1
|
Kostelnik CJ, Meador WD, Lin CY, Mathur M, Malinowski M, Jazwiec T, Malinowska Z, Piekarska ML, Gaweda B, Timek TA, Rausch MK. Tricuspid valve leaflet remodeling in sheep with biventricular heart failure: A comparison between leaflets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.16.613284. [PMID: 39345614 PMCID: PMC11429807 DOI: 10.1101/2024.09.16.613284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Tricuspid valve leaflets are dynamic tissues that can respond to altered biomechanical and hemodynamic loads. Each leaflet has unique structural and mechanical properties, leading to differential in vivo strains. We hypothesized that these intrinsic differences drive heterogeneous, disease-induced remodeling between the leaflets. Although we previously reported significant remodeling changes in the anterior leaflet, the responses among the other two leaflets have not been reported. Using a sheep model of biventricular heart failure, we compared the remodeling responses between all tricuspid leaflets. Our results show that the anterior leaflet underwent the most significant remodeling, while the septal and posterior leaflets exhibited similar but less pronounced changes. We found several between-leaflet differences in key structural and mechanical metrics that have been shown to contribute to valvular dysfunction. These findings underscore the need to consider leaflet-specific remodeling to fully understand tricuspid valve dysfunction and to develop targeted therapies for its treatment and more accurate computational models.
Collapse
Affiliation(s)
- Colton J. Kostelnik
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - William D. Meador
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Chien-Yu Lin
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Mrudang Mathur
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Marcin Malinowski
- Division of Cardiothoracic Surgery, Corewell Health, Grand Rapids, MI, USA
- Department of Cardiac Surgery, Medical University of Silesia, School of Medicine in Katowice, Katowice, Poland
| | - Tomasz Jazwiec
- Division of Cardiothoracic Surgery, Corewell Health, Grand Rapids, MI, USA
- Department of Cardiac, Vascular, and Endovascular Surgery and Transplantology, Medical University of Silesia in Katowice, Silesian Centre for Heart Disease, Zabrze, Poland
| | - Zuzanna Malinowska
- Department of Aerospace Engineering & Engineering Mechanics, The University of Texas at Austin, Austin, TX, USA
| | - Magda L. Piekarska
- Division of Cardiothoracic Surgery, Corewell Health, Grand Rapids, MI, USA
- Department of Cardiac Surgery, Medical University of Silesia, School of Medicine in Katowice, Katowice, Poland
| | - Boguslaw Gaweda
- Division of Cardiothoracic Surgery, Corewell Health, Grand Rapids, MI, USA
- Department of Cardiac Surgery, Clinical District Hospital No. 2, Faculty of Medicine University of Rzeszow, Rzeszow, Poland
| | - Tomasz A. Timek
- Division of Cardiothoracic Surgery, Corewell Health, Grand Rapids, MI, USA
| | - Manuel K. Rausch
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Aerospace Engineering & Engineering Mechanics, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
2
|
Bechtel GN, Kostelnik CJ, Rausch MK. How well do 3D-printed tissue mimics represent the complex mechanics of biological soft tissues? An example study with Stratasys' cardiovascular TissueMatrix materials. J Biomed Mater Res A 2025; 113:e37787. [PMID: 39210577 DOI: 10.1002/jbm.a.37787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/04/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024]
Abstract
Tissue mimicking materials are designed to represent real tissue in applications such as medical device testing and surgical training. Thanks to progress in 3D-printing technology, tissue mimics can now be easily cast into arbitrary geometries and manufactured with adjustable material properties to mimic a wide variety of tissue types. However, it is unclear how well 3D-printable mimics represent real tissues and their mechanics. The objective of this work is to fill this knowledge gap using the Stratasys Digital Anatomy 3D-Printer as an example. To this end, we created mimics of biological tissues we previously tested in our laboratory: blood clots, myocardium, and tricuspid valve leaflets. We printed each tissue mimic to have the identical geometry to its biological counterpart and tested the samples using identical protocols. In our evaluation, we focused on the stiffness of the tissues and their fracture toughness in the case of blood clots. We found that the mechanical behavior of the tissue mimics often differed substantially from the biological tissues they aim to represent. Qualitatively, tissue mimics failed to replicate the traditional strain-stiffening behavior of soft tissues. Quantitatively, tissue mimics were stiffer than their biological counterparts, especially at small strains, in some cases by orders of magnitude. In those materials in which we tested toughness, we found that tissue mimicking materials were also much tougher than their biological counterparts. Thus, our work highlights limitations of at least one 3D-printing technology in its ability to mimic the mechanical properties of biological tissues. Therefore, care should be taken when using this technology, especially where tissue mimicking materials are expected to represent soft tissue properties quantitatively. Whether other technologies fare better remains to be seen.
Collapse
Affiliation(s)
- Grace N Bechtel
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Colton J Kostelnik
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Manuel K Rausch
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA
- Department of Aerospace Engineering & Engineering Mechanics, The University of Texas at Austin, Austin, Texas, USA
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
3
|
Iyer V, Faza NN, Pfeiffer M, Kozak M, Peterson B, Wyler von Ballmoos M, Mollenkopf S, Mancilla M, Latibeaudiere-Gardner D, Reardon MJ. Understanding Treatment Preferences for Patients with Tricuspid Regurgitation. MDM Policy Pract 2024; 9:23814683231225667. [PMID: 38250668 PMCID: PMC10798093 DOI: 10.1177/23814683231225667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/14/2023] [Indexed: 01/23/2024] Open
Abstract
Background. Tricuspid regurgitation (TR) is a high-prevalence disease associated with poor quality of life and mortality. This quantitative patient preference study aims to identify TR patients' perspectives on risk-benefit tradeoffs. Methods. A discrete-choice experiment was developed to explore TR treatment risk-benefit tradeoffs. Attributes (levels) tested were treatment (procedure, medical management), reintervention risk (0%, 1%, 5%, 10%), medications over 2 y (none, reduce, same, increase), shortness of breath (none/mild, moderate, severe), and swelling (never, 3× per week, daily). A mixed logit regression model estimated preferences and calculated predicted probabilities. Relative attribute importance was calculated. Subgroup analyses were performed. Results. An online survey was completed by 150 TR patients. Shortness of breath was the most important attribute and accounted for 65.8% of treatment decision making. The average patients' predicted probability of preferring a "procedure-like" profile over a "medical management-like" profile was 99.7%. This decreased to 78.9% for a level change from severe to moderate in shortness of breath in the "medical management-like" profile. Subgroup analysis confirmed that patients older than 64 y had a stronger preference to avoid severe shortness of breath compared with younger patients (P < 0.02), as did severe or worse TR patients relative to moderate. New York Heart Association class I/II patients more strongly preferred to avoid procedural reintervention risk relative to class III/IV patients (P < 0.03). Conclusion. TR patients are willing to accept higher procedural reintervention risk if shortness of breath is alleviated. This risk tolerance is higher for older and more symptomatic patients. These results emphasize the appropriateness of developing TR therapies and the importance of addressing symptom burden. Highlights This study provides quantitative patient preference data from clinically confirmed tricuspid regurgitation (TR) patients to understand their treatment preferences.Using a targeted literature search and patient, physician, and Food and Drug Administration feedback, a cross-sectional survey with a discrete-choice experiment that focused on 5 of the most important attributes to TR patients was developed and administered online.TR patients are willing to accept higher procedural reintervention risk if shortness of breath is alleviated, and this risk tolerance is higher for older and more symptomatic patients.
Collapse
Affiliation(s)
- Vijay Iyer
- Division of Cardiology, Buffalo General Medical Center, Buffalo, NY, USA
| | - Nadeen N. Faza
- Houston Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston, TX, USA
| | - Michael Pfeiffer
- Division of Cardiology, Penn State Heart and Vascular Institute, Hershey, PA, USA
| | - Mark Kozak
- Division of Cardiology, Penn State Heart and Vascular Institute, Hershey, PA, USA
| | - Brandon Peterson
- Division of Cardiology, Penn State Heart and Vascular Institute, Hershey, PA, USA
| | | | | | | | | | - Michael J. Reardon
- Houston Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
4
|
Torre M, Morganti S, Pasqualini FS, Reali A. Current progress toward isogeometric modeling of the heart biophysics. BIOPHYSICS REVIEWS 2023; 4:041301. [PMID: 38510845 PMCID: PMC10903424 DOI: 10.1063/5.0152690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/24/2023] [Indexed: 03/22/2024]
Abstract
In this paper, we review a powerful methodology to solve complex numerical simulations, known as isogeometric analysis, with a focus on applications to the biophysical modeling of the heart. We focus on the hemodynamics, modeling of the valves, cardiac tissue mechanics, and on the simulation of medical devices and treatments. For every topic, we provide an overview of the methods employed to solve the specific numerical issue entailed by the simulation. We try to cover the complete process, starting from the creation of the geometrical model up to the analysis and post-processing, highlighting the advantages and disadvantages of the methodology.
Collapse
Affiliation(s)
- Michele Torre
- Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, 27100 Pavia, Italy
| | - Simone Morganti
- Department of Electrical, Computer, and Biomedical Engineering, University of Pavia, Via Ferrata 5, 27100 Pavia, Italy
| | - Francesco S. Pasqualini
- Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, 27100 Pavia, Italy
| | - Alessandro Reali
- Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, 27100 Pavia, Italy
| |
Collapse
|
5
|
WU W, DANEKER M, JOLLEY MA, TURNER KT, LU L. Effective data sampling strategies and boundary condition constraints of physics-informed neural networks for identifying material properties in solid mechanics. APPLIED MATHEMATICS AND MECHANICS 2023; 44:1039-1068. [PMID: 37501681 PMCID: PMC10373631 DOI: 10.1007/s10483-023-2995-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/09/2023] [Indexed: 07/29/2023]
Abstract
Material identification is critical for understanding the relationship between mechanical properties and the associated mechanical functions. However, material identification is a challenging task, especially when the characteristic of the material is highly nonlinear in nature, as is common in biological tissue. In this work, we identify unknown material properties in continuum solid mechanics via physics-informed neural networks (PINNs). To improve the accuracy and efficiency of PINNs, we develop efficient strategies to nonuniformly sample observational data. We also investigate different approaches to enforce Dirichlet-type boundary conditions (BCs) as soft or hard constraints. Finally, we apply the proposed methods to a diverse set of time-dependent and time-independent solid mechanic examples that span linear elastic and hyperelastic material space. The estimated material parameters achieve relative errors of less than 1%. As such, this work is relevant to diverse applications, including optimizing structural integrity and developing novel materials.
Collapse
Affiliation(s)
- W. WU
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, U. S. A
- Division of Pediatric Cardiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, U. S. A
| | - M. DANEKER
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, U. S. A
| | - M. A. JOLLEY
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, U. S. A
- Division of Pediatric Cardiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, U. S. A
| | - K. T. TURNER
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, U. S. A
| | - L. LU
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, U. S. A
| |
Collapse
|
6
|
Wu W, Ching S, Sabin P, Laurence DW, Maas SA, Lasso A, Weiss JA, Jolley MA. The effects of leaflet material properties on the simulated function of regurgitant mitral valves. J Mech Behav Biomed Mater 2023; 142:105858. [PMID: 37099920 PMCID: PMC10199327 DOI: 10.1016/j.jmbbm.2023.105858] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023]
Abstract
Advances in three-dimensional imaging provide the ability to construct and analyze finite element (FE) models to evaluate the biomechanical behavior and function of atrioventricular valves. However, while obtaining patient-specific valve geometry is now possible, non-invasive measurement of patient-specific leaflet material properties remains nearly impossible. Both valve geometry and tissue properties play a significant role in governing valve dynamics, leading to the central question of whether clinically relevant insights can be attained from FE analysis of atrioventricular valves without precise knowledge of tissue properties. As such we investigated (1) the influence of tissue extensibility and (2) the effects of constitutive model parameters and leaflet thickness on simulated valve function and mechanics. We compared metrics of valve function (e.g., leaflet coaptation and regurgitant orifice area) and mechanics (e.g., stress and strain) across one normal and three regurgitant mitral valve (MV) models with common mechanisms of regurgitation (annular dilation, leaflet prolapse, leaflet tethering) of both moderate and severe degree. We developed a novel fully-automated approach to accurately quantify regurgitant orifice areas of complex valve geometries. We found that the relative ordering of the mechanical and functional metrics was maintained across a group of valves using material properties up to 15% softer than the representative adult mitral constitutive model. Our findings suggest that FE simulations can be used to qualitatively compare how differences and alterations in valve structure affect relative atrioventricular valve function even in populations where material properties are not precisely known.
Collapse
Affiliation(s)
- Wensi Wu
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA; Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA
| | - Stephen Ching
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA
| | - Patricia Sabin
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA
| | - Devin W Laurence
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA; Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA
| | - Steve A Maas
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, UT, USA; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, UT, USA
| | - Andras Lasso
- Laboratory for Percutaneous Surgery, Queen's University, Kingston, ON, Canada
| | - Jeffrey A Weiss
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, UT, USA; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, UT, USA
| | - Matthew A Jolley
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA; Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA.
| |
Collapse
|
7
|
Wu W, Ching S, Sabin P, Laurence DW, Maas SA, Lasso A, Weiss JA, Jolley MA. The Effects of leaflet material properties on the simulated function of regurgitant mitral valves. ARXIV 2023:arXiv:2302.04939v2. [PMID: 36798457 PMCID: PMC9934730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Advances in three-dimensional imaging provide the ability to construct and analyze finite element (FE) models to evaluate the biomechanical behavior and function of atrioventricular valves. However, while obtaining patient-specific valve geometry is now possible, non-invasive measurement of patient-specific leaflet material properties remains nearly impossible. Both valve geometry and tissue properties play a significant role in governing valve dynamics, leading to the central question of whether clinically relevant insights can be attained from FE analysis of atrioventricular valves without precise knowledge of tissue properties. As such we investigated 1) the influence of tissue extensibility and 2) the effects of constitutive model parameters and leaflet thickness on simulated valve function and mechanics. We compared metrics of valve function (e.g., leaflet coaptation and regurgitant orifice area) and mechanics (e.g., stress and strain) across one normal and three regurgitant mitral valve (MV) models with common mechanisms of regurgitation (annular dilation, leaflet prolapse, leaflet tethering) of both moderate and severe degree. We developed a novel fully-automated approach to accurately quantify regurgitant orifice areas of complex valve geometries. We found that the relative ordering of the mechanical and functional metrics was maintained across a group of valves using material properties up to 15% softer than the representative adult mitral constitutive model. Our findings suggest that FE simulations can be used to qualitatively compare how differences and alterations in valve structure affect relative atrioventricular valve function even in populations where material properties are not precisely known.
Collapse
Affiliation(s)
- Wensi Wu
- Department of Anesthesiology and Critical Care Medicine, Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Stephen Ching
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Patricia Sabin
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Devin W Laurence
- Department of Anesthesiology and Critical Care Medicine, Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Steve A Maas
- Department of Biomedical Engineering, and Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112
| | - Andras Lasso
- Laboratory for Percutaneous Surgery, Queen's University, Kingston, ON
| | - Jeffrey A Weiss
- Department of Biomedical Engineering, and Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112
| | - Matthew A Jolley
- Department of Anesthesiology and Critical Care Medicine, Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| |
Collapse
|
8
|
Laurence DW, Ross CJ, Hsu MC, Mir A, Burkhart HM, Holzapfel GA, Lee CH. Benchtop characterization of the tricuspid valve leaflet pre-strains. Acta Biomater 2022; 152:321-334. [PMID: 36041649 PMCID: PMC11974611 DOI: 10.1016/j.actbio.2022.08.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/01/2022] [Accepted: 08/22/2022] [Indexed: 11/21/2022]
Abstract
The pre-strains of biological soft tissues are important when relating their in vitro and in vivo mechanical behaviors. In this study, we present the first-of-its-kind experimental characterization of the tricuspid valve leaflet pre-strains. We use 3D photogrammetry and the reproducing kernel method to calculate the pre-strains within the central 10×10 mm region of the tricuspid valve leaflets from n=8 porcine hearts. In agreement with previous pre-strain studies for heart valve leaflets, our results show that all the three tricuspid valve leaflets shrink after being explanted from the ex vivo heart. These calculated strains are leaflet-specific and the septal leaflet experiences the most compressive changes. Furthermore, the strains observed after dissection of the central 10×10 mm region of the leaflet are smaller than when the valve is explanted, suggesting that our computed pre-strains are mainly due to the release of in situ annulus and chordae connections. The leaflets are then mounted on a biaxial testing device and preconditioned using force-controlled equibiaxial loading. We show that the employed preconditioning protocol does not 100% restore the leaflet pre-strains as removed during tissue dissection, and future studies are warranted to explore alternative preconditioning methods. Finally, we compare the calculated biomechanically oriented metrics considering five stress-free reference configurations. Interestingly, the radial tissue stretches and material anisotropies are significantly smaller compared to the post-preconditioning configuration. Extensions of this work can further explore the role of this unique leaflet-specific leaflet pre-strains on in vivo valve behavior via high-fidelity in-silico models. STATEMENT OF SIGNIFICANCE: This study provides a first of its kind benchtop characterization of tricuspid valve leaflet pre-strains. We used 3D photogrammetry to reconstruct the central region of the tricuspid valve leaflets in three configurations. The associated configurational changes revealed compressive, leaflet-specific strains after dissection of the valve from its in situ environment. Interestingly, we found that biaxial preconditioning did not restore the measured pre-strains of the leaflets. Depending on the selection of the stress-free reference configuration, this led to substantial differences in the leaflet mechanics. Our findings and methodology are crucial when it comes to relating in vitro mechanical behaviors to valve function in vivo. Future studies can integrate our quantified pre-strains into in-silico simulations to get more realistic predictions about the valve function.
Collapse
Affiliation(s)
- Devin W Laurence
- Biomechanics & Biomaterials Design Lab, School of Aerospace & Mechanical Eng., University of Oklahoma, USA
| | - Colton J Ross
- Biomechanics & Biomaterials Design Lab, School of Aerospace & Mechanical Eng., University of Oklahoma, USA
| | - Ming-Chen Hsu
- Computational Fluid-Structure Interaction Laboratory, Department of Mechanical Eng., Iowa State University, USA
| | - Arshid Mir
- Department of Pediatrics, University of Oklahoma Health Sciences Center, USA
| | - Harold M Burkhart
- Department of Surgery, University of Oklahoma Health Sciences Center, USA
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Austria; Department of Structural Engineering, Norwegian University of Science and Technology, Norway
| | - Chung-Hao Lee
- Biomechanics & Biomaterials Design Lab, School of Aerospace & Mechanical Eng., University of Oklahoma, USA.
| |
Collapse
|
9
|
Nam HH, Herz C, Lasso A, Cianciulli A, Flynn M, Huang J, Wang Z, Paniagua B, Vicory J, Kabir S, Simpson J, Harrild D, Marx G, Cohen MS, Glatz AC, Jolley MA. Visualization and Quantification of the Unrepaired Complete Atrioventricular Canal Valve Using Open-Source Software. J Am Soc Echocardiogr 2022; 35:985-996.e11. [PMID: 35537615 PMCID: PMC9452462 DOI: 10.1016/j.echo.2022.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/20/2022] [Accepted: 04/24/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Repair of complete atrioventricular canal (CAVC) is often complicated by residual left atrioventricular valve regurgitation. The structure of the mitral and tricuspid valves in biventricular hearts has previously been shown to be associated with valve dysfunction. However, the three-dimensional (3D) structure of the entire unrepaired CAVC valve has not been quantified. Understanding the 3D structure of the CAVC may inform optimized repair. METHODS Novel open-source work flows were created in SlicerHeart for the modeling and quantification of CAVC valves on the basis of 3D echocardiographic images. These methods were applied to model the annulus, leaflets, and papillary muscle (PM) structure of 35 patients (29 with trisomy 21) with CAVC using transthoracic 3D echocardiography. The mean leaflet and annular shapes were calculated and visualized using shape analysis. Metrics of the complete native CAVC valve structure were compared with those of normal mitral valves using the Mann-Whitney U test. Associations between CAVC structure and atrioventricular valve regurgitation were analyzed. RESULTS CAVC leaflet metrics varied throughout systole. Compared with normal mitral valves, the left CAVC PMs were more acutely angled in relation to the annular plane (P < .001). In addition, the anterolateral PM was laterally and inferiorly rotated in CAVC, while the posteromedial PM was more superiorly and laterally rotated, relative to normal mitral valves (P < .001). Lower native CAVC atrioventricular valve annular height and annular height-to-valve width ratio before repair were both associated with moderate or greater left atrioventricular valve regurgitation after repair (P < .01). CONCLUSIONS It is feasible to model and quantify 3D CAVC structure using 3D echocardiographic images. The results demonstrate significant variation in CAVC structure across the cohort and differences in annular, leaflet, and PM structure compared with the mitral valve. These tools may be used in future studies to catalyze future research intended to identify structural associations of valve dysfunction and to optimize repair in this vulnerable and complex population.
Collapse
Affiliation(s)
- Hannah H Nam
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Christian Herz
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Andras Lasso
- Laboratory for Percutaneous Surgery, Queen's University, Kingston, Ontario, Canada
| | - Alana Cianciulli
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Maura Flynn
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jing Huang
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Zi Wang
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | - Saleha Kabir
- Department of Congenital Heart Disease, Evelina London Children's Hospital, London, United Kingdom
| | - John Simpson
- Department of Congenital Heart Disease, Evelina London Children's Hospital, London, United Kingdom
| | - David Harrild
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts
| | - Gerald Marx
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts
| | - Meryl S Cohen
- Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Andrew C Glatz
- Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Matthew A Jolley
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.
| |
Collapse
|
10
|
Tarrío-Fernández R. Insuficiencia tricúspide secundaria. Indicaciones y manejo durante la cirugía cardiaca. CIRUGIA CARDIOVASCULAR 2022. [DOI: 10.1016/j.circv.2022.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
11
|
Bracamonte JH, Saunders SK, Wilson JS, Truong UT, Soares JS. Patient-Specific Inverse Modeling of In Vivo Cardiovascular Mechanics with Medical Image-Derived Kinematics as Input Data: Concepts, Methods, and Applications. APPLIED SCIENCES-BASEL 2022; 12:3954. [PMID: 36911244 PMCID: PMC10004130 DOI: 10.3390/app12083954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inverse modeling approaches in cardiovascular medicine are a collection of methodologies that can provide non-invasive patient-specific estimations of tissue properties, mechanical loads, and other mechanics-based risk factors using medical imaging as inputs. Its incorporation into clinical practice has the potential to improve diagnosis and treatment planning with low associated risks and costs. These methods have become available for medical applications mainly due to the continuing development of image-based kinematic techniques, the maturity of the associated theories describing cardiovascular function, and recent progress in computer science, modeling, and simulation engineering. Inverse method applications are multidisciplinary, requiring tailored solutions to the available clinical data, pathology of interest, and available computational resources. Herein, we review biomechanical modeling and simulation principles, methods of solving inverse problems, and techniques for image-based kinematic analysis. In the final section, the major advances in inverse modeling of human cardiovascular mechanics since its early development in the early 2000s are reviewed with emphasis on method-specific descriptions, results, and conclusions. We draw selected studies on healthy and diseased hearts, aortas, and pulmonary arteries achieved through the incorporation of tissue mechanics, hemodynamics, and fluid-structure interaction methods paired with patient-specific data acquired with medical imaging in inverse modeling approaches.
Collapse
Affiliation(s)
- Johane H. Bracamonte
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Sarah K. Saunders
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - John S. Wilson
- Department of Biomedical Engineering and Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Uyen T. Truong
- Department of Pediatrics, School of Medicine, Children’s Hospital of Richmond at Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Joao S. Soares
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
- Correspondence:
| |
Collapse
|
12
|
Laurence DW, Lee CH. Determination of a Strain Energy Density Function for the Tricuspid Valve Leaflets Using Constant Invariant-Based Mechanical Characterizations. J Biomech Eng 2021; 143:1120829. [PMID: 34596679 DOI: 10.1115/1.4052612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Indexed: 11/08/2022]
Abstract
The tricuspid valve (TV) regulates the blood flow within the right side of the heart. Despite recent improvements in understanding TV mechanical and microstructural properties, limited attention has been devoted to the development of TV-specific constitutive models. The objective of this work is to use the first-of-its-kind experimental data from constant invariant-based mechanical characterizations to determine a suitable invariant-based strain energy density function (SEDF). Six specimens for each TV leaflet are characterized using constant invariant mechanical testing. The data is then fit with three candidate SEDF forms: (i) a polynomial model-the transversely isotropic version of the Mooney-Rivlin model, (ii) an exponential model, and (iii) a combined polynomial-exponential model. Similar fitting capabilities were found for the exponential and the polynomial forms (R2=0.92-0.99 versus 0.91-0.97) compared to the combined polynomial-exponential SEDF (R2=0.65-0.95). Furthermore, the polynomial form had larger Pearson's correlation coefficients than the exponential form (0.51 versus 0.30), indicating a more well-defined search space. Finally, the exponential and the combined polynomial-exponential forms had notably smaller but more eccentric model parameter's confidence regions than the polynomial form. Further evaluations of invariant decoupling revealed that the decoupling of the invariant terms within the exponential form leads to a less satisfactory performance. From these results, we conclude that the exponential form is better suited for the TV leaflets owing to its superb fitting capabilities and smaller parameter's confidence regions.
Collapse
Affiliation(s)
- Devin W Laurence
- Biomechanics and Biomaterials Design Laboratory, The University of Oklahoma, Norman, OK 73019
| | - Chung-Hao Lee
- Biomechanics and Biomaterials Design Laboratory, The University of Oklahoma, 865 Asp Avenue, Felgar Hall 219C, Norman, OK 73019; Institute for Biomedical Engineering, Science and Technology, The University of Oklahoma, 865 Asp Avenue, Felgar Hall 219C, Norman, OK 73019
| |
Collapse
|
13
|
Johnson EL, Laurence DW, Xu F, Crisp CE, Mir A, Burkhart HM, Lee CH, Hsu MC. Parameterization, geometric modeling, and isogeometric analysis of tricuspid valves. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 2021; 384:113960. [PMID: 34262232 PMCID: PMC8274564 DOI: 10.1016/j.cma.2021.113960] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Approximately 1.6 million patients in the United States are affected by tricuspid valve regurgitation, which occurs when the tricuspid valve does not close properly to prevent backward blood flow into the right atrium. Despite its critical role in proper cardiac function, the tricuspid valve has received limited research attention compared to the mitral and aortic valves on the left side of the heart. As a result, proper valvular function and the pathologies that may cause dysfunction remain poorly understood. To promote further investigations of the biomechanical behavior and response of the tricuspid valve, this work establishes a parameter-based approach that provides a template for tricuspid valve modeling and simulation. The proposed tricuspid valve parameterization presents a comprehensive description of the leaflets and the complex chordae tendineae for capturing the typical three-cusp structural deformation observed from medical data. This simulation framework develops a practical procedure for modeling tricuspid valves and offers a robust, flexible approach to analyze the performance and effectiveness of various valve configurations using isogeometric analysis. The proposed methods also establish a baseline to examine the tricuspid valve's structural deformation, perform future investigations of native valve configurations under healthy and disease conditions, and optimize prosthetic valve designs.
Collapse
Affiliation(s)
- Emily L. Johnson
- Department of Mechanical Engineering, Iowa State University, 2043 Black Engineering, Ames, Iowa 50011, USA
| | - Devin W. Laurence
- School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Fei Xu
- Ansys Inc., 807 Las Cimas Parkway, Austin, Texas 78746, USA
| | - Caroline E. Crisp
- Department of Mechanical Engineering, Iowa State University, 2043 Black Engineering, Ames, Iowa 50011, USA
| | - Arshid Mir
- Division of Pediatric Cardiology, Department of Pediatrics, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Harold M. Burkhart
- Division of Cardiothoracic Surgery, Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Chung-Hao Lee
- School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, Oklahoma 73019, USA
- Institute for Biomedical Engineering, Science and Technology (IBEST), The University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Ming-Chen Hsu
- Department of Mechanical Engineering, Iowa State University, 2043 Black Engineering, Ames, Iowa 50011, USA
| |
Collapse
|
14
|
Wamala I, Payne CJ, Saeed MY, Bautista-Salinas D, Van Story D, Thalhofer T, Staffa SJ, Ghelani SJ, Del Nido PJ, Walsh CJ, Vasilyev NV. Importance of Preserved Tricuspid Valve Function for Effective Soft Robotic Augmentation of the Right Ventricle in Cases of Elevated Pulmonary Artery Pressure. Cardiovasc Eng Technol 2021; 13:120-128. [PMID: 34263419 PMCID: PMC8888489 DOI: 10.1007/s13239-021-00562-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/29/2021] [Indexed: 11/30/2022]
Abstract
Purpose In clinical practice, many patients with right heart failure (RHF) have elevated pulmonary artery pressures and increased afterload on the right ventricle (RV). In this study, we evaluated the feasibility of RV augmentation using a soft robotic right ventricular assist device (SRVAD), in cases of increased RV afterload. Methods In nine Yorkshire swine of 65–80 kg, a pulmonary artery band was placed to cause RHF and maintained in place to simulate an ongoing elevated afterload on the RV. The SRVAD was actuated in synchrony with the ventricle to augment native RV output for up to one hour. Hemodynamic parameters during SRVAD actuation were compared to baseline and RHF levels. Results Median RV cardiac index (CI) was 1.43 (IQR, 1.37–1.80) L/min/m2 and 1.26 (IQR 1.05–1.57) L/min/m2 at first and second baseline. Upon PA banding RV CI fell to a median of 0.79 (IQR 0.63–1.04) L/min/m2. Device actuation improved RV CI to a median of 0.87 (IQR 0.78–1.01), 0.85 (IQR 0.64–1.59) and 1.11 (IQR 0.67–1.48) L/min/m2 at 5 min (p = 0.114), 30 min (p = 0.013) and 60 (p = 0.033) minutes respectively. Statistical GEE analysis showed that lower grade of tricuspid regurgitation at time of RHF (p = 0.046), a lower diastolic pressure at RHF (p = 0.019) and lower mean arterial pressure at RHF (p = 0.024) were significantly associated with higher SRVAD effectiveness. Conclusions Short-term augmentation of RV function using SRVAD is feasible even in cases of elevated RV afterload. Moderate or severe tricuspid regurgitation were associated with reduced device effectiveness. Supplementary Information The online version contains supplementary material available at 10.1007/s13239-021-00562-7
Collapse
Affiliation(s)
- Isaac Wamala
- Department of Cardiac Surgery, Harvard Medical School, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA. .,Clinic for Cardiovascular Surgery, Charité Universitätsmedizin, Berlin, Germany.
| | - Christopher J Payne
- Wyss Institute for Biologically Inspired Engineering, Boston, USA.,Harvard School of Engineering and Applied Sciences, Boston, USA
| | - Mossab Y Saeed
- Department of Cardiac Surgery, Harvard Medical School, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Daniel Bautista-Salinas
- Department of Cardiac Surgery, Harvard Medical School, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA.,Industrial Engineering, Technical University of Cartagena, Murcia, Spain
| | - David Van Story
- Department of Cardiac Surgery, Harvard Medical School, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
| | | | - Steven J Staffa
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, USA
| | - Sunil J Ghelani
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Pedro J Del Nido
- Department of Cardiac Surgery, Harvard Medical School, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Conor J Walsh
- Wyss Institute for Biologically Inspired Engineering, Boston, USA.,Harvard School of Engineering and Applied Sciences, Boston, USA
| | - Nikolay V Vasilyev
- Department of Cardiac Surgery, Harvard Medical School, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
| |
Collapse
|
15
|
Koren O, Darawsha H, Rozner E, Benhamou D, Turgeman Y. Tricuspid regurgitation in ischemic mitral regurgitation patients: prevalence, predictors for outcome and long-term follow-up. BMC Cardiovasc Disord 2021; 21:199. [PMID: 33882853 PMCID: PMC8058984 DOI: 10.1186/s12872-021-01982-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/01/2021] [Indexed: 11/20/2022] Open
Abstract
Background Functional tricuspid regurgitation (FTR) is common in left-sided heart pathology involving the mitral valve. The incidence, clinical impact, risk factors, and natural history of FTR in the setting of ischemic mitral regurgitation (IMR) are less known.
Method We conducted a cohort study based on data collected from January 2012 to December 2014. Patients diagnosed with IMR were eligible for the study. The median follow-up was 5 years. The primary outcome is defined as FTR developing at any stage.
Results Among the 134 IMR patients eligible for the study, FTR was detected in 29.9% (N = 40, 20.0% mild, 62.5% moderate, and 17.5% severe). In the FTR group, the average age was 60.7 ± 9.2 years (25% females), the mean LV ejection fraction (LVEF) was 37.3 ± 6.45 [%], LA area 46.4 ± 8.06 (mm2), LV internal diastolic diameter (LVIDD) 59.6 ± 3.94 (mm), RV fractional area change 22.3 ± 4.36 (%), systolic pulmonary artery pressure (SPAP) 48.4 ± 9.45 (mmHg). Independent variables associated with FTR development were age ≥ 65y [OR 1.2], failed revascularization, LA area ≥ 42.5 (mm2) [OR 17.1], LVEF ≤ 24% [OR 32.5], MR of moderate and severe grade [OR 419.4], moderate RV dysfunction [OR 91.6] and pulmonary artery pressure of a moderate or severe grade [OR 33.6]. During follow-up, FTR progressed in 39 (97.5%) patients. Covariates independently associated with FTR progression were lower LVEF, RV dysfunction, and PHT of moderate severity. LA area and LVIDD were at the margin of statistical significance (p = 0.06 and p = 0.05, respectively). Conclusion In our cohort study, FTR development and progression due to IMR was a common finding. Elderly patients with ischemic MR following unsuccessful PCI are at higher risk. FTR development and severity are directly proportional to LV ejection fraction, to the extent of mitral regurgitation, and SPAP. FTR tends to deteriorate in the majority of patients over a mean of 5-y follow-up. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-021-01982-y.
Collapse
Affiliation(s)
- Ofir Koren
- Heart Institute, Emek Medical Center, Afula, Israel. .,Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel.
| | | | - Ehud Rozner
- Heart Institute, Emek Medical Center, Afula, Israel
| | | | - Yoav Turgeman
- Heart Institute, Emek Medical Center, Afula, Israel.,Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
16
|
Xu F, Johnson EL, Wang C, Jafari A, Yang CH, Sacks MS, Krishnamurthy A, Hsu MC. Computational investigation of left ventricular hemodynamics following bioprosthetic aortic and mitral valve replacement. MECHANICS RESEARCH COMMUNICATIONS 2021; 112:103604. [PMID: 34305195 PMCID: PMC8301225 DOI: 10.1016/j.mechrescom.2020.103604] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The left ventricle of the heart is a fundamental structure in the human cardiac system that pumps oxygenated blood into the systemic circulation. Several valvular conditions can cause the aortic and mitral valves associated with the left ventricle to become severely diseased and require replacement. However, the clinical outcomes of such operations, specifically the postoperative ventricular hemodynamics of replacing both valves, are not well understood. This work uses computational fluid-structure interaction (FSI) to develop an improved understanding of this effect by modeling a left ventricle with the aortic and mitral valves replaced with bioprostheses. We use a hybrid Arbitrary Lagrangian-Eulerian/immersogeometric framework to accommodate the analysis of cardiac hemodynamics and heart valve structural mechanics in a moving fluid domain. The motion of the endocardium is obtained from a cardiac biomechanics simulation and provided as an input to the proposed numerical framework. The results from the simulations in this work indicate that the replacement of the native mitral valve with a tri-radially symmetric bioprosthesis dramatically changes the ventricular hemodynamics. Most significantly, the vortical motion in the left ventricle is found to reverse direction after mitral valve replacement. This study demonstrates that the proposed computational FSI framework is capable of simulating complex multiphysics problems and can provide an in-depth understanding of the cardiac mechanics.
Collapse
Affiliation(s)
- Fei Xu
- Ansys Inc., Austin, TX 78746, USA
| | - Emily L. Johnson
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | | | - Arian Jafari
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | - Cheng-Hau Yang
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | - Michael S. Sacks
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Adarsh Krishnamurthy
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | - Ming-Chen Hsu
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
17
|
Smith KJ, Mathur M, Meador WD, Phillips-Garcia B, Sugerman GP, Menta AK, Jazwiec T, Malinowski M, Timek TA, Rausch MK. Tricuspid chordae tendineae mechanics: Insertion site, leaflet, and size-specific analysis and constitutive modelling. SHI YAN LI XUE = JOURNAL OF EXPERIMENTAL MECHANICS 2021; 61:19-29. [PMID: 39564577 PMCID: PMC11575976 DOI: 10.1007/s11340-020-00594-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/20/2020] [Indexed: 11/21/2024]
Abstract
Background Tricuspid valve chordae tendineae play a vital role in our cardiovascular system. They function as "parachute cords" to the tricuspid leaflets to prevent prolapse during systole. However, in contrast to the tricuspid annulus and leaflets, the tricuspid chordae tendineae have received little attention. Few previous studies have described their mechanics and their structure-function relationship. Objective In this study, we aimed to quantify the mechanics of tricuspid chordae tendineae based on their leaflet of origin, insertion site, and size. Methods Specifically, we uniaxially stretched 53 tricuspid chordae tendineae from sheep and recorded their stress-strain behavior. We also analyzed the microstructure of the tricuspid chordae tendineae based on two-photon microscopy and histology. Finally, we compared eight different hyperelastic constitutive models and their ability to fit our data. Results We found that tricuspid chordae tendineae are highly organized collageneous tissues, which are populated with cells throughout their thickness. In uniaxial stretching, this microstructure causes the classic J-shaped nonlinear stress-strain response known from other collageneous tissues. We found differences in stiffness between tricuspid chordae tendineae from the anterior, posterior, or septal leaflets only at small strains. Similarly, we found significant differences based on their insertion site or size also only at small strains. Of the models we fit to our data, we recommend the Ogden two-parameter model. This model fit the data excellently and required a minimal number of parameters. For future use, we identified and reported the Ogden material parameters for an average data set. Conclusion The data presented in this study help to explain the mechanics and structure-function relationship of tricuspid chordae tendineae and provide a model recommendation (with parameters) for use in computational simulations of the tricuspid valve.
Collapse
Affiliation(s)
- K J Smith
- The University of Texas at Austin, Austin, TX 78712
| | - M Mathur
- The University of Texas at Austin, Austin, TX 78712
| | - W D Meador
- The University of Texas at Austin, Austin, TX 78712
| | | | - G P Sugerman
- The University of Texas at Austin, Austin, TX 78712
| | - A K Menta
- The University of Texas at Austin, Austin, TX 78712
| | - T Jazwiec
- Spectrum Health, Grand Rapids, MI 49503
| | | | - T A Timek
- Spectrum Health, Grand Rapids, MI 49503
| | - M K Rausch
- The University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
18
|
Meador WD, Mathur M, Sugerman GP, Malinowski M, Jazwiec T, Wang X, Lacerda CM, Timek TA, Rausch MK. The tricuspid valve also maladapts as shown in sheep with biventricular heart failure. eLife 2020; 9:63855. [PMID: 33320094 PMCID: PMC7738185 DOI: 10.7554/elife.63855] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/02/2020] [Indexed: 11/28/2022] Open
Abstract
Over 1.6 million Americans suffer from significant tricuspid valve leakage. In most cases this leakage is designated as secondary. Thus, valve dysfunction is assumed to be due to valve-extrinsic factors. We challenge this paradigm and hypothesize that the tricuspid valve maladapts in those patients rendering the valve at least partially culpable for its dysfunction. As a first step in testing this hypothesis, we set out to demonstrate that the tricuspid valve maladapts in disease. To this end, we induced biventricular heart failure in sheep that developed tricuspid valve leakage. In the anterior leaflets of those animals, we investigated maladaptation on multiple scales. We demonstrated alterations on the protein and cell-level, leading to tissue growth, thickening, and stiffening. These data provide a new perspective on a poorly understood, yet highly prevalent disease. Our findings may motivate novel therapy options for many currently untreated patients with leaky tricuspid valves.
Collapse
Affiliation(s)
- William D Meador
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, United States
| | - Mrudang Mathur
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, United States
| | - Gabriella P Sugerman
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, United States
| | - Marcin Malinowski
- Division of Cardiothoracic Surgery, Spectrum Health, Grand Rapids, United States.,Department of Cardiac Surgery, Medical University of Silesia, School of Medicine in Katowice, Katowice, Poland
| | - Tomasz Jazwiec
- Division of Cardiothoracic Surgery, Spectrum Health, Grand Rapids, United States.,Department of Cardiac, Vascular and Endovascular Surgery and Transplantology, Medical University of Silesia in Katowice, Silesian Centre for Heart Diseases, Zabrze, Poland
| | - Xinmei Wang
- Department of Chemical Engineering, Texas Tech University, Lubbock, United States
| | - Carla Mr Lacerda
- Department of Chemical Engineering, Texas Tech University, Lubbock, United States
| | - Tomasz A Timek
- Division of Cardiothoracic Surgery, Spectrum Health, Grand Rapids, United States
| | - Manuel K Rausch
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, United States.,Department of Mechanical Engineering, The University of Texas at Austin, Austin, United States.,Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, United States
| |
Collapse
|
19
|
Mathur M, Meador WD, Jazwiec T, Malinowski M, Timek TA, Rausch MK. Tricuspid Valve Annuloplasty Alters Leaflet Mechanics. Ann Biomed Eng 2020; 48:2911-2923. [PMID: 32761558 PMCID: PMC8000450 DOI: 10.1007/s10439-020-02586-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
Abstract
Tricuspid valve regurgitation is associated with significant morbidity and mortality. Its most common treatment option, tricuspid valve annuloplasty, is not optimally effective in the long-term. Toward identifying the causes for annuloplasty's ineffectiveness, we have previously investigated the technique's impact on the tricuspid annulus and the right ventricular epicardium. In our current work, we are extending our analysis to the anterior tricuspid valve leaflet. To this end, we adopted our previous strategy of performing DeVega suture annuloplasty as an experimental methodology that allows us to externally control the degree of cinching during annuloplasty. Thus, in ten sheep we successively cinched the annulus and quantified changes to leaflet motion, dynamics, and strain in the beating heart by combining sonomicrometry with our well-established mechanical framework. We found that successive cinching of the valve enforced earlier coaptation and thus reduced leaflet range of motion. Additionally, leaflet angular velocity during opening and closing decreased. Finally, we found that leaflet strains were also reduced. Specifically, radial and areal strains decreased as a function of annular cinching. Our findings are critical as they suggest that suture annuloplasty alters the mechanics of the tricuspid valve leaflets which may disrupt their resident cells' mechanobiological equilibrium. Long-term, such disruption may stimulate tissue maladaptation which could contribute to annuloplasty's sub-optimal effectiveness. Additionally, our data suggest that the extent to which annuloplasty alters leaflet mechanics can be controlled via degree of cinching. Hence, our data may provide direct surgical guidelines.
Collapse
Affiliation(s)
- Mrudang Mathur
- Department of Mechanical Engineering, University of Texas at Austin, 204 E Dean Keeton Street, Austin, TX, 78712, USA
| | - William D Meador
- Department of Biomedical Engineering, University of Texas at Austin, 107 W Dean Keeton Street, Austin, TX, 78712, USA
| | - Tomasz Jazwiec
- Department of Cardiac, Vascular and Endovascular Surgery and Transplantology, Silesian Centre for Heart Diseases, Medical University of Silesia in Katowice, Zabrze, Poland
- Division of Cardiothoracic Surgery, Spectrum Health, Grand Rapids, MI, 49503, USA
| | - Marcin Malinowski
- Division of Cardiothoracic Surgery, Spectrum Health, Grand Rapids, MI, 49503, USA
- Department of Cardiac Surgery, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Tomasz A Timek
- Division of Cardiothoracic Surgery, Spectrum Health, Grand Rapids, MI, 49503, USA
| | - Manuel K Rausch
- Departments of Aerospace Engineering & Engineering Mechanics, Biomedical Engineering, University of Texas at Austin, 2617 Wichita Street, Austin, TX, 78712, USA.
| |
Collapse
|
20
|
Introduction to the Special Issue on Advances in Biological Tissue Biomechanics. Bioengineering (Basel) 2020; 7:bioengineering7030095. [PMID: 32824476 PMCID: PMC7552630 DOI: 10.3390/bioengineering7030095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 11/20/2022] Open
|
21
|
Laurence DW, Johnson EL, Hsu MC, Baumwart R, Mir A, Burkhart HM, Holzapfel GA, Wu Y, Lee CH. A pilot in silico modeling-based study of the pathological effects on the biomechanical function of tricuspid valves. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2020; 36:e3346. [PMID: 32362054 PMCID: PMC8039906 DOI: 10.1002/cnm.3346] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/23/2020] [Accepted: 04/22/2020] [Indexed: 05/12/2023]
Abstract
Current clinical assessment of functional tricuspid valve regurgitation relies on metrics quantified from medical imaging modalities. Although these clinical methodologies are generally successful, the lack of detailed information about the mechanical environment of the valve presents inherent challenges for assessing tricuspid valve regurgitation. In the present study, we have developed a finite element-based in silico model of one porcine tricuspid valve (TV) geometry to investigate how various pathological conditions affect the overall biomechanical function of the TV. There were three primary observations from our results. Firstly, the results of the papillary muscle (PM) displacement study scenario indicated more pronounced changes in the TV biomechanical function. Secondly, compared to uniform annulus dilation, nonuniform dilation scenario induced more evident changes in the von Mises stresses (83.8-125.3 kPa vs 65.1-84.0 kPa) and the Green-Lagrange strains (0.52-0.58 vs 0.47-0.53) for the three TV leaflets. Finally, results from the pulmonary hypertension study scenario showed opposite trends compared to the PM displacement and annulus dilation scenarios. Furthermore, various chordae rupture scenarios were simulated, and the results showed that the chordae tendineae attached to the TV anterior and septal leaflets may be more critical to proper TV function. This in silico modeling-based study has provided a deeper insight into the tricuspid valve pathologies that may be useful, with moderate extensions, for guiding clinical decisions. NOVELTY STATEMENT: The novelties of the research are summarized below: A comprehensive in silico pilot study of how isolated functional tricuspid regurgitation pathologies and ruptured chordae tendineae would alter the tricuspid valve function; An extensive analysis of the tricuspid valve function, including mechanical quantities (eg, the von Mises stress and the Green-Lagrange strain) and clinically-relevant geometry metrics (eg, the tenting area and the coaptation height); and A developed computational modeling pipeline that can be extended to evaluate patient-specific tricuspid valve geometries and enhance the current clinical diagnosis and treatment of tricuspid regurgitation.
Collapse
Affiliation(s)
- Devin W. Laurence
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK 73019, USA
| | - Emily L. Johnson
- Computational Fluid-Structure Interaction Laboratory, Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | - Ming-Chen Hsu
- Computational Fluid-Structure Interaction Laboratory, Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | - Ryan Baumwart
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Arshid Mir
- Division of Pediatric Cardiology, Department of Pediatrics, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Harold M. Burkhart
- Division of Cardiothoracic Surgery, Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Gerhard A. Holzapfel
- Institute of Biomechanics, Graz University of Technology, Stremayrgasse 16/2 8010 Graz, Austria
- Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Yi Wu
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK 73019, USA
| | - Chung-Hao Lee
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK 73019, USA
- Institute for Biomedical Engineering, Science, and Technology, The University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
22
|
Kim YW, Moon JY, Li WJ, Kim JH, Park YH, Lee JS, Jang Y. Effect of membrane insertion for tricuspid regurgitation using immersed-boundary lattice Boltzmann method. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 191:105421. [PMID: 32146209 DOI: 10.1016/j.cmpb.2020.105421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Tricuspid regurgitation is treated by valve repair or replacement. However, these methods have limitations, and alternative treatment methods are therefore required. OBJECTIVES In this study, a new method of tricuspid valve treatment using artificial membrane insertion is analyzed. We performed tricuspid valve simulations using an artificial membrane inserted into the right ventricle (RV) or right atrium (RA). METHODS We use the lattice Boltzmann method with the immersed boundary condition to model the structural motion of the valve leaflet. The effect of membrane insertion is analyzed in terms of the stress, force, and impulse on the valve leaflet, along with the velocity, pressure, jet volume, and Reynolds stress in the flow field. RESULTS While the use of either membrane (RA or RV) leads to improved valve closure relative to the use of no membrane, the RV membrane is more effective than the RA membrane in achieving improved valve closure. In addition, a larger membrane area with a shorter distance between the leaflet and membrane increases membrane efficacy. CONCLUSION Our results suggest that membrane insertion can form an effective new method for the treatment of tricuspid regurgitation.
Collapse
Affiliation(s)
- Young Woo Kim
- Department of Mechanical Engineering, Yonsei University, Korea
| | | | - Wen Jie Li
- Department of Mechanical Engineering, Yonsei University, Korea
| | - June-Hong Kim
- Cardiovascular Center, Pusan National University Yangsan Hospital, Korea
| | - Yong-Hyun Park
- Cardiovascular Center, Pusan National University Yangsan Hospital, Korea
| | - Joon Sang Lee
- Department of Mechanical Engineering, Yonsei University, Korea.
| | - Yeongho Jang
- Department of Pain Medicine and Anesthesiology, Saedongsan Hospital, Korea
| |
Collapse
|
23
|
Beating heart technique in tricuspid valve replacement among patients which have a TAPSE index lower than 15 mm. JOURNAL OF SURGERY AND MEDICINE 2020. [DOI: 10.28982/josam.699528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
24
|
Mathur M, Meador WD, Jazwiec T, Malinowski M, Timek TA, Rausch MK. The Effect of Downsizing on the Normal Tricuspid Annulus. Ann Biomed Eng 2020; 48:655-668. [PMID: 31659604 PMCID: PMC8353055 DOI: 10.1007/s10439-019-02387-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/11/2019] [Indexed: 12/17/2022]
Abstract
Tricuspid annuloplasty is a surgical procedure that cinches the valve's annulus in order to reduce regurgitant blood flow. One of its critical parameters is the degree of downsizing. To provide insight into the effect of downsizing, we studied the annulus of healthy sheep during suture annuloplasty. To this end, we implanted fiduciary markers along the annulus of sheep and subsequently performed a DeVega suture annuloplasty. We performed five downsizing steps in each animal while recording hemodynamic and sonomicrometry data in beating hearts. Subsequently, we used splines to approximate the annulus at baseline and at each downsizing step. Based on these approximations we computed clinical metrics of annular shape and dynamics, and the continuous field metrics height, strain, and curvature. With these data, we demonstrated that annular area reduction during downsizing was primarily driven by compression of the anterior annulus. Similarly, reduction in annular dynamics was driven by reduced contractility in the anterior annulus. Finally, changes in global height and eccentricity of the annulus could be explained by focal changes in the continuous height profile and changes in annular curvature. Our findings are important as they provide insight into a regularly performed surgical procedure and may inform the design of transcatheter devices that mimic suture annuloplasty.
Collapse
Affiliation(s)
- Mrudang Mathur
- Department of Mechanical Engineering, University of Texas at Austin, 204 E Dean Keeton Street, Austin, TX, 78712, USA
| | - William D Meador
- Department of Biomedical Engineering, University of Texas at Austin, 107 W Dean Keeton Street, Austin, TX, 78712, USA
| | - Tomasz Jazwiec
- Silesian Centre for Heart Diseases, Department of Cardiac, Vascular and Endovascular Surgery and Transplantology, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Marcin Malinowski
- Department of Cardiac Surgery, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Tomasz A Timek
- Division of Cardiothoracic Surgery, Spectrum Health, Grand Rapids, MI, 49503, USA
| | - Manuel K Rausch
- Departments of Aerospace Engineering & Engineering Mechanics, Biomedical Engineering, University of Texas at Austin, 2617, Wichita Street, Austin, TX, 78712, USA.
| |
Collapse
|
25
|
Jett SV, Hudson LT, Baumwart R, Bohnstedt BN, Mir A, Burkhart HM, Holzapfel GA, Wu Y, Lee CH. Integration of polarized spatial frequency domain imaging (pSFDI) with a biaxial mechanical testing system for quantification of load-dependent collagen architecture in soft collagenous tissues. Acta Biomater 2020; 102:149-168. [PMID: 31734412 PMCID: PMC8101699 DOI: 10.1016/j.actbio.2019.11.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/30/2022]
Abstract
Collagen fiber networks provide the structural strength of tissues, such as tendons, skin and arteries. Quantifying the fiber architecture in response to mechanical loads is essential towards a better understanding of the tissue-level mechanical behaviors, especially in assessing disease-driven functional changes. To enable novel investigations into these load-dependent fiber structures, a polarized spatial frequency domain imaging (pSFDI) device was developed and, for the first time, integrated with a biaxial mechanical testing system. The integrated instrument is capable of a wide-field quantification of the fiber orientation and the degree of optical anisotropy (DOA), representing the local degree of fiber alignment. The opto-mechanical instrument''s performance was assessed through uniaxial loading on tendon tissues with known collagen fiber microstructures. Our results revealed that the bulk fiber orientation angle of the tendon tissue changed minimally with loading (median ± 0.5*IQR of 52.7° ± 3.3° and 51.9° ± 3.3° under 0 and 3% longitudinal strains, respectively), whereas on a micro-scale, the fibers became better aligned with the direction of loading: the DOA (mean ± SD) increased from 0.149 ± 0.032 to 0.198 ± 0.056 under 0 and 3% longitudinal strains, respectively, p < 0.001. The integrated instrument was further applied to study two representative mitral valve anterior leaflet (MVAL) tissues subjected to various biaxial loads. The fiber orientations within these representative MVAL tissue specimens demonstrated noticeable heterogeneity, with the local fiber orientations dependent upon the sample, the spatial and transmural locations, and the applied loading. Our results also showed that fibers were generally better aligned under equibiaxial (DOA = 0.089 ± 0.036) and circumferentially-dominant loading (DOA = 0.086 ± 0.037) than under the radially-dominant loading (DOA = 0.077 ± 0.034), indicating circumferential predisposition. These novel findings exemplify a deeper understanding of the load-dependent collagen fiber microstructures obtained through the use of the integrated opto-mechanical instrument. STATEMENT OF SIGNIFICANCE: In this study, a novel quantitative opto-mechanical system was developed by combining a polarized Spatial Frequency Domain Imaging (pSFDI) device with a biaxial mechanical tester. The integrated system was used to quantify the load-dependent collagen fiber microstructures in representative tendon and mitral valve anterior leaflet (MVAL) tissues. Our results revealed that MVAL's fiber architectures exhibited load-dependent spatial and transmural heterogeneities, suggesting further microstructural complexity than previously reported in heart valve tissues. These novel findings were possible through the system's ability to, for the first time, capture the load-dependent collagen architecture in the mitral valve anterior leaflet tissue over a wide field of view (e.g., 10 × 10 mm for the MVAL tissue specimens). Such capabilities afford unique future opportunities to improve patient outcomes through concurrent mechanical and microstructural assessments of healthy and diseased tissues in conditions such as heart valve regurgitation and calcification.
Collapse
Affiliation(s)
- Samuel V Jett
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, Affiliated Faculty Member, Institute for Biomedical Engineering, Science, and Technology, The University of Oklahoma, 865 Asp Ave., Felgar Hall Rm. 219C, Norman, OK 73019-3609, United States
| | - Luke T Hudson
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, Affiliated Faculty Member, Institute for Biomedical Engineering, Science, and Technology, The University of Oklahoma, 865 Asp Ave., Felgar Hall Rm. 219C, Norman, OK 73019-3609, United States
| | - Ryan Baumwart
- Center for Veterinary Health Sciences, Oklahoma State University, 2065 W. Farm Rd., Stillwater, OK 74078, United States
| | - Bradley N Bohnstedt
- Department of Neurosurgery, The University of Oklahoma Health Sciences Center, 1000 N Lincoln Blvd #400, Oklahoma City, OK 73104, United States
| | - Arshid Mir
- Division of Pediatric Cardiology, Department of Pediatrics, The University of Oklahoma Health Sciences Center, 1200 Children's Ave., Suite 2F, Oklahoma City, OK 73104, United States
| | - Harold M Burkhart
- Division of Cardiothoracic Surgery, Department of Surgery, The University of Oklahoma Health Sciences Center, 800 Stanton L. Young Blvd. Suite 9000, Oklahoma City, OK 73104, United States
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Stremayrgasse 16/2 8010 Graz, Austria; Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Yi Wu
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, Affiliated Faculty Member, Institute for Biomedical Engineering, Science, and Technology, The University of Oklahoma, 865 Asp Ave., Felgar Hall Rm. 219C, Norman, OK 73019-3609, United States
| | - Chung-Hao Lee
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, Affiliated Faculty Member, Institute for Biomedical Engineering, Science, and Technology, The University of Oklahoma, 865 Asp Ave., Felgar Hall Rm. 219C, Norman, OK 73019-3609, United States; Institute for Biomedical Engineering, Science and Technology, The University of Oklahoma, 202 West Boyd St., Norman, OK 73019, United States.
| |
Collapse
|
26
|
Meador WD, Mathur M, Sugerman GP, Jazwiec T, Malinowski M, Bersi MR, Timek TA, Rausch MK. A detailed mechanical and microstructural analysis of ovine tricuspid valve leaflets. Acta Biomater 2020; 102:100-113. [PMID: 31760220 PMCID: PMC7325866 DOI: 10.1016/j.actbio.2019.11.039] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/14/2019] [Accepted: 11/19/2019] [Indexed: 12/26/2022]
Abstract
The tricuspid valve ensures unidirectional blood flow from the right atrium to the right ventricle. The three tricuspid leaflets operate within a dynamic stress environment of shear, bending, tensile, and compressive forces, which is cyclically repeated nearly three billion times in a lifetime. Ostensibly, the microstructural and mechanical properties of the tricuspid leaflets have mechanobiologically evolved to optimally support their function under those forces. Yet, how the tricuspid leaflet microstructure determines its mechanical properties and whether this relationship differs between the three leaflets is unknown. Here we perform a microstructural and mechanical analysis in matched ovine tricuspid leaflet samples. We found that the microstructure and mechanical properties vary among the three tricuspid leaflets in sheep. Specifically, we found that tricuspid leaflet composition, collagen orientation, and valve cell nuclear morphology are spatially heterogeneous and vary across leaflet type. Furthermore, under biaxial tension, the leaflets' mechanical behaviors exhibited unequal degrees of mechanical anisotropy. Most importantly, we found that the septal leaflet was stiffer in the radial direction and not the circumferential direction as with the other two leaflets. The differences we observed in leaflet microstructure coincide with the varying biaxial mechanics among leaflets. Our results demonstrate the structure-function relationship for each leaflet in the tricuspid valve. We anticipate our results to be vital toward developing more accurate, leaflet-specific tricuspid valve computational models. Furthermore, our results may be clinically important, informing differential surgical treatments of the tricuspid valve leaflets. Finally, the identified structure-function relationships may provide insight into the homeostatic and remodeling potential of valvular cells in altered mechanical environments, such as in diseased or repaired tricuspid valves. STATEMENT OF SIGNIFICANCE: Our work is significant as we investigated the structure-function relationship of ovine tricuspid valve leaflets. This is important as tricuspid valves fail frequently and our current approach to repairing them is suboptimal. Specifically, we related the distribution of structural and cellular elements, such as collagen, glycosaminoglycans, and cell nuclei, to each leaflet's mechanical properties. We found that leaflets have different structures and that their mechanics differ. This may, in the future, inform leaflet-specific treatment strategies and help optimize surgical outcomes.
Collapse
Affiliation(s)
- William D Meador
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78705, USA
| | - Mrudang Mathur
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78705, USA
| | - Gabriella P Sugerman
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78705, USA
| | - Tomasz Jazwiec
- Cardiothoracic Surgery, Spectrum Health, Grand Rapids, MI 49503, USA; Department of Cardiac, Vascular, and Endovascular Surgery and Transplantology, Medical University of Silesia School of Medicine in Katowice, Silesian Centre for Heart Diseases, Zabrze, Poland
| | - Marcin Malinowski
- Cardiothoracic Surgery, Spectrum Health, Grand Rapids, MI 49503, USA; Department of Cardiac Surgery, Medical University of Silesia School of Medicine in Katowice, Katowice, Poland
| | - Matthew R Bersi
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Tomasz A Timek
- Cardiothoracic Surgery, Spectrum Health, Grand Rapids, MI 49503, USA
| | - Manuel K Rausch
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78705, USA; Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78705, USA; Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, TX 78705, USA.
| |
Collapse
|
27
|
Colombo R, Paolillo M, Papetti A. A new millifluidic-based gastrointestinal platform to evaluate the effect of simulated dietary methylglyoxal intakes. Food Funct 2020; 10:4330-4338. [PMID: 31273366 DOI: 10.1039/c9fo00332k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The search for new in vitro modular bioreactors to simulate flow-mediated transport and absorption of chemical substances is a very important issue in toxicology and in drug and bioactive delivery research. The possibility of setting up a dynamic microenvironment leads to experimental conditions that may more closely resemble the in vivo model, especially to measure acute or chronic intake of compounds. We propose a novel millifluidic-based gastrointestinal model as an evolution of the common in vitro methods, to evaluate the exposure to exogenous methylglyoxal (MGO), a highly reactive α-oxoaldehyde responsible for the formation of advanced glycation end products involved in a number of chronic diseases. Gastric and intestinal cells were seeded into two different chambers, creating a multi-compartmental system where fluids dynamically interact with human gastric stromal and intestinal cells. MGO was tested at concentrations simulating different MGO food intakes (meal, daily, and hypothetically weekly). Cell viability was measured over time, and simultaneously, extracellular MGO was quantified by a validated RP-HPLC-DAD method to evaluate its absorption/metabolization. This new platform gives the opportunity to connect different compartments, allowing studying kinetic and metabolic profiles of different substances and representing a very promising alternative to animal models, at least in preliminary investigations.
Collapse
Affiliation(s)
- Raffaella Colombo
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12, 27100, Pavia, Italy.
| | | | | |
Collapse
|
28
|
Gulbulak U, Ertas A. Finite Element Driven Design Domain Identification of a Beating Left Ventricular Simulator. Bioengineering (Basel) 2019; 6:bioengineering6030083. [PMID: 31540196 PMCID: PMC6784146 DOI: 10.3390/bioengineering6030083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/30/2019] [Accepted: 09/10/2019] [Indexed: 11/24/2022] Open
Abstract
Almost ten percent of the American population have heart diseases. Since the number of available heart donors is not promising, left ventricular assist devices are implemented as bridge therapies. Development of the assist devices benefits from both in-vivo animal and in-vitro mock circulation studies. Representation of the heart is a crucial part of the mock circulation setups. Recently, a beating left ventricular simulator with latex rubber and helically oriented McKibben actuators has been proposed. The simulator was able to mimic heart wall motion, however, flow rate was reported to be limited to 2 liters per minute. This study offers a finite element driven design domain identification to identify the combination of wall thickness, number of actuators, and the orientation angle that results in better deformation. A nonlinear finite element model of the simulator was developed and validated. Design domain was constructed with 150 finite element models, each with varying wall thickness and number of actuators with varying orientation angles. Results showed that the combination of 4 mm wall thickness and 8 actuators with 90 degrees orientation performed best in the design domain.
Collapse
Affiliation(s)
- Utku Gulbulak
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Atila Ertas
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|