1
|
Burhanoğlu T, Halbutoğulları ZS, Turhal G, Demiroglu-Zergeroglu A. Evaluation of the anticancer effects of hydroxycinnamic acid isomers on breast cancer stem cells. Med Oncol 2025; 42:73. [PMID: 39932626 PMCID: PMC11814044 DOI: 10.1007/s12032-025-02618-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 01/29/2025] [Indexed: 02/14/2025]
Abstract
Research on breast cancer stem cells (BCSCs) is crucial for improving our understanding of their roles in tumor resistance, metastasis, and relapse. This study investigated the anti-cancer effects of two isomers of hydroxycinnamic acids (HCA): para-coumaric acid (PCA) and ortho-coumaric acid (OCA) on breast cancer stem cells (BCSCs). The isolated and characterized stem cells contained CD44 + /CD24 surface markers, exhibited high levels of aldehyde dehydrogenase activity, and were able to form mammospheres. The evaluation of HCAs on stem cell proliferation, cell cycle, and apoptosis was conducted by comparing them with MCF-7, the luminal breast cancer cell line. The viability and immunoblot analyses demonstrated that HCA applications resulted in a dose-dependent decrease in the number of viable cells and inhibited phosphorylation of Extracellular regulated kinases 1/2 (ERK1/2). These findings were supported by the detection of suppressed colony formation and delayed wound-healing in HCA-exposed cells. E-cadherin expression increased in OCA-treated cells. Additionally, the arrest of G1/S phase progression and the downregulation of Cyclin D1 expression exhibited that OCA and PCA-induced cytostatic effects in BSCS cells. After treatment, the increased Annexin-V/7-AAD staining, along with elevated expression of caspase-3/7 and a decreased Bcl-2/Bax ratio, indicated apoptosis mediated by the activation of Janus kinase (JNK) and p38 Mitogen-activated kinase (p38 MAPK). In conclusion, both OCA and PCA exhibit anti-carcinogenic potential on BCSCs; However, OCA has a stronger effect and is becoming a promising candidate for further research.
Collapse
Affiliation(s)
- Tülin Burhanoğlu
- Department of Chemistry, Faculty of Science, Gebze Technical University, Kocaeli, Turkey.
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Turkey.
| | - Zehra Seda Halbutoğulları
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Turkey
- Department of Medical Biology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Gulseren Turhal
- Department of Molecular Biology and Genetics, Faculty of Science, Gebze Technical University, Kocaeli, Turkey
| | - Asuman Demiroglu-Zergeroglu
- Department of Molecular Biology and Genetics, Faculty of Science, Gebze Technical University, Kocaeli, Turkey.
| |
Collapse
|
2
|
Krishnan RP, Pandiar D, Ramani P, Dharmaraj K, Jayaraman S. Immunohistochemical Expression of Bcl-2, E-cadherin, CD34 and CD105 in Basaloid Squamous Cell Carcinoma - An In Vitro Study. Ann Maxillofac Surg 2024; 14:206-211. [PMID: 39957879 PMCID: PMC11828064 DOI: 10.4103/ams.ams_50_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/28/2024] [Accepted: 06/28/2024] [Indexed: 02/18/2025] Open
Abstract
Introduction Basaloid squamous cell carcinoma (BSCC) is a rare aggressive variant of oral squamous cell carcinoma (OSCC) with a high propensity for distant metastasis. In this article, we present clinicopathological and survival data of eight cases of BSCC and further analyse the behaviour of these tumours with the help of E-cadherin, CD34, CD105 and B cell lymphoma-2 (Bcl-2) immunoexpression. Materials and Methods Histopathologically confirmed cases of BSCC were retrieved from the department archives. Clinicopathological details and survival data of these patients were collected. Immunohistochemical analysis was performed with Bcl-2, E-cadherin, CD34 and CD105 on these cases and compared with different grades of OSCC (well differentiated, moderately differentiated and poorly differentiated). The statistical analysis was done using IBM SPSS software version 23. Results BSCC was seen commonly in males of age group 49-71 years and predominantly reported in the retromolar trigone. Bcl-2 expression was significantly lower in BSCCs when compared to the conventional OSCC groups (P < 0.05). E-cadherin expression showed no significant difference between BSCC and well-differentiated OSCC group (P = 0.487). The overall mean survival for patients with BSCC was 6.37 months. Discussion BSCCs of the oral cavity show increased CD105, CD34, E-cadherin and low Bcl-2 labelling. A substantial relationship between the tumour neo-angiogenesis, collective cell migration and apoptotic property could be related to the aggressive nature of this tumour and its poor overall survival rate. BSCCs are common in middle to older aged male and show increased expression of CD105, CD34 and E-cadherin.
Collapse
Affiliation(s)
- Reshma Poothakulath Krishnan
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Deepak Pandiar
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Pratibha Ramani
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Kavya Dharmaraj
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Selvaraj Jayaraman
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| |
Collapse
|
3
|
Sicairos B, Alam S, Du Y. A comprehensive analysis of different types of databases reveals that CDH1 mRNA and E-cadherin protein are not downregulated in most carcinoma tissues and carcinoma cell lines. BMC Cancer 2023; 23:441. [PMID: 37189027 DOI: 10.1186/s12885-023-10916-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 05/03/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND The CDH1 gene codes for the epithelial-cadherin (E-cad) protein, which is embedded in the plasma membrane of epithelial cells to form adherens junctions. E-cad is known to be essential for maintaining the integrity of epithelial tissues, and the loss of E-cad has been widely considered a hallmark of metastatic cancers enabling carcinoma cells to acquire the ability to migrate and invade nearby tissues. However, this conclusion has come under scrutiny. METHODS To assess how CDH1 and E-cad expression changes during cancer progression, we analyzed multiple large transcriptomics, proteomics, and immunohistochemistry datasets on clinical cancer samples and cancer cell lines to determine the CDH1 mRNA and E-cad protein expression profiles in tumor and normal cells. RESULTS In contrast to the textbook knowledge of the loss of E-cad during tumor progression and metastasis, the levels of CDH1 mRNA and E-cad protein are either upregulated or remain unchanged in most carcinoma cells compared to normal cells. In addition, the CDH1 mRNA upregulation occurs in the early stages of tumor development and the levels remain elevated as tumors progress to later stages across most carcinoma types. Furthermore, E-cad protein levels are not downregulated in most metastatic tumor cells compared to primary tumor cells. The CDH1 mRNA and E-cad protein levels are positively correlated, and the CDH1 mRNA levels are positively correlated to cancer patient's survival. We have discussed potential mechanisms underlying the observed expression changes in CDH1 and E-cad during tumor progression. CONCLUSIONS CDH1 mRNA and E-cadherin protein are not downregulated in most tumor tissues and cell lines derived from commonly occurring carcinomas. The role of E-cad in tumor progression and metastasis may have previously been oversimplified. CDH1 mRNA levels may serve as a reliable biomarker for the diagnosis of some tumors (such as colon and endometrial carcinomas) due to the marked upregulation of CDH1 mRNA in the early stages of tumor development of these carcinomas.
Collapse
Affiliation(s)
- Brihget Sicairos
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Shorna Alam
- Bentonville West High School, Centerton, AR, 72719, USA
- Present address: Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yuchun Du
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
4
|
Huang P. Research progress on the protective mechanism of a novel soluble epoxide hydrolase inhibitor TPPU on ischemic stroke. Front Neurol 2023; 14:1083972. [PMID: 36846137 PMCID: PMC9945277 DOI: 10.3389/fneur.2023.1083972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/20/2023] [Indexed: 02/11/2023] Open
Abstract
Arachidonic Acid (AA) is the precursor of cerebrovascular active substances in the human body, and its metabolites are closely associated with the pathogenesis of cerebrovascular diseases. In recent years, the cytochrome P450 (CYP) metabolic pathway of AA has become a research hotspot. Furthermore, the CYP metabolic pathway of AA is regulated by soluble epoxide hydrolase (sEH). 1-trifluoromethoxyphenyl-3(1-propionylpiperidin-4-yl) urea (TPPU) is a novel sEH inhibitor that exerts cerebrovascular protective activity. This article reviews the mechanism of TPPU's protective effect on ischemic stroke disease.
Collapse
|
5
|
Chen J, Cai J, Lin J, Cheng Z, Long M. Inhibitory Effects of Bacillus Coagulans TL3 on the Ileal Oxidative Stress and Inflammation Induced by Lipopolysaccharide in Rats. Curr Microbiol 2023; 80:84. [PMID: 36680608 DOI: 10.1007/s00284-022-03171-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 12/28/2022] [Indexed: 01/22/2023]
Abstract
This study aimed to explore the effect and mechanism of Bacillus coagulans TL3 (B. coagulans TL3) on ileal inflammatory injury induced by lipopolysaccharide (LPS). Animal models were established wherein male Wistar rats were randomly divided into four groups: a control group, an LPS group, a high-concentration B. coagulans (HBC) group, and a low-concentration B. coagulans (LBC) group. The results showed that the biochemical indices changed, significant pathological changes were found, the number of apoptotic cells increased in the ileal tissue of the LPS group rats; the protein expressions of NFκB, MYD88, TLR4, TNF-α, Il-6, IL-1β, Claudin-1, Occludin, and ZO-1 in the LPS group were significantly decreased. The biochemical indices, pathological changes, and protein expressions in rats subjected to intragastric administration with high or low concentrations of B. coagulans TL3, were significantly reversed compared with the LPS group. These results indicated that TL3 strain could protect rats against ileal oxidative stress and inflammation induced by LPS and the protective mechanism was related to inhibition of the toll-like receptor 4 (TLR4) / myeloid differentiation factor-88 (MyD88) signaling pathway.
Collapse
Affiliation(s)
- Jia Chen
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jing Cai
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jiaxi Lin
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ziyang Cheng
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Miao Long
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
6
|
Zhang HX, Li YY, Liu ZJ, Wang JF. Quercetin effectively improves LPS-induced intestinal inflammation, pyroptosis, and disruption of the barrier function through the TLR4/NF-κB/NLRP3 signaling pathway in vivo and in vitro. Food Nutr Res 2022; 66:8948. [PMID: 36793340 PMCID: PMC9899048 DOI: 10.29219/fnr.v66.8948] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 12/31/2022] Open
Abstract
Background Inflammatory bowel diseases are characterized by the alterations of the mucosa and gastrointestinal physiology, and the core of these alterations is endothelial cells. Quercetin is a flavonoid presents in some traditional Chinese medicine, plants, and fruits. Its protective effects in several gastrointestinal tumors have been demonstrated, but its effects on bacterial enteritis and pyroptosis-related diseases have rarely been studied. Objective This study aimed to evaluate the effect of quercetin on bacterial enteritis and pyroptosis. Design In vitro experiments were performed using rat intestinal microvascular endothelial cells divided into seven groups: control group (no treatment), model group (10 μg/mL lipopolysaccharide (LPS)+1 mM adenosine triphosphate [ATP]), LPS group (10 μg/mL LPS), ATP group (1 mM ATP), and treatment groups (10 μg/mL LPS+1 mM ATP and 5, 10, and 20 μM quercetin). The expression of pyroptosis-associated proteins, inflammatory factors, tight junction proteins, and the percentage of late apoptotic and necrotic cells were measured. In vivo analysis was performed using specific pathogen-free Kunming mice pretreated with quercetin and the water extract of Cacumen Platycladi for 2 weeks followed by 6 mg/kg LPS on day 15. Inflammation in the blood and intestinal pathological changes were evaluated. Results Quercetin used in vitro significantly reduced the expression of Toll-like receptor 4 (TLR4), NOD-like receptor 3 (NLRP3), caspase-1, gasdermin D, interleukin (IL)-1β, IL-18, IL-6, and tumor necrosis factor-α. It also inhibited phosphorylation of nuclear factor-kappa B (NF-κB) p65 and increased cell migration and the expression of zonula occludens 1 and claudins, while reduced the number of late apoptotic cells. The in vivo results showed that Cacumen Platycladi and quercetin significantly reduced inflammation, protected the structure of the colon and cecum, and prevent fecal occult blood induced by LPS. Conclusions These findings suggested the ability of quercetin to reduce inflammation induced by LPS and pyroptosis through TLR4/NF-κB/NLRP3 pathway.
Collapse
Affiliation(s)
| | | | - Zhong-Jie Liu
- Zhong-Jie Liu, Department of Veterinary Clinic Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China.
| | - Jiu-Feng Wang
- Jiu-Feng Wang, Department of Veterinary Clinic Medicine College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China.
| |
Collapse
|
7
|
Šeklić DS, Đukić T, Milenković D, Jovanović MM, Živanović MN, Marković Z, Filipović N. Numerical modelling of WNT/β-catenin signal pathway in characterization of EMT of colorectal carcinoma cell lines after treatment with Pt(IV) complexes. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 226:107158. [PMID: 36198204 DOI: 10.1016/j.cmpb.2022.107158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/20/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND OBJECTIVE Colorectal cancer (CRC) is at the top of the most common cancer types in the world, with significant mortality rates among both men and women. Deregulation of Wnt/β-catenin pathway and cell-cell junctions' components, acquisition of invasive phenotype, epithelial-mesenchymal transition (EMT) and invasion are important for development and progression of colorectal cancer. Numerical simulation presents method for estimation of the Wnt pathway via its individual components in cells, thus providing information about EMT, migratory and invasive potential. By using this numerical model, the effectiveness of treatment in EMT suppression can be assessed. Furthermore, the model can be adapted to ``every'' cell type, application time or duration of treatment can be also modified. METHODS We characterized colorectal cancer (CRC) cell lines (HCT-116, SW-480) from the aspect of EMT, via markers β-catenin and E-cadherin using numerical modeling. To confirm the numerical model, cells were treated with sublethal concentrations of platinum(IV) complexes and their ligands. We confirmed β-catenin regulated expression of mesenchymal markers: N-cadherin, Vimentin and MMP-9, and decreased E-cadherin expression. Treatment-induced changes were determined in the protein expression of tested markers and results showed cell-specific responses. Molecular docking was performed to investigate exact effects of treatments on E-cadherin and β-catenin in cell-cell junctions and individually in tested cells. RESULTS The application of the numerical model via β-catenin and E-cadherin (experimentally measured), is largely valid for the categorization of EMT progression in cells. This numerical modeling better characterizes cells with single cell migration, higher expression of mesenchymal markers, and advanced mesenchymal phenotype like HCT-116 cell line. The model was validated for the treatments and results show HCT-116 cells as more sensitive to applied compounds, among which ligands were more potent in reducing migration and invasiveness. Anti-migratory/invasive effects were due to increased E-cadherin, cytoplasmic β-catenin expression and suppressed mesenchymal markers. In silico methods showed higher affinity of tested chemicals towards free β-catenin, which is the key for regulation of migratory/invasive potential. CONCLUSIONS Our study shows that, no matter individual properties of cell lines and EMT degree, de novo formation of intercellular junctions stands in the basis of anti-migratory/invasive process.
Collapse
Affiliation(s)
- Dragana S Šeklić
- Institute for Information Technologies, University of Kragujevac, Jovana Cvijia bb, 34 000, Kragujevac, Serbia.
| | - Tijana Đukić
- Institute for Information Technologies, University of Kragujevac, Jovana Cvijia bb, 34 000, Kragujevac, Serbia.
| | - Dejan Milenković
- Institute for Information Technologies, University of Kragujevac, Jovana Cvijia bb, 34 000, Kragujevac, Serbia.
| | - Milena M Jovanović
- Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34 000, Kragujevac, Serbia.
| | - Marko N Živanović
- Institute for Information Technologies, University of Kragujevac, Jovana Cvijia bb, 34 000, Kragujevac, Serbia
| | - Zoran Marković
- Institute for Information Technologies, University of Kragujevac, Jovana Cvijia bb, 34 000, Kragujevac, Serbia.
| | - Nenad Filipović
- Faculty of Engineering Science, University of Kragujevac, Sestre Janjić 6, 34 000, Kragujevac, Serbia; Bioengineering Research and Development Center (BioIRC), Prvoslava Stojanovića 6, 34 000, Kragujevac, Serbia.
| |
Collapse
|
8
|
Kim SY, Park SY, Jang HS, Park YD, Kee SH. Yes-Associated Protein Is Required for ZO-1-Mediated Tight-Junction Integrity and Cell Migration in E-Cadherin-Restored AGS Gastric Cancer Cells. Biomedicines 2021; 9:biomedicines9091264. [PMID: 34572450 PMCID: PMC8467433 DOI: 10.3390/biomedicines9091264] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 01/04/2023] Open
Abstract
Yes-associated protein (YAP) regulates numerous cellular homeostasis processes and malignant transformation. We found that YAP influences ZO-1-mediated cell migration using E-cadherin-restored EC96 cells derived from gastric malignant AGS cells. Ectopic expression of E-cadherin enhanced straightforward migration of cells, in comparison to the meandering movement of parental AGS cells. In EC96 cells, YAP and ZO-1 expression increased but nuclear YAP levels and activity were reduced. Nuclear factor-κB (NF-κB) mediated the increase in ZO-1 expression, possibly stabilizing cytoplasmic YAP post-translationally. Downregulation of YAP expression using siYAP RNA or stable knock-down inhibited straightforward cell migration by fragmenting ZO-1 containing tight junctions (TJs) but not adherens junctions, implying involvement of YAP in ZO-1-mediated cell migration. The association of YAP with ZO-1 was mediated by angiomotin (AMOT) because downregulation of AMOT dissociated YAP from ZO-1 and reduced cell migration. E-cadherin restoration in malignant cancer cells induced NF-κB signaling to enhance ZO-1 expression and subsequently stabilize YAP. At high expression levels, YAP associates with ZO-1 via AMOT at TJs, influencing ZO-1-mediated cell migration and maintaining TJ integrity.
Collapse
Affiliation(s)
- Seon-Young Kim
- Department of Microbiology, College of Medicine, Korea University, Seoul 02841, Korea; (S.-Y.K.); (S.-Y.P.)
| | - Song-Yi Park
- Department of Microbiology, College of Medicine, Korea University, Seoul 02841, Korea; (S.-Y.K.); (S.-Y.P.)
| | - Hwan-Seok Jang
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; (H.-S.J.); (Y.-D.P.)
| | - Yong-Doo Park
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; (H.-S.J.); (Y.-D.P.)
| | - Sun-Ho Kee
- Department of Microbiology, College of Medicine, Korea University, Seoul 02841, Korea; (S.-Y.K.); (S.-Y.P.)
- Correspondence: ; Tel.: +82-2-2286-1460
| |
Collapse
|