1
|
Du P, Tao X, Harati J, Shi Y, Xiao L, Li X, Pan H, Wang PY. Human platelet lysate enhances small lipid droplet accumulation of human MSCs through MAPK phosphorylation. Stem Cell Res Ther 2024; 15:473. [PMID: 39696689 DOI: 10.1186/s13287-024-04085-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Human platelet lysate (hPL) has emerged as a promising serum substitute to enhance the self-renewal and multipotency of human mesenchymal stem cells (MSCs). Despite its potential, the specific biological mechanisms by which hPL influences MSC phenotypes remain inadequately understood. METHODS We investigated the biological signaling activated by hPL in two common types of human MSCs: bone marrow-derived MSCs (BMSCs) and adipose-derived MSCs (ASCs). Cell adhesion and cell-matrix interaction were assessed through immunofluorescence staining and western blotting. The impact of hPL on lipid droplet formation in MSCs was thoroughly examined using oil red O/BODIPY staining, semi-quantitative analysis, and qRT-PCR. RNA sequencing and intracellular inhibition assays were also performed to elucidate the mechanisms by which hPL modulates MSC behavior. RESULTS MSCs cultured in hPL medium demonstrated a reduction in cell size, spreading area, and vinculin puncta, while enhancing cell proliferation and lipid droplet accumulation compared to those cultured in control media. Notably, the lipid droplets in hPL-treated MSCs were significantly smaller than those in adipocyte-like cells differentiated from MSCs, highlighting hPL's distinctive role in lipid production. Gene and protein expression profiles of hPL-treated MSCs differed from those in adipocyte-like cells. An angiogenic factor array revealed that hPL-MSCs had a distinct angiogenic factor profile compared to FBS-MSCs, with VEGF expression closely linked to HIF-1α expression. RNA-seq data identified approximately 1,900 differentially expressed genes (DEGs) between hPL-MSCs and FBS-MSCs, with enrichment in focal adhesion, ECM-receptor interaction, and PI3K-Akt/MAPK signaling pathways. Inhibition of MAPK phosphorylation significantly hampered lipid formation in hPL-MSCs, underscoring the pivotal role of MAPK signaling in hPL-driven adipogenesis. CONCLUSION This study reveals the biological mechanisms by which hPL infleunces MSC behavior and differentiation, offering new insights into its potential application in regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Ping Du
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Xuelian Tao
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Javad Harati
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yue Shi
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Liang Xiao
- Department of Surgery and Oncology, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Xian Li
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Haobo Pan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.
| | - Peng-Yuan Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
2
|
Bzinkowska A, Sarnowska A. Assessment of the Dose-Dependent Effect of Human Platelet Lysate on Wharton's Jelly-Derived Mesenchymal Stem/Stromal Cells Culture for Manufacturing Protocols. Stem Cells Cloning 2024; 17:21-32. [PMID: 39386994 PMCID: PMC11463174 DOI: 10.2147/sccaa.s471118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Mesenchymal stem/stromal cells (MSCs)-based products have unique characteristics compared to other drugs because of their inherently variable effects depending on culture conditions and microenvironment. In some cases, cells can be produced individually, one batch at a time, for personalized therapy. Therefore, it is very important to optimize both culture conditions and medium composition under Good Manufacturing Practice (GMP) standards. MSCs properties have been exploited as potential cell therapies in regenerative medicine. The main mechanism of their protective and regenerative effect is based on their secretory activity. Simultaneously, their secretome is highly variable and sensitive to any change in environmental conditions. Depending on the type of damage and the target application, it is desirable to enhance the secretion of therapeutic factors. Changes in the modulation of environmental conditions can affect survival, migration ability, and both proliferative and clonogenic potentials. Materials and Methods This study cultured Wharton's jelly-derived MSCs (WJ-MSCs) in media with varying concentrations of human platelet lysate (hPL). Two groups were created: one with low hPL concentration and another with a high hPL concentration. The effects of these different hPL concentrations were analyzed by assessing mesenchymal phenotype retention, secretory activity, clonogenic potential, proliferation, and migration capabilities. Additionally, the secretion levels of key therapeutic factors, such as Hepatocyte Growth Factor (HGF), Brain-Derived Neurotrophic Factor (BDNF), and Chemokine Ligand 2 (CCL-2), were measured. Results WJ-MSCs maintained their mesenchymal phenotype regardless of hPL concentration. However, a higher concentration of hPL promoted cell clonogenic potential, proliferation, migration, and increased secretion of therapeutic factors. Conclusion Adjusting the hPL concentration in the culture medium modulates the response of WJ MSCs and enhances their therapeutic potential. Higher hPL concentration promotes increased secretory activity and improves the regenerative capacity of WJ-MSCs, suggesting a promising strategy to optimize MSC-based therapies.
Collapse
Affiliation(s)
- Aleksandra Bzinkowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Sarnowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
3
|
Jin T, Fu Z, Zhou L, Chen L, Wang J, Wang L, Yan S, Li T, Jin P. GelMA loaded with platelet lysate promotes skin regeneration and angiogenesis in pressure ulcers by activating STAT3. Sci Rep 2024; 14:18345. [PMID: 39112598 PMCID: PMC11306777 DOI: 10.1038/s41598-024-67304-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Pressure ulcers (PU) are caused by persistent long-term pressure, which compromises the integrity of the epidermis, dermis, and subcutaneous adipose tissue layer by layer, making it difficult to heal. Platelet products such as platelet lysate (PL) can promote tissue regeneration by secreting numerous growth factors based on clinical studies on skin wound healing. However, the components of PL are difficult to retain in wounds. Gelatin methacrylate (GelMA) is a photopolymerizable hydrogel that has lately emerged as a promising material for tissue engineering and regenerative medicine. The PL liquid was extracted, flow cytometrically detected for CD41a markers, and evenly dispersed in the GelMA hydrogel to produce a surplus growth factor hydrogel system (PL@GM). The microstructure of the hydrogel system was observed under a scanning electron microscope, and its sustained release efficiency and biological safety were tested in vitro. Cell viability and migration of human dermal fibroblasts, and tube formation assays of human umbilical vein endothelial cells were applied to evaluate the ability of PL to promote wound healing and regeneration in vitro. Real-time polymerase chain reaction (PCR) and western blot analyses were performed to elucidate the skin regeneration mechanism of PL. We verified PL's therapeutic effectiveness and histological analysis on the PU model. PL promoted cell viability, migration, wound healing and angiogenesis in vitro. Real-time PCR and western blot indicated PL suppressed inflammation and promoted collagen I synthesis by activating STAT3. PL@GM hydrogel system demonstrated optimal biocompatibility and favorable effects on essential cells for wound healing. PL@GM also significantly stimulated PU healing, skin regeneration, and the formation of subcutaneous collagen and blood vessels. PL@GM could accelerate PU healing by promoting fibroblasts to migrate and secrete collagen and endothelial cells to vascularize. PL@GM promises to be an effective and convenient treatment modality for PU, like chronic wound treatment.
Collapse
Affiliation(s)
- Tingting Jin
- Center for Plastic and Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Zexin Fu
- Center for Plastic and Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liuyi Zhou
- Center for Plastic and Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Lulu Chen
- Center for Plastic and Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ji Wang
- Center for Plastic and Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Lu Wang
- Center for Plastic and Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Sheng Yan
- Center for Plastic and Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Ting Li
- Center for Plastic and Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China.
| | - Peihong Jin
- Center for Plastic and Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China.
| |
Collapse
|
4
|
Zhu Y, Yu X, Liu H, Li J, Gholipourmalekabadi M, Lin K, Yuan C, Wang P. Strategies of functionalized GelMA-based bioinks for bone regeneration: Recent advances and future perspectives. Bioact Mater 2024; 38:346-373. [PMID: 38764449 PMCID: PMC11101688 DOI: 10.1016/j.bioactmat.2024.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/07/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024] Open
Abstract
Gelatin methacryloyl (GelMA) hydrogels is a widely used bioink because of its good biological properties and tunable physicochemical properties, which has been widely used in a variety of tissue engineering and tissue regeneration. However, pure GelMA is limited by the weak mechanical strength and the lack of continuous osteogenic induction environment, which is difficult to meet the needs of bone repair. Moreover, GelMA hydrogels are unable to respond to complex stimuli and therefore are unable to adapt to physiological and pathological microenvironments. This review focused on the functionalization strategies of GelMA hydrogel based bioinks for bone regeneration. The synthesis process of GelMA hydrogel was described in details, and various functional methods to meet the requirements of bone regeneration, including mechanical strength, porosity, vascularization, osteogenic differentiation, and immunoregulation for patient specific repair, etc. In addition, the response strategies of smart GelMA-based bioinks to external physical stimulation and internal pathological microenvironment stimulation, as well as the functionalization strategies of GelMA hydrogel to achieve both disease treatment and bone regeneration in the presence of various common diseases (such as inflammation, infection, tumor) are also briefly reviewed. Finally, we emphasized the current challenges and possible exploration directions of GelMA-based bioinks for bone regeneration.
Collapse
Affiliation(s)
- Yaru Zhu
- School of Stomatology, Xuzhou Medical University, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
- Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Xingge Yu
- Department of Oral and Cranio-maxillofacial Science, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Hao Liu
- School of Stomatology, Xuzhou Medical University, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| | - Junjun Li
- School of Stomatology, Xuzhou Medical University, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Department of Medical Biotechnology, Faculty of Allied Medicine, Tehran, Iran
| | - Kaili Lin
- Department of Oral and Cranio-maxillofacial Science, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Changyong Yuan
- School of Stomatology, Xuzhou Medical University, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| | - Penglai Wang
- School of Stomatology, Xuzhou Medical University, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
5
|
Salisbury E, Rawlings TM, Efstathiou S, Tryfonos M, Makwana K, Fitzgerald HC, Gargett CE, Cameron NR, Haddleton DM, Brosens JJ, Eissa AM. Photo-Cross-linked Gelatin Methacryloyl Hydrogels Enable the Growth of Primary Human Endometrial Stromal Cells and Epithelial Gland Organoids. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39140-39152. [PMID: 39022819 PMCID: PMC11299152 DOI: 10.1021/acsami.4c08763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024]
Abstract
In vitro three-dimensional (3D) models are better able to replicate the complexity of real organs and tissues than 2D monolayer models. The human endometrium, the inner lining of the uterus, undergoes complex changes during the menstrual cycle and pregnancy. These changes occur in response to steroid hormone fluctuations and elicit crosstalk between the epithelial and stromal cell compartments, and dysregulations are associated with a variety of pregnancy disorders. Despite the importance of the endometrium in embryo implantation and pregnancy establishment, there is a lack of in vitro models that recapitulate tissue structure and function and as such a growing demand for extracellular matrix hydrogels that can support 3D cell culture. To be physiologically relevant, an in vitro model requires mechanical and biochemical cues that mimic those of the ECM found in the native tissue. We report a semisynthetic gelatin methacryloyl (GelMA) hydrogel that combines the bioactive properties of natural hydrogels with the tunability and reproducibility of synthetic materials. We then describe a simple protocol whereby cells can quickly be encapsulated in GelMA hydrogels. We investigate the suitability of GelMA hydrogel to support the development of an endometrial model by culturing the main endometrial cell types: stromal cells and epithelial cells. We also demonstrate how the mechanical and biochemical properties of GelMA hydrogels can be tailored to support the growth and maintenance of epithelial gland organoids that emerge upon 3D culturing of primary endometrial epithelial progenitor cells in a defined chemical medium. We furthermore demonstrate the ability of GelMA hydrogels to support the viability of stromal cells and their function measured by monitoring decidualization in response to steroid hormones. This study describes the first steps toward the development of a hydrogel matrix-based model that recapitulates the structure and function of the native endometrium and could support applications in understanding reproductive failure.
Collapse
Affiliation(s)
- Emma Salisbury
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Thomas M. Rawlings
- Division
of Biomedical Sciences, Reproductive Health Unit, Clinical Science
Research Laboratories, Warwick Medical School, University of Warwick
and Tommy’s National Centre for Miscarriage Research, University
Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, U.K.
| | | | - Maria Tryfonos
- Division
of Biomedical Sciences, Reproductive Health Unit, Clinical Science
Research Laboratories, Warwick Medical School, University of Warwick
and Tommy’s National Centre for Miscarriage Research, University
Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, U.K.
| | - Komal Makwana
- Division
of Biomedical Sciences, Reproductive Health Unit, Clinical Science
Research Laboratories, Warwick Medical School, University of Warwick
and Tommy’s National Centre for Miscarriage Research, University
Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, U.K.
| | - Harriet C. Fitzgerald
- The
Ritchie Centre, Hudson Institute of Medical Research, Clayton VIC 3168, Australia
- Department
of Obstetrics and Gynaecology, Monash University, Clayton VIC 3168, Australia
| | - Caroline E. Gargett
- The
Ritchie Centre, Hudson Institute of Medical Research, Clayton VIC 3168, Australia
- Department
of Obstetrics and Gynaecology, Monash University, Clayton VIC 3168, Australia
| | - Neil R. Cameron
- Department
of Materials Science and Engineering, Monash
University, Clayton, Victoria 3800, Australia
- School of
Engineering, University of Warwick, Coventry CV4 7AL, U.K.
| | | | - Jan J. Brosens
- Division
of Biomedical Sciences, Reproductive Health Unit, Clinical Science
Research Laboratories, Warwick Medical School, University of Warwick
and Tommy’s National Centre for Miscarriage Research, University
Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, U.K.
| | - Ahmed M. Eissa
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Department
of Polymers, Chemical Industries Research Division, National Research
Centre, El Bohouth St.
33, Dokki, Cairo Giza 12622, Egypt
- School
of Life Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, U.K.
| |
Collapse
|
6
|
Arambula-Maldonado R, Mequanint K. Osteogenic Differentiation Potential of iMSCs on GelMA-BG-MWCNT Nanocomposite Hydrogels. Biomimetics (Basel) 2024; 9:338. [PMID: 38921218 PMCID: PMC11201442 DOI: 10.3390/biomimetics9060338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
The ability of bone biomaterials to promote osteogenic differentiation is crucial for the repair and regeneration of osseous tissue. The development of a temporary bone substitute is of major importance in enhancing the growth and differentiation of human-derived stem cells into an osteogenic lineage. In this study, nanocomposite hydrogels composed of gelatin methacryloyl (GelMA), bioactive glass (BG), and multiwall carbon nanotubes (MWCNT) were developed to create a bone biomaterial that mimics the structural and electrically conductive nature of bone that can promote the differentiation of human-derived stem cells. GelMA-BG-MWCNT nanocomposite hydrogels supported mesenchymal stem cells derived from human induced pluripotent stem cells, hereinafter named iMSCs. Cell adhesion was improved upon coating nanocomposite hydrogels with fibronectin and was further enhanced when seeding pre-differentiated iMSCs. Osteogenic differentiation and mature mineralization were promoted in GelMA-BG-MWCNT nanocomposite hydrogels and were most evidently observed in the 70-30-2 hydrogels, which could be due to the stiff topography characteristic from the addition of MWCNT. Overall, the results of this study showed that GelMA-BG-MWCNT nanocomposite hydrogels coated with fibronectin possessed a favorable environment in which pre-differentiated iMSCs could better attach, proliferate, and further mature into an osteogenic lineage, which was crucial for the repair and regeneration of bone.
Collapse
Affiliation(s)
- Rebeca Arambula-Maldonado
- School of Biomedical Engineering, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B9, Canada;
| | - Kibret Mequanint
- School of Biomedical Engineering, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B9, Canada;
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B9, Canada
| |
Collapse
|
7
|
Liu J, Du C, Chen H, Huang W, Lei Y. Nano-Micron Combined Hydrogel Microspheres: Novel Answer for Minimal Invasive Biomedical Applications. Macromol Rapid Commun 2024; 45:e2300670. [PMID: 38400695 DOI: 10.1002/marc.202300670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/05/2024] [Indexed: 02/25/2024]
Abstract
Hydrogels, key in biomedical research for their hydrophilicity and versatility, have evolved with hydrogel microspheres (HMs) of micron-scale dimensions, enhancing their role in minimally invasive therapeutic delivery, tissue repair, and regeneration. The recent emergence of nanomaterials has ushered in a revolutionary transformation in the biomedical field, which demonstrates tremendous potential in targeted therapies, biological imaging, and disease diagnostics. Consequently, the integration of advanced nanotechnology promises to trigger a new revolution in the realm of hydrogels. HMs loaded with nanomaterials combine the advantages of both hydrogels and nanomaterials, which enables multifaceted functionalities such as efficient drug delivery, sustained release, targeted therapy, biological lubrication, biochemical detection, medical imaging, biosensing monitoring, and micro-robotics. Here, this review comprehensively expounds upon commonly used nanomaterials and their classifications. Then, it provides comprehensive insights into the raw materials and preparation methods of HMs. Besides, the common strategies employed to achieve nano-micron combinations are summarized, and the latest applications of these advanced nano-micron combined HMs in the biomedical field are elucidated. Finally, valuable insights into the future design and development of nano-micron combined HMs are provided.
Collapse
Affiliation(s)
- Jiacheng Liu
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chengcheng Du
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hong Chen
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wei Huang
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yiting Lei
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
8
|
Das S, Valoor R, Ratnayake P, Basu B. Low-Concentration Gelatin Methacryloyl Hydrogel with Tunable 3D Extrusion Printability and Cytocompatibility: Exploring Quantitative Process Science and Biophysical Properties. ACS APPLIED BIO MATERIALS 2024; 7:2809-2835. [PMID: 38602318 DOI: 10.1021/acsabm.3c01194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Three-dimensional (3D) bioprinting of hydrogels with a wide spectrum of compositions has been widely investigated. Despite such efforts, a comprehensive understanding of the correlation among the process science, buildability, and biophysical properties of the hydrogels for a targeted clinical application has not been developed in the scientific community. In particular, the quantitative analysis across the entire developmental path for 3D extrusion bioprinting of such scaffolds is not widely reported. In the present work, we addressed this gap by using widely investigated biomaterials, such as gelatin methacryloyl (GelMA), as a model system. Using extensive experiments and quantitative analysis, we analyzed how the individual components of methacrylated carboxymethyl cellulose (mCMC), needle-shaped nanohydroxyapatite (nHAp), and poly(ethylene glycol)diacrylate (PEGDA) with GelMA as baseline matrix of the multifunctional bioink can influence the biophysical properties, printability, and cellular functionality. The complex interplay among the biomaterial ink formulations, viscoelastic properties, and printability toward the large structure buildability (structurally stable cube scaffolds with 15 mm edge) has been explored. Intriguingly, the incorporation of PEGDA into the GelMA/mCMC matrix offered improved compressive modulus (∼40-fold), reduced swelling ratio (∼2-fold), and degradation rates (∼30-fold) compared to pristine GelMA. The correlation among microstructural pore architecture, biophysical properties, and cytocompatibility is also established for the biomaterial inks. These photopolymerizable bio(material)inks served as the platform for the growth and development of bone and cartilage matrix when human mesenchymal stem cells (hMSCs) are either seeded on two-dimensional (2D) substrates or encapsulated on 3D scaffolds. Taken together, this present study unequivocally establishes a significant step forward in the development of a broad spectrum of shape-fidelity compliant bioink for the 3D bioprinting of multifunctional scaffolds and emphasizes the need for invoking more quantitative analysis in establishing process-microstructure-property correlation.
Collapse
Affiliation(s)
- Soumitra Das
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Remya Valoor
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Praneeth Ratnayake
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Bikramjit Basu
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
9
|
Dal-Fabbro R, Huang YC, Toledo PTA, Capalbo LC, Coleman RM, Sasaki H, Fenno JC, Bottino MC. Injectable Methacrylated Gelatin Hydrogel for Safe Sodium Hypochlorite Delivery in Endodontics. Gels 2023; 9:897. [PMID: 37998987 PMCID: PMC10670887 DOI: 10.3390/gels9110897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/11/2023] [Accepted: 11/12/2023] [Indexed: 11/25/2023] Open
Abstract
Keeping sodium hypochlorite (NaOCl) within the root canal is challenging in regenerative endodontics. In this study, we developed a drug delivery system using a gelatin methacryloyl (GelMA) hydrogel incorporated with aluminosilicate clay nanotubes (HNTs) loaded with NaOCl. Pure GelMA, pure HNTs, and NaOCl-loaded HNTs carrying varying concentrations were assessed for chemo-mechanical properties, degradability, swelling capacity, cytocompatibility, antimicrobial and antibiofilm activities, and in vivo for inflammatory response and degradation. SEM images revealed consistent pore sizes of 70-80 µm for all samples, irrespective of the HNT and NaOCl concentration, while HNT-loaded hydrogels exhibited rougher surfaces. The hydrogel's compressive modulus remained between 100 and 200 kPa, with no significant variations. All hydrogels demonstrated a 6-7-fold mass increase and complete degradation by the seventh day. Despite an initial decrease in cell viability, all groups recovered to 65-80% compared to the control. Regarding antibacterial and antibiofilm properties, 12.5 HNT(Double) showed the highest inhibition zone on agar plates and the most significant reduction in biofilm compared to other groups. In vivo, the 12.5 HNT(Double) group displayed partial degradation after 21 days, with mild localized inflammatory responses but no tissue necrosis. In conclusion, the HNT-NaOCl-loaded GelMA hydrogel retains the disinfectant properties, providing a safer option for endodontic procedures without harmful potential.
Collapse
Affiliation(s)
- Renan Dal-Fabbro
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (R.D.-F.); (Y.-C.H.); (P.T.A.T.); (L.C.C.); (H.S.)
| | - Yu-Chi Huang
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (R.D.-F.); (Y.-C.H.); (P.T.A.T.); (L.C.C.); (H.S.)
| | - Priscila T. A. Toledo
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (R.D.-F.); (Y.-C.H.); (P.T.A.T.); (L.C.C.); (H.S.)
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Aracatuba 16015-050, SP, Brazil
| | - Leticia C. Capalbo
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (R.D.-F.); (Y.-C.H.); (P.T.A.T.); (L.C.C.); (H.S.)
| | - Rhima M. Coleman
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hajime Sasaki
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (R.D.-F.); (Y.-C.H.); (P.T.A.T.); (L.C.C.); (H.S.)
| | - J. Christopher Fenno
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Marco C. Bottino
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (R.D.-F.); (Y.-C.H.); (P.T.A.T.); (L.C.C.); (H.S.)
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
| |
Collapse
|
10
|
Arambula-Maldonado R, Liu Y, Xing M, Mequanint K. Bioactive and electrically conductive GelMA-BG-MWCNT nanocomposite hydrogel bone biomaterials. BIOMATERIALS ADVANCES 2023; 154:213616. [PMID: 37708668 DOI: 10.1016/j.bioadv.2023.213616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/17/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023]
Abstract
Natural bone is a complex organic-inorganic composite tissue that possesses endogenous electrically conductive properties in response to mechanical forces. Mimicking these unique properties collectively in a single synthetic biomaterial has so far remained a formidable task. In this study, we report a synthesis strategy that comprised gelatin methacryloyl (GelMA), sol-gel derived tertiary bioactive glass (BG), and uniformly dispersed multiwall carbon nanotubes (MWCNTs) to create nanocomposite hydrogels that mimic the organic-inorganic composition of bone. Using this strategy, biomaterials that are electrically conductive and possess electro-mechanical properties similar to endogenous bone were prepared without affecting their biocompatibility. Nanocomposite hydrogel biomaterials were biodegradable and promoted biomineralization, and supported multipotent mesenchymal progenitor cell (10T1/2) cell interactions and differentiation into an osteogenic lineage. To the best of our knowledge, this work presents the first study to functionally characterize suitable electro-mechanical responses in nanocomposite hydrogels, a key process that occurs in the natural bone to drive its repair and regeneration. Overall, the results demonstrated GelMA-BG-MWCNT nanocomposite hydrogels have the potential to become promising bioactive biomaterials for use in bone repair and regeneration.
Collapse
Affiliation(s)
- Rebeca Arambula-Maldonado
- School of Biomedical Engineering, University of Western Ontario, 1151 Richmond Street, London N6A 5B9, Canada
| | - Yuqing Liu
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Kibret Mequanint
- School of Biomedical Engineering, University of Western Ontario, 1151 Richmond Street, London N6A 5B9, Canada; Department of Chemical and Biochemical Engineering, University of Western Ontario, 1151 Richmond Street, London N6A 5B9, Canada.
| |
Collapse
|
11
|
Marfoglia A, Tibourtine F, Pilloux L, Cazalbou S. Tunable Double-Network GelMA/Alginate Hydrogels for Platelet Lysate-Derived Protein Delivery. Bioengineering (Basel) 2023; 10:1044. [PMID: 37760147 PMCID: PMC10525654 DOI: 10.3390/bioengineering10091044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Hydrogels (gels) are attractive tools for tissue engineering and regenerative medicine due to their potential for drug delivery and ECM-like composition. In this study, we use rheology to characterize GelMA/alginate gels loaded with human platelet lysate (PL). We then characterize these gels from a physicochemical perspective and evaluate their ability to transport PL proteins, their pore size, and their rate of degradation. Finally, their biocompatibility is evaluated. We describe how alginate changes the mechanical behavior of the gels from elastic to viscoelastic after ionic (calcium-mediated) crosslinking. In addition, we report the release of ~90% of PL proteins from the gels and relate it to the degradation profile of the gels. Finally, we evaluated the biocompatibility of the gels. Thus, the developed gels represent attractive substrates for both cell studies and as bioactive materials.
Collapse
Affiliation(s)
- Andrea Marfoglia
- CIRIMAT, Université Toulouse 3 Paul Sabatier, Toulouse INP, CNRS, Université de Toulouse, 31062 Toulouse, France; (A.M.)
- Laboratoire de Génie Chimique, Université Toulouse 3 Paul Sabatier, Toulouse INP, CNRS, Université de Toulouse, 31062 Toulouse, France;
| | - Fahd Tibourtine
- CIRIMAT, Université Toulouse 3 Paul Sabatier, Toulouse INP, CNRS, Université de Toulouse, 31062 Toulouse, France; (A.M.)
| | - Ludovic Pilloux
- Laboratoire de Génie Chimique, Université Toulouse 3 Paul Sabatier, Toulouse INP, CNRS, Université de Toulouse, 31062 Toulouse, France;
| | - Sophie Cazalbou
- CIRIMAT, Université Toulouse 3 Paul Sabatier, Toulouse INP, CNRS, Université de Toulouse, 31062 Toulouse, France; (A.M.)
| |
Collapse
|
12
|
de Barros NR, Gomez A, Ermis M, Falcone N, Haghniaz R, Young P, Gao Y, Aquino AF, Li S, Niu S, Chen R, Huang S, Zhu Y, Eliahoo P, Sun A, Khorsandi D, Kim J, Kelber J, Khademhosseini A, Kim HJ, Li B. Gelatin methacryloyl and Laponite bioink for 3D bioprinted organotypic tumor modeling. Biofabrication 2023; 15:10.1088/1758-5090/ace0db. [PMID: 37348491 PMCID: PMC10683563 DOI: 10.1088/1758-5090/ace0db] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/22/2023] [Indexed: 06/24/2023]
Abstract
Three-dimensional (3D)in vitrotumor models that can capture the pathophysiology of human tumors are essential for cancer biology and drug development. However, simulating the tumor microenvironment is still challenging because it consists of a heterogeneous mixture of various cellular components and biological factors. In this regard, current extracellular matrix (ECM)-mimicking hydrogels used in tumor tissue engineering lack physical interactions that can keep biological factors released by encapsulated cells within the hydrogel and improve paracrine interactions. Here, we developed a nanoengineered ion-covalent cross-linkable bioink to construct 3D bioprinted organotypic tumor models. The bioink was designed to implement the tumor ECM by creating an interpenetrating network composed of gelatin methacryloyl (GelMA), a light cross-linkable polymer, and synthetic nanosilicate (Laponite) that exhibits a unique ionic charge to improve retention of biological factors released by the encapsulated cells and assist in paracrine signals. The physical properties related to printability were evaluated to analyze the effect of Laponite hydrogel on bioink. Low GelMA (5%) with high Laponite (2.5%-3.5%) composite hydrogels and high GelMA (10%) with low Laponite (1.0%-2.0%) composite hydrogels showed acceptable mechanical properties for 3D printing. However, a low GelMA composite hydrogel with a high Laponite content could not provide acceptable cell viability. Fluorescent cell labeling studies showed that as the proportion of Laponite increased, the cells became more aggregated to form larger 3D tumor structures. Reverse transcription-polymerase chain reaction (RT-qPCR) and western blot experiments showed that an increase in the Laponite ratio induces upregulation of growth factor and tissue remodeling-related genes and proteins in tumor cells. In contrast, cell cycle and proliferation-related genes were downregulated. On the other hand, concerning fibroblasts, the increase in the Laponite ratio indicated an overall upregulation of the mesenchymal phenotype-related genes and proteins. Our study may provide a rationale for using Laponite-based hydrogels in 3D cancer modeling.
Collapse
Affiliation(s)
- Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
| | - Alejandro Gomez
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
- Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, United States of America
- Department of Biology, California State University, Northridge, CA 91330, United States of America
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
- METU Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara 06800, Turkey
| | - Natashya Falcone
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
| | - Patric Young
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
| | - Yaqi Gao
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
- Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, United States of America
| | - Albert-Fred Aquino
- Department of Biology, California State University, Northridge, CA 91330, United States of America
| | - Siyuan Li
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
- Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, United States of America
- Department of Biomedical Engineering, Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27101, United States of America
| | - Siyi Niu
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
- Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, United States of America
- Department of Biology, University of California, Irvine, CA 92697, United States of America
| | - RunRun Chen
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
- Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, United States of America
| | - Shuyi Huang
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
- Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, United States of America
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
| | - Payam Eliahoo
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90088, United States of America
| | - Arthur Sun
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
- Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, United States of America
- Department of Integrative Biology, University of California, Berkeley, CA 94720, United States of America
| | - Danial Khorsandi
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
| | - Jinjoo Kim
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
| | - Jonathan Kelber
- Department of Biology, California State University, Northridge, CA 91330, United States of America
- Department of Biology, Baylor University, 101 Bagby Ave, TX 76706, United States of America
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
| | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Bingbing Li
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
- Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, United States of America
| |
Collapse
|
13
|
Hou YC, Cui X, Qin Z, Su C, Zhang G, Tang JN, Li JA, Zhang JY. Three-dimensional bioprinting of artificial blood vessel: Process, bioinks, and challenges. Int J Bioprint 2023; 9:740. [PMID: 37323481 PMCID: PMC10261152 DOI: 10.18063/ijb.740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/02/2022] [Indexed: 06/17/2023] Open
Abstract
The coronary artery bypass grafting is a main treatment for restoring the blood supply to the ischemic site by bypassing the narrow part, thereby improving the heart function of the patients. Autologous blood vessels are preferred in coronary artery bypass grafting, but their availability is often limited by due to the underlying disease. Thus, tissue-engineered vascular grafts that are devoid of thrombosis and have mechanical properties comparable to those of natural vessels are urgently required for clinical applications. Most of the commercially available artificial implants are made from polymers, which are prone to thrombosis and restenosis. The biomimetic artificial blood vessel containing vascular tissue cells is the most ideal implant material. Due to its precision control ability, three-dimensional (3D) bioprinting is a promising method to prepare biomimetic system. In the 3D bioprinting process, the bioink is at the core state for building the topological structure and keeping the cell viable. Therefore, in this review, the basic properties and viable materials of the bioink are discussed, and the research of natural polymers in bioink, including decellularized extracellular matrix, hyaluronic acid, and collagen, is emphasized. Besides, the advantages of alginate and Pluronic F127, which are the mainstream sacrificial material during the preparation of artificial vascular graft, are also reviewed. Finally, an overview of the applications in the field of artificial blood vessel is also presented.
Collapse
Affiliation(s)
- Ya-Chen Hou
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Xiaolin Cui
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| | - Zhen Qin
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Chang Su
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Ge Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Jun-Nan Tang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Jing-An Li
- School of Material Science and Engineering and Henan Key Laboratory of Advanced Magnesium Alloy and Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, 100 Science Road, Zhengzhou, China
| | - Jin-Ying Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| |
Collapse
|
14
|
Li P, Zhang M, Chen Z, Tian B, Kang X. Tissue-Engineered Injectable Gelatin-Methacryloyl Hydrogel-Based Adjunctive Therapy for Intervertebral Disc Degeneration. ACS OMEGA 2023; 8:13509-13518. [PMID: 37091429 PMCID: PMC10116505 DOI: 10.1021/acsomega.3c00211] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/14/2023] [Indexed: 05/03/2023]
Abstract
Gelatin-methacryloyl (GelMA) hydrogels are photosensitive with good biocompatibility and adjustable mechanical properties. The GelMA hydrogel composite system is a prospective therapeutic material based on a tissue engineering platform for treating intervertebral disc (IVD) degeneration (IVDD). The potential application value of the GelMA hydrogel composite system in the treatment of IVDD mainly includes three aspects: first, optimization of the current clinical treatment methods, including conservative treatment and surgical treatment; second, regeneration of IVD cells to reverse or repair IVDD; and finally, IVDD instead of injury plays a biomechanical role. In this paper, we summarized and analyzed the preparation of GelMA hydrogels and their excellent biological characteristics as carriers and comprehensively demonstrated the research status and prospects of GelMA hydrogel composite systems in IVDD treatment. In addition, the challenges facing the application of GelMA hydrogel composite systems and the progress of research on new hydrogels modified by GelMA hydrogels are presented. Hopefully, this study will provide theoretical guidance for the future application of GelMA hydrogel composite systems in IVDD.
Collapse
Affiliation(s)
- Peng Li
- Department
of Hand Surgery, Honghui Hospital, Xi’an
Jiao Tong University, Shaanxi 710054, P.R. China
| | - Ming Zhang
- Department
of General Practice, Honghui Hospital, Xi’an
Jiao Tong University, Shaanxi 710054, P.R. China
| | - Zhengyu Chen
- Department
of Spine Surgery, Xianyang First People’s
Hospital, Shaanxi, 712000, P.R. China
| | - Bin Tian
- Department
of Sports Medicine, Honghui Hospital, Xi’an
Jiao Tong University, Shaanxi 710054, P.R. China
| | - Xin Kang
- Department
of Sports Medicine, Honghui Hospital, Xi’an
Jiao Tong University, Shaanxi 710054, P.R. China
- E-mail:
| |
Collapse
|
15
|
Grijalva Garces D, Radtke CP, Hubbuch J. A Novel Approach for the Manufacturing of Gelatin-Methacryloyl. Polymers (Basel) 2022; 14:polym14245424. [PMID: 36559791 PMCID: PMC9786334 DOI: 10.3390/polym14245424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/26/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Gelatin and its derivatives contain cell adhesion moieties as well as sites that enable proteolytic degradation, thus allowing cellular proliferation and migration. The processing of gelatin to its derivatives and/or gelatin-containing products is challenged by its gelation below 30 ∘C. In this study, a novel strategy was developed for the dissolution and subsequent modification of gelatin to its derivative gelatin-methacryloyl (GelMA). This approach was based on the presence of urea in the buffer media, which enabled the processing at room temperature, i.e., lower than the sol-gel transition point of the gelatin solutions. The degree of functionalization was controlled by the ratio of reactant volume to the gelatin concentration. Hydrogels with tailored mechanical properties were produced by variations of the GelMA concentration and its degree of functionalization. Moreover, the biocompatibility of hydrogels was assessed and compared to hydrogels formulated with GelMA produced by the conventional method. NIH 3T3 fibroblasts were seeded onto hydrogels and the viability showed no difference from the control after a three-day incubation period.
Collapse
Affiliation(s)
- David Grijalva Garces
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Process Engineering in Life Sciences Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Carsten Philipp Radtke
- Institute of Process Engineering in Life Sciences Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Jürgen Hubbuch
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Process Engineering in Life Sciences Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Correspondence:
| |
Collapse
|
16
|
Beheshtizadeh N, Gharibshahian M, Pazhouhnia Z, Rostami M, Zangi AR, Maleki R, Azar HK, Zalouli V, Rajavand H, Farzin A, Lotfibakhshaiesh N, Sefat F, Azami M, Webster TJ, Rezaei N. Commercialization and regulation of regenerative medicine products: Promises, advances and challenges. Biomed Pharmacother 2022; 153:113431. [DOI: 10.1016/j.biopha.2022.113431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/04/2022] [Accepted: 07/14/2022] [Indexed: 11/02/2022] Open
|
17
|
Murtaja Y, Lapčík L, Lapčíková B, Gautam S, Vašina M, Spanhel L, Vlček J. Intelligent high-tech coating of natural biopolymer layers. Adv Colloid Interface Sci 2022; 304:102681. [PMID: 35483124 DOI: 10.1016/j.cis.2022.102681] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/29/2022] [Accepted: 04/18/2022] [Indexed: 11/01/2022]
Abstract
Polymeric materials play a vital role in our daily life, but the growing concern for the environment demands economical and natural biopolymers that can be cross-linked to create technologically innovative lightweight materials. Their cellular matrix with extreme flexibility makes them highly acceptable for application prospects in material science, engineering, and biomedical applications. Furthermore, their biocompatibility, mechanical properties, and structural diversity provide a gateway to research them to form technologically important materials. In the light of the same, the review covers cellulose derivatives. The first section of the study covers the general properties and applications of cellulose and its derivatives. Then, the biopolymers are characterised based on their dielectric properties, crystallinity, rheology, and mechanical properties. An in-depth analysis of the diffuse process of swelling and dissolution followed by a brief discussion on diffusion and diffusion of crosslinking has been done. The review also covers a section on swelling and swelling kinetics of carboxymethyl cellulose (CMC) and hydroxyethyl cellulose (HEC). The examination of all the aforementioned parameters gives an insight into the future aspects of the biopolymers. Lastly, the study briefly covers some preferred choices of cross-linking agents and their effect on the biopolymers.
Collapse
|
18
|
Ladeira BMF, Gomes MC, Custódio CA, Mano JF. High-Throughput Production of Microsponges from Platelet Lysate for Tissue Engineering Applications. Tissue Eng Part C Methods 2022; 28:325-334. [PMID: 35343236 DOI: 10.1089/ten.tec.2022.0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cell-based therapies require a large number of cells, as well as appropriate methods to deliver the cells to damaged tissue. Microcarriers provide an optimal platform for large-scale cell culture while also improving cell retention during cell delivery. However, this technology still presents significant challenges due to low-throughput fabrication methods and an inability of the microcarriers to recreate the properties of human tissue. This work proposes, for the first time, the use of methacryloyl platelet lysates (PLMA), a photocrosslinkable material derived from human platelet lysates, to produce porous microcarriers. Initially, high quantities of PLMA/alginate core-shell microcapsules are produced using coaxial electrospray. Subsequently, the microcapsules are collected, irradiated with ultraviolet light, washed, and freeze dried yielding PLMA microsponges. These microsponges are able to support the adhesion and proliferation of human adipose-derived stem cells, while also displaying potential in the assembly of autologous microtissues. Cell-laden microsponges were shown to self-organize into aggregates, suggesting possible applications in bottom-up tissue engineering applications. Impact Statement Microcarriers have increasingly been used as delivery platforms in cell therapy. Herein, the encapsulation of human-derived proteins in alginate microcapsules is proposed as a method to produce microcarriers from photopolymerizable materials. The capsules function as a template structure, which is then processed into spherical microparticles, which can be used in cell culture, cell delivery, and bottom-up assembly. As a proof of concept, this method was combined with lyophilization to process methacryloyl platelet lysates into injectable microsponges for cell delivery.
Collapse
Affiliation(s)
- Bruno M F Ladeira
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Maria C Gomes
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Catarina A Custódio
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - João F Mano
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
19
|
Egger D, Lavrentieva A, Kugelmeier P, Kasper C. Physiologic isolation and expansion of human mesenchymal stem/stromal cells for manufacturing of cell-based therapy products. Eng Life Sci 2022; 22:361-372. [PMID: 35382547 PMCID: PMC8961040 DOI: 10.1002/elsc.202100097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 01/04/2023] Open
Abstract
The utilization of mesenchymal stem/stromal cells raises new hopes in treatment of diseases and pathological conditions, while at the same time bringing immense challenges for researchers, manufacturers and physicians. It is essential to consider all steps along the in vitro fabrication of cell-based products in order to reach efficient and reproducible treatment outcomes. Here, the optimal protocols for isolation, cultivation and differentiation of mesenchymal stem cells are required. In this review we discuss these aspects and their influence on the final cell-based product quality. We demonstrate that physiological in vitro cell cultivation conditions play a crucial role in therapeutic functionalities of cultivated cells. We show that three-dimensional cell culture, dynamic culture conditions and physiologically relevant in vitro oxygen concentrations during isolation and expansion make a decisive contribution towards the improvement of cell-based products in regenerative medicine.
Collapse
Affiliation(s)
- Dominik Egger
- Department of BiotechnologyUniversity of Natural Resources and Life ScienceViennaAustria
| | | | | | - Cornelia Kasper
- Department of BiotechnologyUniversity of Natural Resources and Life ScienceViennaAustria
| |
Collapse
|
20
|
Innovative Platform for the Advanced Online Monitoring of Three-Dimensional Cells and Tissue Cultures. Cells 2022; 11:cells11030412. [PMID: 35159222 PMCID: PMC8834321 DOI: 10.3390/cells11030412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 12/12/2022] Open
Abstract
The use of 3D cell cultures has gained increasing importance in medical and pharmaceutical research. However, the analysis of the culture medium is hardly representative for the culture conditions within a 3D model which hinders the standardization of 3D cultures and translation of results. Therefore, we developed a modular monitoring platform combining a perfusion bioreactor with an integrated minimally invasive sampling system and implemented sensors that enables the online monitoring of culture parameters and medium compounds within 3D cultures. As a proof-of-concept, primary cells as well as cell lines were cultured on a collagen or gelatin methacryloyl (GelMA) hydrogel matrix, while monitoring relevant culture parameters and analytes. Comparing the interstitial fluid of the 3D models versus the corresponding culture medium, we found considerable differences in the concentrations of several analytes. These results clearly demonstrate that analyses of the culture medium only are not relevant for the development of standardized 3D culture processes. The presented bioreactor with an integrated sampling and sensor platform opens new horizons for the development, optimization, and standardization of 3D cultures. Furthermore, this technology holds the potential to reduce animal studies and improve the transferability of pharmaceutical in vitro studies by gaining more relevant results, bridging the gap towards clinical translation.
Collapse
|
21
|
Li J, Wang W, Li M, Song P, Lei H, Gui X, Zhou C, Liu L. Biomimetic Methacrylated Gelatin Hydrogel Loaded With Bone Marrow Mesenchymal Stem Cells for Bone Tissue Regeneration. Front Bioeng Biotechnol 2021; 9:770049. [PMID: 34926420 PMCID: PMC8675867 DOI: 10.3389/fbioe.2021.770049] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/08/2021] [Indexed: 02/05/2023] Open
Abstract
Large-segment bone defect caused by trauma or tumor is one of the most challenging problems in orthopedic clinics. Biomimetic materials for bone tissue engineering have developed dramatically in the past few decades. The organic combination of biomimetic materials and stem cells offers new strategies for tissue repair, and the fate of stem cells is closely related to their extracellular matrix (ECM) properties. In this study, a photocrosslinked biomimetic methacrylated gelatin (Bio-GelMA) hydrogel scaffold was prepared to simulate the physical structure and chemical composition of the natural bone extracellular matrix, providing a three-dimensional (3D) template and extracellular matrix microenvironment. Bone marrow mesenchymal stem cells (BMSCS) were encapsulated in Bio-GelMA scaffolds to examine the therapeutic effects of ECM-loaded cells in a 3D environment simulated for segmental bone defects. In vitro results showed that Bio-GelMA had good biocompatibility and sufficient mechanical properties (14.22kPa). A rat segmental bone defect model was constructed in vivo. The GelMA-BMSC suspension was added into the PDMS mold with the size of the bone defect and photocured as a scaffold. BMSC-loaded Bio-GelMA resulted in maximum and robust new bone formation compared with hydrogels alone and stem cell group. In conclusion, the bio-GelMA scaffold can be used as a cell carrier of BMSC to promote the repair of segmental bone defects and has great potential in future clinical applications.
Collapse
Affiliation(s)
- Jun Li
- Department of Orthopedics, Orthopedic Research Institute, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Wenzhao Wang
- Department of Orthopedics, Orthopedic Research Institute, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Mingxin Li
- Department of Orthopedics, Orthopedic Research Institute, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Song
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China.,College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Haoyuan Lei
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China.,College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Xingyu Gui
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China.,College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China.,College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Lei Liu
- Department of Orthopedics, Orthopedic Research Institute, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Rogers RE, Haskell A, White BP, Dalal S, Lopez M, Tahan D, Pan S, Kaur G, Kim H, Barreda H, Woodard SL, Benavides OR, Dai J, Zhao Q, Maitland KC, Han A, Nikolov ZL, Liu F, Lee RH, Gregory CA, Kaunas R. A scalable system for generation of mesenchymal stem cells derived from induced pluripotent cells employing bioreactors and degradable microcarriers. Stem Cells Transl Med 2021; 10:1650-1665. [PMID: 34505405 PMCID: PMC8641084 DOI: 10.1002/sctm.21-0151] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/21/2021] [Accepted: 08/11/2021] [Indexed: 02/06/2023] Open
Abstract
Human mesenchymal stem cells (hMSCs) are effective in treating disorders resulting from an inflammatory or heightened immune response. The hMSCs derived from induced pluripotent stem cells (ihMSCs) share the characteristics of tissue derived hMSCs but lack challenges associated with limited tissue sources and donor variation. To meet the expected future demand for ihMSCs, there is a need to develop scalable methods for their production at clinical yields while retaining immunomodulatory efficacy. Herein, we describe a platform for the scalable expansion and rapid harvest of ihMSCs with robust immunomodulatory activity using degradable gelatin methacryloyl (GelMA) microcarriers. GelMA microcarriers were rapidly and reproducibly fabricated using a custom microfluidic step emulsification device at relatively low cost. Using vertical wheel bioreactors, 8.8 to 16.3‐fold expansion of ihMSCs was achieved over 8 days. Complete recovery by 5‐minute digestion of the microcarriers with standard cell dissociation reagents resulted in >95% viability. The ihMSCs matched or exceeded immunomodulatory potential in vitro when compared with ihMSCs expanded on monolayers. This is the first description of a robust, scalable, and cost‐effective method for generation of immunomodulatory ihMSCs, representing a significant contribution to their translational potential.
Collapse
Affiliation(s)
- Robert E Rogers
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College of Medicine, Bryan, Texas, USA
| | - Andrew Haskell
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College of Medicine, Bryan, Texas, USA
| | - Berkley P White
- Department of Biomedical Engineering, Texas A&M University, Emerging Technologies Building, College Station, Texas, USA
| | - Sujata Dalal
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College of Medicine, Bryan, Texas, USA
| | - Megan Lopez
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College of Medicine, Bryan, Texas, USA
| | - Daniel Tahan
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College of Medicine, Bryan, Texas, USA
| | - Simin Pan
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College of Medicine, Bryan, Texas, USA
| | - Gagandeep Kaur
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College of Medicine, Bryan, Texas, USA
| | - Hyemee Kim
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College of Medicine, Bryan, Texas, USA
| | - Heather Barreda
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College of Medicine, Bryan, Texas, USA
| | - Susan L Woodard
- National Center for Therapeutics Manufacturing, Texas A&M University, College Station, Texas, USA
| | - Oscar R Benavides
- Department of Biomedical Engineering, Texas A&M University, Emerging Technologies Building, College Station, Texas, USA
| | - Jing Dai
- Department of Electrical and Computer Engineering, Texas A&M University, Wisenbaker Engineering Building, College Station, Texas, USA
| | - Qingguo Zhao
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College of Medicine, Bryan, Texas, USA
| | - Kristen C Maitland
- Department of Biomedical Engineering, Texas A&M University, Emerging Technologies Building, College Station, Texas, USA
| | - Arum Han
- Department of Biomedical Engineering, Texas A&M University, Emerging Technologies Building, College Station, Texas, USA.,Department of Electrical and Computer Engineering, Texas A&M University, Wisenbaker Engineering Building, College Station, Texas, USA
| | - Zivko L Nikolov
- National Center for Therapeutics Manufacturing, Texas A&M University, College Station, Texas, USA.,Biological and Agricultural Engineering, Texas A&M University, Scoates Hall, College Station, Texas, USA
| | - Fei Liu
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College of Medicine, Bryan, Texas, USA
| | - Ryang Hwa Lee
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College of Medicine, Bryan, Texas, USA
| | - Carl A Gregory
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College of Medicine, Bryan, Texas, USA
| | - Roland Kaunas
- Department of Biomedical Engineering, Texas A&M University, Emerging Technologies Building, College Station, Texas, USA
| |
Collapse
|
23
|
Silva AL, Babo PS, Rodrigues MT, Gonçalves AI, Novoa-Carballal R, Pires RA, Rouwkema J, Reis RL, Gomes ME. Hyaluronic Acid Oligomer Immobilization as an Angiogenic Trigger for the Neovascularization of TE Constructs. ACS APPLIED BIO MATERIALS 2021; 4:6023-6035. [DOI: 10.1021/acsabm.1c00291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ana L. Silva
- 3B’s Research Group, I3Bs − Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s−PT Government Associate Laboratory, Braga/Guimarães 4710-057, Portugal
| | - Pedro S. Babo
- 3B’s Research Group, I3Bs − Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s−PT Government Associate Laboratory, Braga/Guimarães 4710-057, Portugal
| | - Márcia T. Rodrigues
- 3B’s Research Group, I3Bs − Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s−PT Government Associate Laboratory, Braga/Guimarães 4710-057, Portugal
| | - Ana I. Gonçalves
- 3B’s Research Group, I3Bs − Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s−PT Government Associate Laboratory, Braga/Guimarães 4710-057, Portugal
| | - Ramon Novoa-Carballal
- 3B’s Research Group, I3Bs − Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s−PT Government Associate Laboratory, Braga/Guimarães 4710-057, Portugal
| | - Ricardo A. Pires
- 3B’s Research Group, I3Bs − Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s−PT Government Associate Laboratory, Braga/Guimarães 4710-057, Portugal
| | - Jeroen Rouwkema
- Department of Biomechanical Engineering, Faculty of Engineering Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Rui L. Reis
- 3B’s Research Group, I3Bs − Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s−PT Government Associate Laboratory, Braga/Guimarães 4710-057, Portugal
| | - Manuela E. Gomes
- 3B’s Research Group, I3Bs − Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s−PT Government Associate Laboratory, Braga/Guimarães 4710-057, Portugal
| |
Collapse
|
24
|
Siebert L, Luna-Cerón E, García-Rivera LE, Oh J, Jang J, Rosas-Gómez DA, Pérez-Gómez MD, Maschkowitz G, Fickenscher H, Oceguera-Cuevas D, Holguín-León CG, Byambaa B, Hussain MA, Enciso-Martinez E, Cho M, Lee Y, Sobahi N, Hasan A, Orgill DP, Mishra YK, Adelung R, Lee E, Shin SR. Light-controlled growth factors release on tetrapodal ZnO-incorporated 3D-printed hydrogels for developing smart wound scaffold. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2007555. [PMID: 36213489 PMCID: PMC9536771 DOI: 10.1002/adfm.202007555] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Indexed: 05/27/2023]
Abstract
Advanced wound scaffolds that integrate active substances to treat chronic wounds have gained significant recent attention. While wound scaffolds and advanced functionalities have previously been incorporated into one medical device, the wirelessly triggered release of active substances has remained the focus of many research endeavors. To combine multiple functions including light-triggered activation, anti-septic, angiogenic, and moisturizing properties, we have developed a 3D printed hydrogel patch encapsulating vascular endothelial growth factor (VEGF) decorated with photoactive and antibacterial tetrapodal zinc oxide (t-ZnO) microparticles. To achieve the smart release of VEGF, t-ZnO was modified by chemical treatment and activated through UV/visible light exposure. This process would also make the surface rough and improve protein adhesion. The elastic modulus and degradation behavior of the composite hydrogels, which must match the wound healing process, were adjusted by changing t-ZnO concentrations. The t-ZnO-laden composite hydrogels can be printed with any desired micropattern to potentially create a modular elution of various growth factors. The VEGF decorated t-ZnO-laden hydrogel patches showed low cytotoxicity and improved angiogenic properties while maintaining antibacterial functions in vitro. In vivo tests showed promising results for the printed wound patches, with less immunogenicity and enhanced wound healing.
Collapse
Affiliation(s)
- Leonard Siebert
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Functional Nanomaterials, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, D-24143, Kiel, Germany
| | - Eder Luna-Cerón
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Luis Enrique García-Rivera
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Junsung Oh
- Department of Nano-biomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - JunHwee Jang
- Department of Nano-biomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Diego A Rosas-Gómez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Mitzi D Pérez-Gómez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Gregor Maschkowitz
- Institute for Infection Medicine, Kiel University and University Medical Center Schleswig-Holstein, Brunswiker Str. 4, D-24105 Kiel, Germany
| | - Helmut Fickenscher
- Institute for Infection Medicine, Kiel University and University Medical Center Schleswig-Holstein, Brunswiker Str. 4, D-24105 Kiel, Germany
| | - Daniela Oceguera-Cuevas
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Carmen G Holguín-León
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | | | - Mohammad A Hussain
- Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| | - Eduardo Enciso-Martinez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | | | - Yuhan Lee
- Department of Anesthesiology, preoperative and pain medicine, Center for Nanomedicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nebras Sobahi
- Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
- Biomedical Research Centre (BRC), Qatar University, Doha, Qatar
| | - Dennis P Orgill
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yogendra K Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark
- Functional Nanomaterials, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, D-24143, Kiel, Germany
| | - Rainer Adelung
- Functional Nanomaterials, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, D-24143, Kiel, Germany
| | - Eunjung Lee
- Department of Nano-biomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| |
Collapse
|
25
|
Schmitz C, Potekhina E, Belousov VV, Lavrentieva A. Hypoxia Onset in Mesenchymal Stem Cell Spheroids: Monitoring With Hypoxia Reporter Cells. Front Bioeng Biotechnol 2021; 9:611837. [PMID: 33614611 PMCID: PMC7892969 DOI: 10.3389/fbioe.2021.611837] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/08/2021] [Indexed: 12/20/2022] Open
Abstract
The therapeutic and differentiation potential of human mesenchymal stems cells (hMSCs) makes these cells a promising candidate for cellular therapies and tissue engineering. On the path of a successful medical application of hMSC, the cultivation of cells in a three-dimensional (3D) environment was a landmark for the transition from simple two-dimensional (2D) testing platforms to complex systems that mimic physiological in vivo conditions and can improve hMSC curative potential as well as survival after implantation. A 3D arrangement of cells can be mediated by scaffold materials where cells get entrapped in pores, or by the fabrication of spheroids, scaffold-free self-organized cell aggregates that express their own extracellular matrix. Independently from the cultivation method, cells expanded in 3D experience an inhomogeneous microenvironment. Many gradients in nutrient supply, oxygen supply, and waste disposal from one hand mimic in vivo microenvironment, but also put every cell in the 3D construct in a different context. Since oxygen concentration in spheroids is compromised in a size-dependent manner, it is crucial to have a closer insight on the thresholds of hypoxic response in such systems. In this work, we want to improve our understanding of oxygen availability and consequensing hypoxia onset in hMSC spheroids. Therefore, we utilized human adipose tissue-derived MSCs (hAD-MSCs) modified with a genetical sensor construct to reveal (I) the influence of spheroid production methods and (II) hMSCs cell number per spheroid to detect the onset of hypoxia in aggregates. We could demonstrate that not only higher cell numbers of MSCs, but also spheroid formation method plays a critical role in onset of hypoxia.
Collapse
Affiliation(s)
- Carola Schmitz
- Institute of Technical Chemistry, Gottfried Wilhelm Leibniz University Hannover, Hanover, Germany
| | - Ekaterina Potekhina
- Department of Metabolism and Redox Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Vsevolod V Belousov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia.,Federal Center of Brain Research and Neurotechnologies, Federal Biomedical Agency, Moscow, Russia
| | - Antonina Lavrentieva
- Institute of Technical Chemistry, Gottfried Wilhelm Leibniz University Hannover, Hanover, Germany
| |
Collapse
|
26
|
Kirsch M, Rach J, Handke W, Seltsam A, Pepelanova I, Strauß S, Vogt P, Scheper T, Lavrentieva A. Comparative Analysis of Mesenchymal Stem Cell Cultivation in Fetal Calf Serum, Human Serum, and Platelet Lysate in 2D and 3D Systems. Front Bioeng Biotechnol 2021; 8:598389. [PMID: 33520956 PMCID: PMC7844400 DOI: 10.3389/fbioe.2020.598389] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
In vitro two-dimensional (2D) and three-dimensional (3D) cultivation of mammalian cells requires supplementation with serum. Mesenchymal stem cells (MSCs) are widely used in clinical trials for bioregenerative medicine and in most cases, in vitro expansion and differentiation of these cells are required before application. Optimized expansion and differentiation protocols play a key role in the treatment outcome. 3D cell cultivation systems are more comparable to in vivo conditions and can provide both, more physiological MSC expansion and a better understanding of intercellular and cell-matrix interactions. Xeno-free cultivation conditions minimize risks of immune response after implantation. Human platelet lysate (hPL) appears to be a valuable alternative to widely used fetal calf serum (FCS) since no ethical issues are associated with its harvest, it contains a high concentration of growth factors and cytokines and it can be produced from expired platelet concentrate. In this study, we analyzed and compared proliferation, as well as osteogenic and chondrogenic differentiation of human adipose tissue-derived MSCs (hAD-MSC) using three different supplements: FCS, human serum (HS), and hPL in 2D. Furthermore, online monitoring of osteogenic differentiation under the influence of different supplements was performed in 2D. hPL-cultivated MSCs exhibited a higher proliferation and differentiation rate compared to HS- or FCS-cultivated cells. We demonstrated a fast and successful chondrogenic differentiation in the 2D system with the addition of hPL. Additionally, FCS, HS, and hPL were used to formulate Gelatin-methacryloyl (GelMA) hydrogels in order to evaluate the influence of the different supplements on the cell spreading and proliferation of cells growing in 3D culture. In addition, the hydrogel constructs were cultivated in media supplemented with three different supplements. In comparison to FCS and HS, the addition of hPL to GelMA hydrogels during the encapsulation of hAD-MSCs resulted in enhanced cell spreading and proliferation. This effect was promoted even further by cultivating the hydrogel constructs in hPL-supplemented media.
Collapse
Affiliation(s)
- Marline Kirsch
- Institute of Technical Chemistry, Leibniz University Hannover, Hanover, Germany
| | - Jessica Rach
- German Red Cross Blood Service NSTOB, Institute Springe, Springe, Germany
| | - Wiebke Handke
- Bavarian Red Cross Blood Service, Institute Nuremberg, Nuremberg, Germany
| | - Axel Seltsam
- Bavarian Red Cross Blood Service, Institute Nuremberg, Nuremberg, Germany
| | - Iliyana Pepelanova
- Institute of Technical Chemistry, Leibniz University Hannover, Hanover, Germany
| | - Sarah Strauß
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hanover, Germany
| | - Peter Vogt
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hanover, Germany
| | - Thomas Scheper
- Institute of Technical Chemistry, Leibniz University Hannover, Hanover, Germany
| | | |
Collapse
|
27
|
Cell preservation methods and its application to studying rare disease. Mol Cell Probes 2021; 56:101694. [PMID: 33429040 DOI: 10.1016/j.mcp.2021.101694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/21/2020] [Accepted: 01/05/2021] [Indexed: 12/30/2022]
Abstract
The ability to preserve and transport human cells in a stable medium over long distances is critical to collaborative efforts and the advancement of knowledge in the study of human disease. This is particularly important in the study of rare diseases. Recently, advancements in the understanding of renal ciliopathies has been achieved via the use of patient urine-derived cells (UDCs). However, the traditional method of cryopreservation, although considered as the gold standard, can result in decreased sample viability of many cell types, including UDCs. Delays in transportation can have devastating effects upon the viability of samples, and may even result in complete destruction of cells following evaporation of dry ice or liquid nitrogen, leaving samples in cryoprotective agents, which are cytotoxic at room temperature. The loss of any patient sample in this manner is detrimental to research, however it is even more so when samples are from patients with a rare disease. In order to overcome the associated limitations of traditional practices, new methods of preservation and shipment, including cell encapsulation within hydrogels, and transport in specialised devices are continually being investigated. Here we summarise and compare traditional methods with emerging novel alternatives for the preservation and shipment of cells, and consider the effectiveness of such methods for use with UDCs to further enable the study and understanding of kidney diseases.
Collapse
|
28
|
Ozdogan CY, Kenar H, Davun KE, Yucel D, Doger E, Alagoz S. An in vitro 3D diabetic human skin model from diabetic primary cells. Biomed Mater 2020; 16:015027. [PMID: 33331294 DOI: 10.1088/1748-605x/abc1b1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Diabetes mellitus, a complex metabolic disorder, leads to many health complications like kidney failure, diabetic heart disease, stroke, and foot ulcers. Treatment approaches of diabetes and identification of the mechanisms underlying diabetic complications of the skin have gained importance due to continued rapid increase in the diabetes incidence. A thick and pre-vascularized in vitro 3D type 2 diabetic human skin model (DHSM) was developed in this study. The methacrylated gelatin (GelMA) hydrogel was produced by photocrosslinking and its pore size (54.85 ± 8.58 μm), compressive modulus (4.53 ± 0.67 kPa) and swelling ratio (17.5 ± 2.2%) were found to be suitable for skin tissue engineering. 8% GelMA hydrogel effectively supported the viability, spreading and proliferation of human dermal fibroblasts. By isolating dermal fibroblasts, human umbilical vein endothelial cells and keratinocytes from type 2 diabetic patients, an in vitro 3D type 2 DHSM, 12 mm in width and 1.86 mm thick, was constructed. The skin model consisted of a continuous basal epidermal layer and a dermal layer with blood capillary-like structures, ideal for evaluating the effects of anti-diabetic drugs and wound healing materials and factors. The functionality of the DHSM was showed by applying a therapeutic hydrogel into its central wound; especially fibroblast migration to the wound site was evident in 9 d. We have demonstrated that DHSM is a biologically relevant model with sensitivity and predictability in evaluating the diabetic wound healing potential of a therapeutic material.
Collapse
Affiliation(s)
- Candan Yilmaz Ozdogan
- Experimental and Clinical Research Center, Diabetes and Obesity Research Laboratory, Kocaeli University, Kocaeli, Turkey. Department of Biology, Graduate School of Natural and Applied Sciences, Kocaeli University, Kocaeli, Turkey
| | | | | | | | | | | |
Collapse
|
29
|
Kirsch M, Herder AC, Boudot C, Karau A, Rach J, Handke W, Seltsam A, Scheper T, Lavrentieva A. Xeno-Free In Vitro Cultivation and Osteogenic Differentiation of hAD-MSCs on Resorbable 3D Printed RESOMER ®. MATERIALS 2020; 13:ma13153399. [PMID: 32752065 PMCID: PMC7436127 DOI: 10.3390/ma13153399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 01/14/2023]
Abstract
The development of alloplastic resorbable materials can revolutionize the field of implantation technology in regenerative medicine. Additional opportunities to colonize the three-dimensionally (3D) printed constructs with the patient’s own cells prior to implantation can improve the regeneration process but requires optimization of cultivation protocols. Human platelet lysate (hPL) has already proven to be a suitable replacement for fetal calf serum (FCS) in 2D and 3D cell cultures. In this study, we investigated the in vitro biocompatibility of the printed RESOMER® Filament LG D1.75 materials as well as the osteogenic differentiation of human mesenchymal stem cells (hMSCs) cultivated on 3D printed constructs under the influence of different medium supplements (FCS, human serum (HS) and hPL). Additionally, the in vitro degradation of the material was studied over six months. We demonstrated that LG D1.75 is biocompatible and has no in vitro cytotoxic effects on hMSCs. Furthermore, hMSCs grown on the constructs could be differentiated into osteoblasts, especially supported by supplementation with hPL. Over six months under physiological in vitro conditions, a distinct degradation was observed, which, however, had no influence on the biocompatibility of the material. Thus, the overall suitability of the material LG D1.75 to produce 3D printed, resorbable bone implants and the promising use of hPL in the xeno-free cultivation of human MSCs on such implants for autologous transplantation have been demonstrated.
Collapse
Affiliation(s)
- Marline Kirsch
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, 30167 Hannover, Germany; (M.K.); (A.-C.H.); (T.S.)
| | - Annabelle-Christin Herder
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, 30167 Hannover, Germany; (M.K.); (A.-C.H.); (T.S.)
| | - Cécile Boudot
- Evonik Nutrition & Care GmbH, Business Line Health Care, Kirschenallee, 64293 Darmstadt, Germany; (C.B.); (A.K.)
| | - Andreas Karau
- Evonik Nutrition & Care GmbH, Business Line Health Care, Kirschenallee, 64293 Darmstadt, Germany; (C.B.); (A.K.)
| | - Jessica Rach
- German Red Cross Blood Service NSTOB, Institute Springe, Eldagsener Straße 38, 31830 Springe, Germany;
| | - Wiebke Handke
- Bavarian Red Cross Blood Service, Institute Nuremberg, Heimerichstrasse 57, 90419 Nuremberg, Germany; (W.H.); (A.S.)
| | - Axel Seltsam
- Bavarian Red Cross Blood Service, Institute Nuremberg, Heimerichstrasse 57, 90419 Nuremberg, Germany; (W.H.); (A.S.)
| | - Thomas Scheper
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, 30167 Hannover, Germany; (M.K.); (A.-C.H.); (T.S.)
| | - Antonina Lavrentieva
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, 30167 Hannover, Germany; (M.K.); (A.-C.H.); (T.S.)
- Correspondence: ; Tel.: +49-511-762-2955
| |
Collapse
|
30
|
Hu T, Cui X, Zhu M, Wu M, Tian Y, Yao B, Song W, Niu Z, Huang S, Fu X. 3D-printable supramolecular hydrogels with shear-thinning property: fabricating strength tunable bioink via dual crosslinking. Bioact Mater 2020; 5:808-818. [PMID: 32637745 PMCID: PMC7317699 DOI: 10.1016/j.bioactmat.2020.06.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/19/2020] [Accepted: 06/03/2020] [Indexed: 12/22/2022] Open
Abstract
3-dimensional (3D) bioprinting technology provides promising strategy in the fabrication of artificial tissues and organs. As the fundamental element in bioprinting process, preparation of bioink with ideal mechanical properties without sacrifice of biocompatibility is a great challenge. In this study, a supramolecular hydrogel-based bioink is prepared by polyethylene glycol (PEG) grafted chitosan, α-cyclodextrin (α-CD) and gelatin. It has a primary crosslinking structure through the aggregation of the pseudo-polyrotaxane-like side chains, which are formed from the host-guest interactions between α-CD and PEG side chain. Apparent viscosity measurement shows the shear-shinning property of this bioink, which might be due to the reversibility of the physical crosslinking. Moreover, with β-glycerophosphate at different concentrations as the secondary crosslinking agent, the printed constructs demonstrate different Young's modulus (p < 0.001). They could also maintain the Young's modulus in cell culture condition for at least 21 days (p < 0.05). By co-culturing each component with fibroblasts, CCK-8 assay demonstrate cellular viability is higher than 80%. After bioprinting and culturing, immunofluorescence staining with quantification indicate the expression of Ki-67, Paxillin, and N-cadherin is higher in day 14 than those in day 3 (p < 0.05). Oil red O and Nissl body specific staining reflect strength tunable bioink may have impact on the cell fate of mesenchymal stem cells (p < 0.05). This work might provide new idea for advanced bioink in the application of re-establishing complicated tissues and organs. Supramolecular bioink demonstrates good shear-shinning property. Dual crosslinking provides the bioink with tunable strength. Tunable strength facilitates stem cells lineage differentiation.
Collapse
Affiliation(s)
- Tian Hu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Beijing, 100853, PR China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, 51 Fu Cheng Road, Beijing, 100048, PR China.,Chinese Academy of Medical Sciences (CAMS) Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Xiaoliang Cui
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Meng Zhu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Man Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ye Tian
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Bin Yao
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Beijing, 100853, PR China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, 51 Fu Cheng Road, Beijing, 100048, PR China
| | - Wei Song
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Beijing, 100853, PR China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, 51 Fu Cheng Road, Beijing, 100048, PR China
| | - Zhongwei Niu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Sha Huang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Beijing, 100853, PR China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, 51 Fu Cheng Road, Beijing, 100048, PR China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Beijing, 100853, PR China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, 51 Fu Cheng Road, Beijing, 100048, PR China
| |
Collapse
|
31
|
Lavrentieva A, Fleischhammer T, Enders A, Pirmahboub H, Bahnemann J, Pepelanova I. Fabrication of Stiffness Gradients of GelMA Hydrogels Using a 3D Printed Micromixer. Macromol Biosci 2020; 20:e2000107. [PMID: 32537875 DOI: 10.1002/mabi.202000107] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/20/2020] [Indexed: 11/09/2022]
Abstract
Many properties in both healthy and pathological tissues are highly influenced by the mechanical properties of the extracellular matrix. Stiffness gradient hydrogels are frequently used for exploring these complex relationships in mechanobiology. In this study, the fabrication of a simple, cost-efficient, and versatile system is reported for creation of stiffness gradients from photoactive hydrogels like gelatin-methacryloyl (GelMA). The setup includes syringe pumps for gradient generation and a 3D printed microfluidic device for homogenous mixing of GelMA precursors with different crosslinker concentration. The stiffness gradient is investigated by using rheology. A co-culture consisting of human adipose tissue-derived mesenchymal stem cells (hAD-MSCs) and human umbilical cord vein endothelial cells (HUVECs) is encapsulated in the gradient construct. It is possible to locate the stiffness ranges at which the studied cells displayed specific spreading morphology and migration rates. With the help of the described system, variable mechanical gradient constructs can be created and optimal 3D cell culture conditions can be experientially identified.
Collapse
Affiliation(s)
- Antonina Lavrentieva
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstrasse 5, Hannover, 30167, Germany
| | - Tabea Fleischhammer
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstrasse 5, Hannover, 30167, Germany
| | - Anton Enders
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstrasse 5, Hannover, 30167, Germany
| | - Hamidreza Pirmahboub
- Institute of Cell Biology and Biophysics, Leibniz University of Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
| | - Janina Bahnemann
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstrasse 5, Hannover, 30167, Germany
| | - Iliyana Pepelanova
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstrasse 5, Hannover, 30167, Germany
| |
Collapse
|
32
|
Ribeiro JS, Bordini EAF, Ferreira JA, Mei L, Dubey N, Fenno JC, Piva E, Lund RG, Schwendeman A, Bottino MC. Injectable MMP-Responsive Nanotube-Modified Gelatin Hydrogel for Dental Infection Ablation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:16006-16017. [PMID: 32180395 PMCID: PMC7370252 DOI: 10.1021/acsami.9b22964] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
A photocrosslinkable gelatin methacryloyl (GelMA) hydrogel has been widely examined in regenerative engineering because of its good cell-tissue affinity and degradability in the presence of matrix metalloproteinases. A halloysite aluminosilicate nanotube (HNT) is a known reservoir for the loading and sustained delivery of therapeutics. Here, we formulate injectable chlorhexidine (CHX)-loaded nanotube-modified GelMA hydrogel that is cytocompatible and biodegradable and provides sustained release of CHX for infection ablation while displaying good biocompatibility. The effects of HNTs and CHX on hydrogel degradability and mechanical properties, as well as on the kinetics of CHX release, and on the antimicrobial efficacy against oral pathogens were systematically assessed. Cytocompatibility in stem cells from human exfoliated deciduous teeth and inflammatory response in vivo using a subcutaneous rat model were determined. Our hydrogel system, that is, (CHX)-loaded nanotube-modified GelMA showed minimum localized inflammatory responses, supporting its ability for drug delivery applications. Moreover, we showed that the incorporation of CHX-loaded nanotubes reduces the mechanical properties, increases the swelling ratio, and diminishes the degradation rate of the hydrogels. Importantly, the presence of CHX-loaded nanotubes inhibits bacterial growth with minimal cell toxicity. Our findings provide a new strategy to modify GelMA hydrogel with chlorhexidine-loaded nanotubes for clinical use as an injectable drug delivery strategy for dental infection ablation.
Collapse
Affiliation(s)
- Juliana S Ribeiro
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Restorative Dentistry, School of Dentistry, Federal University of Pelotas, Pelotas, Rio Grande do Sul 96010-610, Brazil
| | - Ester A F Bordini
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University, Araraquara, São Paulo 01049-010, Brazil
| | - Jessica A Ferreira
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ling Mei
- Department of Pharmaceutical Sciences, College of Pharmacy and Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nileshkumar Dubey
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - J Christopher Fenno
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Evandro Piva
- Department of Restorative Dentistry, School of Dentistry, Federal University of Pelotas, Pelotas, Rio Grande do Sul 96010-610, Brazil
| | - Rafael G Lund
- Department of Restorative Dentistry, School of Dentistry, Federal University of Pelotas, Pelotas, Rio Grande do Sul 96010-610, Brazil
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, College of Pharmacy and Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|