Aiming to determine if decrease in renal function during conditioning assessed prior to each carboplatin dose was associated with acute increases in creatinine, requirement for dialysis or transplant-related mortality (TRM). This was a retrospective study of consecutive patients with medulloblastoma (n = 15) / atypical teratoid/rhabdoid tumor (AT/RT, n = 5) receiving HDC-ASCR. Fifteen patients underwent 1 HDC-ASCR (carboplatin × 3 doses/ etoposide/ thiotepa) and 5 patients underwent at least 1 of 3 planned tandem HDC-ASCR (carboplatin × 2 doses/ thiotepa). Renal function was assessed by daily creatinine and nuclear medicine glomerular filtration rate (GFR)/ creatinine clearance before each carboplatin dose. RESULTS In this cohort of 20 patients, 3 had doses of carboplatin omitted due to decreases in GFR: 1 did not develop nephrotoxicity, 1 experienced nephrotoxicity without need for dialysis, and 1 required dialysis temporarily but recovered renal function. Two patients did not have GFR changes but developed post-ASCR renal failure requiring dialysis and TRM. CONCLUSION Daily assessment of renal function by GFR, prior each dose of carboplatin during HDC-ASCR, will help in protecting the kidney in heavily treated population of oncology/HSCT patients. Although the study had a small number of patients which is a major limitation of the study, but it points to a serious transplant-related morbidity and mortality. So, larger scale studies are needed to clarify the best approach to carboplatin dosing to insure the optimal balance between efficacy and toxicity.
Collapse
Affiliation(s)
- Yasser Elborai
- Pediatric Stem Cell Transplantation Unit, Dana Farber/Children's Cancer and Blood Disorders Center, Boston, MA, USA. .,Pediatric Oncology Department, National Cancer Institute (NCI), Cairo University, Cairo, Egypt.
| | - Mohammad Almutereen
- Pediatric Immunology and Stem Cell Transplant Unit, Queen Rania Children's Hospital/King Hussein Medical Center/Royal Medical Services, Amman, Jordan
| | - Ossama M Maher
- Department of Pediatric Hematology Oncology, Nicklaus Children's Hospital, Miami, FL, USA
| | - Hanafy Hafez
- Pediatric Oncology Department, National Cancer Institute (NCI), Cairo University, Cairo, Egypt.,Pediatric Oncology/Pediatric Hematopoietic Stem Cell Transplant Unit, Children's Cancer Hospital Egypt (CCHE-57357), Cairo, Egypt
| | - Michelle A Lee
- Pediatric Stem Cell Transplantation Unit, Dana Farber/Children's Cancer and Blood Disorders Center, Boston, MA, USA.,Marrow and Blood Cell Transplantation Program, Children's Hospital at Montefiore, Bronx, NY, USA
| | - Leslie Lehmann
- Pediatric Stem Cell Transplantation Unit, Dana Farber/Children's Cancer and Blood Disorders Center, Boston, MA, USA
| |
Collapse
|
20
|
Phipps K, Kirkman MA, Aquilina K, Gaze M, Michalski A, Wade A, Hayward R. Childhood medulloblastoma-a single institution's historical perspective on survival and functional morbidity. Childs Nerv Syst 2019; 35:2327-2338. [PMID: 31686139 DOI: 10.1007/s00381-019-04402-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/27/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE To compare results from a third (1995-2010) cohort of children with medulloblastoma with two previous series (J Neurosurg 86:13-21, 1997; Arch Dis Child 54:200-203, 1979) to analyse the effects of management changes aimed at improving both overall and event-free survivals (OS and EFS) and functional outcomes. METHODS Review of neuro-oncology and imaging databases and previously published results. RESULTS There was no statistically significant improvement in the 5-year OS for 104 children diagnosed 1995-2010, 61.5% (95% CI, 52.9, 71.6), compared with 50% of the 80 children presenting 1980-1990 (J Neurosurg 86:13-21, 1997) (difference 11.5%; 95% CI, 2.8, 25.4). Five-year OS for 96 children suitable for risk-stratification was overall 66% (95% CI, 57.9, 75.8); standard risk 77.8% (95% CI, 67.4, 89.7); high risk < 3 years 50.0% (95% CI, 32.3, 77.5); high risk ≥ 3 years 54.5% (95% CI, 37.2, 79.9); 5-year EFS were standard risk 68.5% (95% CI, 57.2, 82.1); high risk < 3 years 40.0% (95% CI, 23.4, 68.4); and high risk ≥ 3 years 36.4% (95% CI, 20.9, 63.2); overall 55.2% (95% CI, 46.1, 66.1). Of 62/63 ≥ 5-year survivor, 9 died later from tumour relapse and 4 from second malignancy. Functional outcomes of 62 of the 63 ≥ 5-year survivors: 67.7% had educational issues requiring remedial input; 18% restricted mobility indoors and outdoors; 59.7% hearing impairment (42% prescribed aids). CONCLUSIONS 1. Comparison of this single-institution series with its predecessor found that revised chemotherapy and RT protocols and greater accuracy of risk stratification did not result in statistically significant improvements in either survival or treatment-related functional disability. 2. Extended (> 5-year) follow-up is essential if 20% of late deaths from relapse and second malignancies are not to be overlooked.
Collapse
Affiliation(s)
- Kim Phipps
- Department of Neurosurgery, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London, WC2N 3JH, UK
| | - Matthew A Kirkman
- Department of Neurosurgery, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London, WC2N 3JH, UK.,Victor Horsley Department of Neurosurgery, The National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Kristian Aquilina
- Department of Neurosurgery, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London, WC2N 3JH, UK
| | - Mark Gaze
- Department of Haematology and Oncology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London, WC2N 3JH, UK.,Department of Oncology, University College London Hospitals NHS Foundation Trust, 250 Euston Road, London, NW1 2PG, UK
| | - Antony Michalski
- Department of Haematology and Oncology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London, WC2N 3JH, UK
| | - Angie Wade
- Population, Policy and Practice Programme, Great Ormond Street Institute of Child Health, UCL, 30 Guilford Street, London, WC1N 1EH, UK
| | - Richard Hayward
- Department of Neurosurgery, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London, WC2N 3JH, UK.
| |
Collapse
|
21
|
Introduction to the Special Issue on Pediatric Neuro-Oncology. Bioengineering (Basel) 2018; 5:bioengineering5040109. [PMID: 30544889 PMCID: PMC6315802 DOI: 10.3390/bioengineering5040109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 12/06/2018] [Indexed: 11/16/2022] Open
|