1
|
Dyck YFK, Rehm D, Winkler K, Sandig V, Jabs W, Parr MK. Comparison of middle- and bottom-up mass spectrometry in forced degradation studies of bevacizumab and infliximab. J Pharm Biomed Anal 2023; 235:115596. [PMID: 37540995 DOI: 10.1016/j.jpba.2023.115596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/29/2023] [Accepted: 07/19/2023] [Indexed: 08/06/2023]
Abstract
Monoclonal antibodies (mAbs) used as therapeutics need comprehensive characterization for appropriate quality assurance. For analysis, cost-effective methods are of high importance, especially when it comes to biosimilar development which is based on extended physicochemical characterization. The use of forced degradation to study the occurrence of modifications for analysis is well established in drug development and may be used for the evaluation of critical quality attributes (CQAs). For mAb analysis different procedures of liquid chromatography hyphenated with mass spectrometry (LC-MS) analyses are commonly applied. In this study the middle-up approach is compared to the more expensive bottom-up analysis in a forced oxidation biosimilar comparability study. Bevacizumab and infliximab as well as biosimilar candidates for the two mAbs were forcefully oxidized by H2O2 for 24, 48 and 72 h. For bottom-up, the reduced and alkylated trypsin or Lys-C digested samples were analysed by LC-MS with quadrupole time-of-flight mass analyser (LC-QTOF-MS) to detect susceptible residues. By middle-up analysis several species of every subunit (Fc/2, light chain and Fd') were detected which differed in the number of oxidations. For the most abundant species, results from middle-up were in line with results from bottom-up analysis, confirming the strength of middle-up analysis. However, for less abundant species of some subunits, results differed between the two approaches. In both mAbs, the Fc was extensively oxidized. In infliximab, additional extensive oxidation was found in the Fab. Assignment to specific amino acid residues was finally possible using the results from bottom-up analyses. Interestingly, the C-terminal cysteine of the light chain was partially found triply oxidized in both mAbs. The comparison of susceptibility to oxidation showed high similarity between the reference products and their biosimilar candidates. It is suggested that the findings of middle-up experiments should be complemented by bottom-up analysis to confirm the assignments of the localization of modifications. Once the consistency of results has been established, middle-up analyses are sufficient in extended forced degradation biosimilar studies.
Collapse
Affiliation(s)
- Yan Felix Karl Dyck
- Department of Pharmaceutical & Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany; Department of Life Sciences & Technology, Berlin University of Applied Science, Seestraße 64, 13347 Berlin, Germany
| | - Daniel Rehm
- Department of Pharmaceutical & Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany; ProBioGen AG, Herbert-Bayer-Straße 8, 13086 Berlin, Germany
| | | | - Volker Sandig
- ProBioGen AG, Herbert-Bayer-Straße 8, 13086 Berlin, Germany
| | - Wolfgang Jabs
- Department of Life Sciences & Technology, Berlin University of Applied Science, Seestraße 64, 13347 Berlin, Germany
| | - Maria Kristina Parr
- Department of Pharmaceutical & Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany.
| |
Collapse
|
2
|
Deshmukh A, Goyal R, Sundaram K, Dange K, Lakhote T, Niranjan S, Bharucha J, Mishra A, Vats B, Tiwari S. Analytical sameness methodology for the evaluation of structural, physicochemical, and biological characteristics of Armlupeg: A pegfilgrastim biosimilar case study. PLoS One 2023; 18:e0289745. [PMID: 37556495 PMCID: PMC10411777 DOI: 10.1371/journal.pone.0289745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 07/25/2023] [Indexed: 08/11/2023] Open
Abstract
Pegfilgrastim is administered as an adjunct to chemotherapy to reduce the incidence of febrile neutropenia and associated infectious complications. Lupin's Pegfilgrastim is a proposed biosimilar to the U.S.-referenced Neulasta®. Demonstration of biosimilarity requires extensive physicochemical and functional characterization of the biosimilar, and demonstration of analytical similarity to the reference product, in addition to clinical studies. This work is a case study for demonstrating the analytical similarity of Armlupeg (Lupin's Pegfilgrastim) to Neulasta® with respect to structural and physicochemical attributes using several robust, orthogonal, and state-of-the-art techniques including high-end liquid chromatography, mass spectrometry, and spectroscopy techniques; circular dichroism; differential scanning calorimetry; nuclear magnetic resonance; analytical ultracentrifugation; and micro-flow imaging. Functional similarity was demonstrated using an in vitro cell proliferation assay to measure relative potency and surface plasmon resonance to measure receptor binding kinetics. Furthermore, comparative forced-degradation studies were performed to study the degradation of the products under stress conditions. The product attributes were ranked based on a critical quality attributes risk score according to their potential clinical impact. Based on criticality, all analyses were statistically evaluated to conclude analytical similarity. Lupin's Pegfilgrastim was comparable to Neulasta® as demonstrated via structural, functional, and purity analyses. Lupin's Pegfilgrastim complied with the quality and statistical ranges established using Neulasta®. Both products follow the same degradation pathways under stress conditions as observed in the forced-degradation studies. No new impurity or degradation product was observed in Lupin's Pegfilgrastim. These data conclusively demonstrate the analytical similarity of Lupin's Pegfilgrastim and Neulasta®.
Collapse
Affiliation(s)
- Arati Deshmukh
- Research and Development, Lupin Limited (Biotechnology Division), Pune, Maharashtra, India
| | - Rishank Goyal
- Research and Development, Lupin Limited (Biotechnology Division), Pune, Maharashtra, India
| | - Kalyana Sundaram
- Research and Development, Lupin Limited (Biotechnology Division), Pune, Maharashtra, India
| | - Kaustubh Dange
- Research and Development, Lupin Limited (Biotechnology Division), Pune, Maharashtra, India
| | - Tejshri Lakhote
- Research and Development, Lupin Limited (Biotechnology Division), Pune, Maharashtra, India
| | - Sanjay Niranjan
- Research and Development, Lupin Limited (Biotechnology Division), Pune, Maharashtra, India
| | - Jennifer Bharucha
- Research and Development, Lupin Limited (Biotechnology Division), Pune, Maharashtra, India
| | - Ashok Mishra
- Research and Development, Lupin Limited (Biotechnology Division), Pune, Maharashtra, India
| | - Bhavesh Vats
- Research and Development, Lupin Limited (Biotechnology Division), Pune, Maharashtra, India
| | - Sanjay Tiwari
- Research and Development, Lupin Limited (Biotechnology Division), Pune, Maharashtra, India
| |
Collapse
|
3
|
Solomon TL, Delaglio F, Giddens JP, Marino JP, Yu YB, Taraban MB, Brinson RG. Correlated analytical and functional evaluation of higher order structure perturbations from oxidation of NISTmAb. MAbs 2023; 15:2160227. [PMID: 36683157 PMCID: PMC9872951 DOI: 10.1080/19420862.2022.2160227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The clinical efficacy and safety of protein-based drugs such as monoclonal antibodies (mAbs) rely on the integrity of the protein higher order structure (HOS) during product development, manufacturing, storage, and patient administration. As mAb-based drugs are becoming more prevalent in the treatment of many illnesses, the need to establish metrics for quality attributes of mAb therapeutics through high-resolution techniques is also becoming evident. To this end, here we used a forced degradation method, time-dependent oxidation by hydrogen peroxide, on the model biotherapeutic NISTmAb and evaluated the effects on HOS with orthogonal analytical methods and a functional assay. To monitor the oxidation process, the experimental workflow involved incubation of NISTmAb with hydrogen peroxide in a benchtop nuclear magnetic resonance spectrometer (NMR) that followed the reaction kinetics, in real-time through the water proton transverse relaxation rate R2(1H2O). Aliquots taken at defined time points were further analyzed by high-field 2D 1H-13C methyl correlation fingerprint spectra in parallel with other analytical techniques, including thermal unfolding, size-exclusion chromatography, and surface plasmon resonance, to assess changes in stability, heterogeneity, and binding affinities. The complementary measurement outputs from the different techniques demonstrate the utility of combining NMR with other analytical tools to monitor oxidation kinetics and extract the resulting structural changes in mAbs that are functionally relevant, allowing rigorous assessment of HOS attributes relevant to the efficacy and safety of mAb-based drug products.
Collapse
Affiliation(s)
- Tsega L. Solomon
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, Maryland, United States
| | - Frank Delaglio
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, Maryland, United States
| | - John P. Giddens
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, Maryland, United States
| | - John P. Marino
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, Maryland, United States
| | - Yihua Bruce Yu
- Bio- and Nano-Technology Center, University of Maryland School of Pharmacy, and Institute for Bioscience and Biotechnology Research, Rockville, Maryland, United States
| | - Marc B. Taraban
- Bio- and Nano-Technology Center, University of Maryland School of Pharmacy, and Institute for Bioscience and Biotechnology Research, Rockville, Maryland, United States
| | - Robert G. Brinson
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, Maryland, United States,CONTACT Robert G. Brinson Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology, 9600 Gudelsky Drive Rockville, Rockville, Maryland20850, United States
| |
Collapse
|
4
|
Legrand P, Dufaÿ S, Mignet N, Houzé P, Gahoual R. Modeling study of long-term stability of the monoclonal antibody infliximab and biosimilars using liquid-chromatography-tandem mass spectrometry and size-exclusion chromatography-multi-angle light scattering. Anal Bioanal Chem 2023; 415:179-192. [PMID: 36449030 PMCID: PMC9709354 DOI: 10.1007/s00216-022-04396-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/07/2022] [Accepted: 10/20/2022] [Indexed: 12/02/2022]
Abstract
Monoclonal antibodies (mAbs) represent a dynamic class of biopharmaceutical products, as evidenced by an increasing number of market authorizations for mAb innovator and biosimilar products. Stability studies are commonly performed during product development, for instance, to exclude unstable molecules, optimize the formulation or determine the storage limit. Such studies are time-consuming, especially for mAbs, because of their structural complexity which requires multiple analytical techniques to achieve a detailed characterization. We report the implementation of a novel methodology based on the accelerated stability assessment program (ASAP) in order to model the long-term stability of mAbs in relation to different structural aspects. Stability studies of innovator infliximab and two different biosimilars were performed using forced degradation conditions alongside in-use administration conditions in order to investigate their similarity regarding stability. Thus, characterization of post-translational modifications was achieved using liquid-chromatography-tandem mass spectrometry (LC-MS/MS) analysis, and the formation of aggregates and free chain fragments was characterized using size-exclusion chromatography-multi-angle light scattering (SEC-MALS-UV/RI) analysis. Consequently, ASAP models were investigated with regard to free chain fragmentation of mAbs concomitantly with N57 deamidation, located in the hypervariable region. Comparison of ASAP models and the long-term stability data from samples stored in intravenous bags demonstrated a relevant correlation, indicating the stability of the mAbs. The developed methodology highlighted the particularities of ASAP modeling for mAbs and demonstrated the possibility to independently consider the different types of degradation pathways in order to provide accurate and appropriate prediction of the long-term stability of this type of biomolecule.
Collapse
Affiliation(s)
- Pauline Legrand
- Université Paris Cité, Faculté de sciences pharmaceutiques et biologiques, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), CNRS UMR8258, Inserm U1267, 4, avenue de l'observatoire, 75270, Paris Cedex 06, France.
- Département Recherche Et Développement Pharmaceutique, Agence Générale Des Equipements Et Produits de Santé (AGEPS), Assistance Publique-Hôpitaux de Paris, (AP-HP), Paris, France.
| | - Sophie Dufaÿ
- Département Recherche Et Développement Pharmaceutique, Agence Générale Des Equipements Et Produits de Santé (AGEPS), Assistance Publique-Hôpitaux de Paris, (AP-HP), Paris, France
| | - Nathalie Mignet
- Université Paris Cité, Faculté de sciences pharmaceutiques et biologiques, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), CNRS UMR8258, Inserm U1267, 4, avenue de l'observatoire, 75270, Paris Cedex 06, France
| | - Pascal Houzé
- Université Paris Cité, Faculté de sciences pharmaceutiques et biologiques, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), CNRS UMR8258, Inserm U1267, 4, avenue de l'observatoire, 75270, Paris Cedex 06, France
- Laboratoire de Toxicologie Biologique, Hôpital Lariboisière, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France
| | - Rabah Gahoual
- Université Paris Cité, Faculté de sciences pharmaceutiques et biologiques, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), CNRS UMR8258, Inserm U1267, 4, avenue de l'observatoire, 75270, Paris Cedex 06, France
| |
Collapse
|
5
|
Gurel B, Berksoz M, Capkin E, Parlar A, Pala MC, Ozkan A, Capan Y, Daglikoca DE, Yuce M. Structural and Functional Analysis of CEX Fractions Collected from a Novel Avastin® Biosimilar Candidate and Its Innovator: A Comparative Study. Pharmaceutics 2022; 14:pharmaceutics14081571. [PMID: 36015197 PMCID: PMC9415858 DOI: 10.3390/pharmaceutics14081571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 02/01/2023] Open
Abstract
Avastin® is a humanized recombinant monoclonal antibody used to treat cancer by targeting VEGF-A to inhibit angiogenesis. SIMAB054, an Avastin® biosimilar candidate developed in this study, showed a different charge variant profile than its innovator. Thus, it is fractionated into acidic, main, and basic isoforms and collected physically by Cation Exchange Chromatography (CEX) for a comprehensive structural and functional analysis. The innovator product, fractionated into the same species and collected by the same method, is used as a reference for comparative analysis. Ultra-Performance Liquid Chromatography (UPLC) ESI-QToF was used to analyze the modifications leading to charge heterogeneities at intact protein and peptide levels. The C-terminal lysine clipping and glycosylation profiles of the samples were monitored by intact mAb analysis. The post-translational modifications, including oxidation, deamidation, and N-terminal pyroglutamic acid formation, were determined by peptide mapping analysis in the selected signal peptides. The relative binding affinities of the fractionated charge isoforms against the antigen, VEGF-A, and the neonatal receptor, FcRn, were revealed by Surface Plasmon Resonance (SPR) studies. The results show that all CEX fractions from the innovator product and the SIMAB054 shared the same structural variants, albeit in different ratios. Common glycoforms and post-translational modifications were the same, but at different percentages for some samples. The dissimilarities were mostly originating from the presence of extra C-term Lysin residues, which are prone to enzymatic degradation in the body, and thus they were previously assessed as clinically irrelevant. Another critical finding was the presence of different glyco proteoforms in different charge species, such as increased galactosylation in the acidic and afucosylation in the basic species. SPR characterization of the isolated charge variants further confirmed that basic species found in the CEX analyses of the biosimilar candidate were also present in the innovator product, although at lower amounts. The charge variants’ in vitro antigen- and neonatal receptor-binding activities varied amongst the samples, which could be further investigated in vivo with a larger sample set to reveal the impact on the pharmacokinetics of drug candidates. Minor structural differences may explain antigen-binding differences in the isolated charge variants, which is a key parameter in a comparability exercise. Consequently, such a biosimilar candidate may not comply with high regulatory standards unless the binding differences observed are justified and demonstrated not to have any clinical impact.
Collapse
Affiliation(s)
- Busra Gurel
- SUNUM Nanotechnology Research and Application Center, Sabanci University, Istanbul 34956, Turkey;
| | - Melike Berksoz
- ILKO ARGEM Biotechnology R&D Center, Istanbul 34906, Turkey; (M.B.); (E.C.); (M.C.P.); (A.O.); (Y.C.)
| | - Eda Capkin
- ILKO ARGEM Biotechnology R&D Center, Istanbul 34906, Turkey; (M.B.); (E.C.); (M.C.P.); (A.O.); (Y.C.)
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey;
| | - Ayhan Parlar
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey;
| | - Meltem Corbacioglu Pala
- ILKO ARGEM Biotechnology R&D Center, Istanbul 34906, Turkey; (M.B.); (E.C.); (M.C.P.); (A.O.); (Y.C.)
| | - Aylin Ozkan
- ILKO ARGEM Biotechnology R&D Center, Istanbul 34906, Turkey; (M.B.); (E.C.); (M.C.P.); (A.O.); (Y.C.)
| | - Yılmaz Capan
- ILKO ARGEM Biotechnology R&D Center, Istanbul 34906, Turkey; (M.B.); (E.C.); (M.C.P.); (A.O.); (Y.C.)
| | - Duygu Emine Daglikoca
- ILKO ARGEM Biotechnology R&D Center, Istanbul 34906, Turkey; (M.B.); (E.C.); (M.C.P.); (A.O.); (Y.C.)
- Correspondence: (D.E.D.); (M.Y.)
| | - Meral Yuce
- SUNUM Nanotechnology Research and Application Center, Sabanci University, Istanbul 34956, Turkey;
- Correspondence: (D.E.D.); (M.Y.)
| |
Collapse
|
6
|
Coghlan J, Benet A, Kumaran P, Ford M, Veale L, Skilton SJ, Saveliev S, Schwendeman AA. Streamlining the Characterization of Disulfide Bond Shuffling and Protein Degradation in IgG1 Biopharmaceuticals Under Native and Stressed Conditions. Front Bioeng Biotechnol 2022; 10:862456. [PMID: 35360407 PMCID: PMC8963993 DOI: 10.3389/fbioe.2022.862456] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/16/2022] [Indexed: 11/23/2022] Open
Abstract
Post translational modifications (PTMs) have been shown to negatively impact protein efficacy and safety by altering its native conformation, stability, target binding and/or pharmacokinetics. One PTM in particular, shuffled disulfide bonds, has been linked to decreased potency and increased immunogenicity of protein therapeutics. In an effort to gain more insights into the effects of shuffled disulfide bonds on protein therapeutics' safety and efficacy, we designed and further optimized a semi-automated LC-MS/MS method for disulfide bond characterization on two IgG1 protein therapeutics-rituximab and bevacizumab. We also compared originator vs. biosimilar versions of the two therapeutics to determine if there were notable variations in the disulfide shuffling and overall degradation between originator and biosimilar drug products. From our resulting data, we noticed differences in how the two proteins degraded. Bevacizumab had a general upward trend in shuffled disulfide bond levels over the course of a 4-week incubation (0.58 ± 0.08% to 1.46 ± 1.10% for originator) whereas rituximab maintained similar levels throughout the incubation (0.24 ± 0.21% to 0.51 ± 0.11% for originator). When we measured degradation by SEC and SDS-PAGE, we observed trends that correlated with the LC-MS/MS data. Across all methods, we observed that the originator and biosimilar drugs performed similarly. The results from this study will help provide groundwork for comparative disulfide shuffling analysis by LC-MS/MS and standard analytical methodology implementation for the development and regulatory approval of biosimilars.
Collapse
Affiliation(s)
- Jill Coghlan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
| | - Alexander Benet
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
| | - Preethi Kumaran
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
| | | | | | | | | | - Anna A. Schwendeman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
- Biointerfaces Institute, Ann Arbor, MI, United States
| |
Collapse
|
7
|
Hui JO, Flick T, Loo JA, Campuzano IDG. Unequivocal Identification of Aspartic Acid and isoAspartic Acid by MALDI-TOF/TOF: From Peptide Standards to a Therapeutic Antibody. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1901-1909. [PMID: 33390012 DOI: 10.1021/jasms.0c00370] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Aspartic acid (Asp) to isoaspartic acid (isoAsp) isomerization in therapeutic monoclonal antibodies (mAbs) and other biotherapeutics is a critical quality attribute (CQA) that requires careful control and monitoring during the drug discovery and production processes. The unwanted formation of isoAsp within biotherapeutics and resultant structural changes in the peptide backbone may negatively impact the efficacy, potency, and safety of the molecule or become immunogenic, especially if the isomerization occurs within the mAb complementarity determining region (CDR). Herein we describe a MALDI-TOF/TOF mass spectrometry method that affords unequivocal identification of the presence and the exact position of the isoAsp residue(s) in peptide standards ranging in size from a tripeptide to a docosapeptide (22 residues). In general, the peptide bond immediately N-terminal to the isoAsp residue is more susceptible to MALDI-TOF/TOF fragmentation than its unmodified counterpart. In some of the peptides evaluated in this study, fragmentation of the peptide bond C-terminal to the isoAsp residue (the aspartate effect) is also enhanced when compared to the control. Relative quantification by MALDI-TOF/TOF of this chemical modification is dependent upon a successful reversed-phase HPLC (rpHPLC) separation of the control and modified peptides. This method has also been validated on a therapeutic mAb that contains a well-documented isoAsp residue in the heavy chain CDR3 after forced degradation. Moreover, we also demonstrate that higher energy C-trap dissociation of only the singly charged species, and not the multiply charged form, of the isoAsp containing peptide, separated by rpHPLC, results in LC-MS/MS fragmentation that is highly consistent to that of MALDI-TOF/TOF.
Collapse
Affiliation(s)
- John O Hui
- Amgen Research, Discovery Attribute Sciences, Amgen, Inc., Thousand Oaks, California 91320, United States
| | - Tawnya Flick
- Attribute Sciences, Pivotal, Amgen, Inc., Thousand Oaks, California 91320, United States
| | - Joseph A Loo
- Department of Chemistry & Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Iain D G Campuzano
- Amgen Research, Discovery Attribute Sciences, Amgen, Inc., Thousand Oaks, California 91320, United States
| |
Collapse
|
8
|
Tiernan H, Byrne B, Kazarian SG. ATR-FTIR spectroscopy and spectroscopic imaging to investigate the behaviour of proteins subjected to freeze-thaw cycles in droplets, wells, and under flow. Analyst 2021; 146:2902-2909. [PMID: 33724288 PMCID: PMC8095035 DOI: 10.1039/d1an00087j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/07/2021] [Indexed: 11/21/2022]
Abstract
Biopharmaceuticals are used to treat a range of diseases from arthritis to cancer, however, since the advent of these highly specific, effective drugs, there have been challenges involved in their production. The most common biopharmaceuticals, monoclonal antibodies (mAbs), are vulnerable to aggregation and precipitation during processing. Freeze thaw cycles (FTCs), which can be required for storage and transportation, can lead to a substantial loss of product, and contributes to the high cost of antibody production. It is therefore necessary to monitor aggregation levels at susceptible points in the production pathway, such as during purification and transportation, thus contributing to a fuller understanding of mAb aggregation and providing a basis for rational optimisation of the production process. This paper uses attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and spectroscopic imaging to investigate the effect of these potentially detrimental FTCs on protein secondary structure in both static wells and under flowing conditions, using lysozyme as a model protein. The results revealed that the amount of protein close to the surface of the ATR crystal, and hence level of aggregates, increased with increasing FTCs. This was observed both within wells and under flow conditions, using conventional ATR-FTIR spectroscopy and ATR-FTIR spectroscopic imaging. Interestingly, we also observed changes in the Amide I band shape indicating an increase in β-sheet contribution, and therefore an increase in aggregates, with increasing number of FTCs. These results show for the first time how ATR-FTIR spectroscopy can be successfully applied to study the effect of FTC cycles on protein samples. This could have numerous broader applications, such as in biopharmaceutical production and rapid diagnostic testing.
Collapse
Affiliation(s)
- Hannah Tiernan
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, SW7 2AZ, London, UK. and Department of Life Sciences, Imperial College London, South Kensington Campus, SW7 2AZ, London, UK.
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, South Kensington Campus, SW7 2AZ, London, UK.
| | - Sergei G Kazarian
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, SW7 2AZ, London, UK.
| |
Collapse
|
9
|
Verscheure L, Oosterlynck M, Cerdobbel A, Sandra P, Lynen F, Sandra K. Middle-up characterization of monoclonal antibodies by online reduction liquid chromatography-mass spectrometry. J Chromatogr A 2020; 1637:461808. [PMID: 33385741 DOI: 10.1016/j.chroma.2020.461808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
This study describes the fully automated middle-up characterization of monoclonal antibodies (mAbs) and next-generation variants by online reduction liquid chromatography-mass spectrometry (LC-MS). Proteins were trapped on-column and subjected to online desalting, denaturation and reduction prior to reversed phase elution of the created subunits in the MS. The evaluation of more than 20 different therapeutic proteins including full length mAbs (subclasses IgG1, IgG2 and IgG4), bispecific antibodies, antibody fragments, fusion proteins and antibody-drug conjugates (ADC) revealed that the online reduction method is as powerful as the widely applied offline sample preparation with dithiothreitol (DTT) as reducing agent and guanidine hydrochloride (Gnd.HCl) as denaturant and tackles some major disadvantages associated with the latter method, i.e. corrosion of stainless steel components, adduct formation impacting spectral quality and sample stability. The value of the online reduction LC-MS method is also enforced by its ability to reveal unstable antibody variants such as succinimide intermediates of asparagine deamidation and aspartic acid isomerization which are often lost when using the offline sample preparation method. The performance of the online reduction LC-MS set-up was verified and it was revealed that the method is precise with RSD values below 0.25% and 3.0% for retention time and area, respectively. Carry-over is within acceptable limits (< 0.5%) and the reducing buffer is stable up to 24 hours.
Collapse
Affiliation(s)
- Liesa Verscheure
- Research Institute for Chromatography (RIC), President Kennedypark 26, 8500 Kortrijk, Belgium; Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium
| | - Marie Oosterlynck
- Chemistry Department, KU Leuven, Celestijnenlaan 200F, bus 2404, 3001 Leuven, Belgium
| | - An Cerdobbel
- Research Institute for Chromatography (RIC), President Kennedypark 26, 8500 Kortrijk, Belgium
| | - Pat Sandra
- Research Institute for Chromatography (RIC), President Kennedypark 26, 8500 Kortrijk, Belgium; Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium
| | - Frederic Lynen
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium
| | - Koen Sandra
- Research Institute for Chromatography (RIC), President Kennedypark 26, 8500 Kortrijk, Belgium; Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium.
| |
Collapse
|
10
|
Tiernan H, Byrne B, Kazarian SG. ATR-FTIR spectroscopy and spectroscopic imaging for the analysis of biopharmaceuticals. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 241:118636. [PMID: 32610215 PMCID: PMC7308041 DOI: 10.1016/j.saa.2020.118636] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/15/2020] [Accepted: 06/19/2020] [Indexed: 05/05/2023]
Abstract
Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) spectroscopy is a label-free, non-destructive technique that can be applied to a vast range of biological applications, from imaging cancer tissues and live cells, to determining protein content and protein secondary structure composition. This review summarises the recent advances in applications of ATR-FTIR spectroscopy to biopharmaceuticals, the application of this technique to biosimilars, and the current uses of FTIR spectroscopy in biopharmaceutical production. We discuss the use of ATR-FTIR spectroscopic imaging to investigate biopharmaceuticals, and finally, give an outlook on the possible future developments and applications of ATR-FTIR spectroscopy and spectroscopic imaging to this field. Throughout the review comparisons will be made between FTIR spectroscopy and alternative analytical techniques, and areas will be identified where FTIR spectroscopy could perhaps offer a better alternative in future studies. This review focuses on the most recent advances in the field of using ATR-FTIR spectroscopy and spectroscopic imaging to characterise and evaluate biopharmaceuticals, both in industrial and academic research based environments.
Collapse
Affiliation(s)
- Hannah Tiernan
- Department of Chemical Engineering, Imperial College London, UK; Department of Life Sciences, Imperial College London, UK
| | | | | |
Collapse
|