1
|
Tanaka K, Orita I, Fukui T. Efficient Production of High-Concentration Poly(3-hydroxybutyrate- co-3-hydroxyhexanoate) from CO 2 Employing the Recombinant of Cupriavidus necator. Bioengineering (Basel) 2025; 12:557. [PMID: 40564374 DOI: 10.3390/bioengineering12060557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2025] [Revised: 05/18/2025] [Accepted: 05/20/2025] [Indexed: 06/28/2025] Open
Abstract
A copolymer of 3-hydroxybutyrate (3HB) and 3-hydoxyhexanoate (3HHx), PHBHHx, is a practical biodegradable plastic, and at present, the copolymer is produced at commercial scale via heterotrophic cultivation of an engineered strain of a facultative hydrogen-oxidizing bacterium, Cupriavidus necator, using vegetable oil as the carbon source. In our previous report, we investigated PHBHHx production from CO2 via pH-stat jar cultivation of the newly created recombinants of C. necator under autotropic conditions, feeding the inorganic substrate gas mixture (H2/O2/CO2 = 80:10:10 v/v%) into a recycled-gas closed-circuit (RGCC) culture system. The dry cell weight (DCW) and PHBHHx concentration with the best strain MF01/pBPP-ccrMeJAc-emd increased to 59.62 ± 3.18 g·L-1 and 49.31 ± 3.14 g·L-1, respectively, after 216 h. In this study, we investigated the high-concentration production of PHBHHx with a shorter cultivation time by using a jar fermenter equipped with a basket-shaped agitator to enhance oxygen transfer in the culture medium and by continuously supplying the gases with higher O2 concentrations to maintain the gas composition within the reservoir at a constant ratio. The concentrations of ammonium and phosphate in the culture medium were maintained at low levels. As a result, the DCW and PHBHHx concentrations increased to 109.5 ± 0.30 g·L-1 and 85.2 ± 0.62 g·L-1 after 148 h, respectively. The 3HHx composition was 10.1 ± 0.693 mol%, which is suitable for practical applications.
Collapse
Affiliation(s)
- Kenji Tanaka
- Faculty of Humanity-Oriented Science and Engineering, Kindai University, 11-6 Kayanomori, Iizuka-shi 820-8555, Japan
| | - Izumi Orita
- School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Toshiaki Fukui
- School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
2
|
Feng J, Li X, Teng X, Fan D, Yin J, Qiu Y, Yi Z, Chen L, Zhang HM, Rao C. Harnessing CO 2 fixation and reducing power recycling for enhanced polyhydroxyalkanoates industrial bioproduction. Metab Eng 2025; 91:204-216. [PMID: 40318752 DOI: 10.1016/j.ymben.2025.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/24/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Palm oil is an attractive feedstock for bioproduction due to its high carbon content and low cost. However, its metabolism generates excess reducing power, leading to redox imbalances and reduced metabolic efficiency in industrial fermentations. Through a model-driven approach integrating flux balance analysis, we activated the Calvin-Benson-Bassham (CBB) cycle in Cupriavidus necator to recycle surplus reducing power and restore metabolic balance in polyhydroxyalkanoate (PHA) bioproduction. Computational simulations predicted that constitutive activation of the CBB cycle enhanced CO2 fixation and accelerated biomass generation when utilizing palm oil as the carbon source. Model-guided optimization revealed that precise tuning of CBB activation strength was critical, as both insufficient and excessive activation led to metabolic inefficiencies. At the 2-liter bench-scale, CBB activation tuning resulted in biomass changes ranging from -18 % to 21 % and PHA yield changes ranging from -36 % to 25 %. Mechanistic studies demonstrated that CBB activation improves metabolic efficiency through reducing power recycling and carbon redistribution. In the 15 m3 industrial-scale fermentations, the engineered strain achieved a 20 % higher PHA yield. These results demonstrate that recycling surplus reducing power is a scalable and robust strategy for enhanced bioproduction efficiency.
Collapse
Affiliation(s)
| | - Xueshan Li
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism & Integrative Biology, Fudan University, Shanghai, China
| | - Xin Teng
- Bluepha Co. Ltd., Shanghai, China
| | | | - Jin Yin
- Bluepha Co. Ltd., Shanghai, China
| | | | | | - Li Chen
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism & Integrative Biology, Fudan University, Shanghai, China.
| | | | | |
Collapse
|
3
|
Bolla M, Pettinato M, Ferrari PF, Fabiano B, Perego P. Polyhydroxyalkanoates production from laboratory to industrial scale: A review. Int J Biol Macromol 2025; 310:143255. [PMID: 40250686 DOI: 10.1016/j.ijbiomac.2025.143255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/06/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Environmental issues related to fossil-based plastics are getting the attention of the media and legislative authorities, addressing the need to improve the plastics' design, collection, and circular economy. In this regard, polyhydroxyalkanoates (PHAs) represent a promising alternative to the conventional polymers, given their biological origin, biodegradability, and biocompatibility. To date, their commercialization covers only a little percentage of the biodegradable plastic application, mainly due to their high cost. However, new production strategies are being investigated and patented, enhancing the PHA market competitiveness. This review tries to fill the gap about the critical investigation on innovative and up-to-date process strategies in PHA production field, deeply evaluating them from a plant-engineering point of view. Several aspects are considered regarding the reduction of the production costs and the increase in the overall PHA productivity and recovery. Among them, the feeding of pre-treated carbon sources derived from food and agro-industrial wastes, the use of mixed microbial cultures as convenient substitutes to the pure ones, and optimized downstream processes are widely discussed. The overlook of the topic is completed by evaluating the innovative technologies existing at pilot and industrial scale, able to achieve improved production yields. Finally, PHA economic and market current conditions are investigated.
Collapse
Affiliation(s)
- Maria Bolla
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia, 15, 16145 Genoa, Italy.
| | - Margherita Pettinato
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia, 15, 16145 Genoa, Italy; Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity, University of Genoa, via Montallegro, 1, 16145 Genoa, Italy.
| | - Pier Francesco Ferrari
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia, 15, 16145 Genoa, Italy; Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity, University of Genoa, via Montallegro, 1, 16145 Genoa, Italy; IRCCS Ospedale Policlinico San Martino, largo Rosanna Benzi, 10, 16132, Genoa, Italy.
| | - Bruno Fabiano
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia, 15, 16145 Genoa, Italy; Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity, University of Genoa, via Montallegro, 1, 16145 Genoa, Italy.
| | - Patrizia Perego
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia, 15, 16145 Genoa, Italy; Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity, University of Genoa, via Montallegro, 1, 16145 Genoa, Italy; IRCCS Ospedale Policlinico San Martino, largo Rosanna Benzi, 10, 16132, Genoa, Italy.
| |
Collapse
|
4
|
Wang Y, Tian Y, Xu D, Cheng S, Li WW, Song H. Recent advances in synthetic biology toolkits and metabolic engineering of Ralstonia eutropha H16 for production of value-added chemicals. Biotechnol Adv 2025; 79:108516. [PMID: 39793936 DOI: 10.1016/j.biotechadv.2025.108516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Ralstonia eutropha H16, a facultative chemolithoautotrophic Gram-negative bacterium, demonstrates remarkable metabolic flexibility by utilizing either diverse organic substrates or CO2 as the sole carbon source, with H2 serving as the electron donor under aerobic conditions. The capacity of carbon and energy metabolism of R. eutropha H16 enabled development of synthetic biology technologies and strategies to engineer its metabolism for biosynthesis of value-added chemicals. This review firstly outlines the development of synthetic biology tools tailored for R. eutropha H16, including construction of expression vectors, regulatory elements, and transformation techniques. The availability of comprehensive omics data (i.e., transcriptomic, proteomic, and metabolomic) combined with the fully annotated genome sequence provides a robust genetic framework for advanced metabolic engineering. These advancements facilitate efficient reprogramming metabolic network of R. eutropha. The potential of R. eutropha as a versatile microbial platform for industrial biotechnology is further underscored by its ability to utilize a wide range of carbon sources for the production of value-added chemicals through both autotrophic and heterotrophic pathways. The integration of state-of-the-art genetic and genomic engineering tools and strategies with high cell-density fermentation processes enables engineered R. eutropha as promising microbial cell factories for optimizing carbon fluxes and expanding the portfolio of bio-based products.
Collapse
Affiliation(s)
- Ye Wang
- State Key Laboratory of Synthetic Biology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yao Tian
- State Key Laboratory of Synthetic Biology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Dake Xu
- Shenyang National Laboratory for Materials Science, Northeastern University, 110819 Shenyang, China; Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, 110819 Shenyang, China
| | - Shaoan Cheng
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wen-Wei Li
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Hao Song
- State Key Laboratory of Synthetic Biology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; College of Life and Health Sciences, Northeastern University, Shenyang 110169, China.
| |
Collapse
|
5
|
Chang YC, Reddy MV, Mawatari Y, Sarkar O. Enhanced polyhydroxyalkanoate biosynthesis by Cupriavidus sp. CY-1 utilizing CO 2 under controlled non-explosive conditions. CHEMOSPHERE 2025; 373:144181. [PMID: 39908848 DOI: 10.1016/j.chemosphere.2025.144181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/09/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
The production of polyhydroxyalkanoate (PHA) using CO2 through hydrogen-oxidizing bacteria under safe, non-explosive conditions is making impressive strides. The present study aimed to evaluate and demonstrate the growth and productivity of PHA by Cupriavidus sp. CY-1 under different non-explosive conditions, thereby providing critical data for practical applications. The experimental results highlighted the efficiency of the CY-1 strain in PHA biosynthesis, achieving a production rate of 11.87 g L-1, which corresponds to a 90.6% yield when fermenting a gaseous substrate composed of H2 (70%), O2 (20%), and CO2 (10%). The study also examined PHA production under different non-explosive conditions, including H2 concentrations of 3.8% (v/v) and O2 at 6.5% (v/v). Furthermore, the impact of CO (30% and higher) was assessed, revealing a detrimental effect on growth and PHA production. Notably, the addition of Tween 80 significantly enhanced PHA productivity. The effective utilization of CO2 has confirmed poly[(R)-3-hydroxybutyrate] (PHB) as a valuable derived form of PHA. By implementing a two-step treatment with valeric acid, we successfully produced P(3HB-co-3HV) (PHBV) at a concentration of 1.47 g L-1. This achievement highlights the potential to enhance PHA production through innovative strategies. Furthermore, the examination of phaC gene expression levels has facilitated accurate predictions of PHA productivity. The use of CO2 from trichloroethylene (TCE) biodegradation faced concentration-related challenges; however, the higher CO2 levels achieved from phenol biodegradation, at 1200 mg L-1, indicate substantial potential for efficient PHA production.
Collapse
Affiliation(s)
- Young-Cheol Chang
- Course of Chemical and Biological Engineering, Division of Sustainable and Environmental Engineering, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, 050-8585, Japan.
| | - M Venkateswar Reddy
- University of Kentucky, Veterinary Diagnostic Laboratory, 1490, Bull Lea RD, Lexington, KY, 40512-4125, USA
| | - Yasuteru Mawatari
- Course of Chemical and Biological Engineering, Division of Sustainable and Environmental Engineering, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, 050-8585, Japan
| | - Omprakash Sarkar
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 971-87, Luleå, Sweden
| |
Collapse
|
6
|
Di Bisceglie F, García Navarro J, Lombard E, Kratzer R, Kourist R, Guillouet SE. Conceptual Approach for Aerobic Autotrophic Gas Cultivation in Shake Flasks: Overcoming the Inhibitory Effects of Oxygen in Cupriavidus necator. Biotechnol J 2025; 20:e202400641. [PMID: 39924831 DOI: 10.1002/biot.202400641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/24/2024] [Accepted: 01/17/2025] [Indexed: 02/11/2025]
Abstract
This study conceptualizes the design of a small-scale system (250 mL-1 L) for the autotrophic cultivation of hydrogen-oxidizing bacteria, such as the representative strain Cupriavidus necator. The research aimed to systematically investigate the impact of bottle volume and gas composition, particularly oxygen concentration, on the growth and performance of C. necator during autotrophic cultivations. To this end, customized, pressure-tight, baffled glass bottles of various sizes (250, 500, and 1000 mL) and gas mixtures with varying oxygen concentrations (4%, 8%, and 12% v/v) were tested. Growth was monitored by measuring optical density. The maximum specific growth rate (µmax), the biomass production rate (BPR), the volumetric gas-liquid mass transfer coefficient (kLa), and the oxygen transfer rate were calculated. Among the various combinations, the 1000-mL bottles demonstrated the highest µmax (0.13 h-1) and the second-highest BPR (0.074 g L-1 h-1) at an oxygen concentration of 8%, without the need to refill the headspace. The proposed small-scale system offers a swift and replicable method for concurrently investigating multiple autotrophic cultivations. In this regard, increasing the size of the bottle flask proved to be an efficient strategy to minimize the periodicity for gas refilling. Due to the inhibitory effect of oxygen, changing the liquid-gas volume ratio in hydrogen-driven shake flask cultivation had so far strongly influenced the growth rate. Our results provide a solid foundation for the scaling and optimization of small-scale cultivation of chemolithotrophic bacteria and will facilitate future parallelization and, hence, optimization of metabolic aspects.
Collapse
Affiliation(s)
- Federico Di Bisceglie
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Graz, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria
| | - Javier García Navarro
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria
- Institute of Molecular Biotechnology (IMBT), Graz University of Technology, Graz, Austria
| | - Eric Lombard
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Regina Kratzer
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Graz, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria
| | - Robert Kourist
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria
- Institute of Molecular Biotechnology (IMBT), Graz University of Technology, Graz, Austria
| | - Stéphane E Guillouet
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| |
Collapse
|
7
|
Oh SJ, Lim G, Han Y, Kim W, Joo HS, Kim YG, Kim JS, Bhatia SK, Yang YH. High-Yield Production of Polyhydroxybutyrate and Poly(3-hydroxybutyrate- co-3-hydroxyhexanoate) from Crude Glycerol by a Newly Isolated Burkholderia Species Oh_219. Polymers (Basel) 2025; 17:197. [PMID: 39861268 PMCID: PMC11768116 DOI: 10.3390/polym17020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/09/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Crude glycerol (CG), a major biodiesel production by-product, is the focus of ongoing research to convert it into polyhydroxyalkanoate (PHA). However, few bacterial strains are capable of efficiently achieving this conversion. Here, 10 PHA-producing strains were isolated from various media. Among them, Burkholderia sp. Oh_219 exhibited the highest polyhydroxybutyrate (PHB) production from glycerol and was therefore characterized further. Burkholderia sp. Oh_219 demonstrated significant tolerance to major growth inhibitors in CG and metabolized the fatty acids present as impurities in CG. Furthermore, the Oh_219 strain was genetically engineered using phaCBP-M-CPF4 and phaJPa to enable the fatty acid-based production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx), a component of CG. The resulting strain produced PHBHHx containing 1.0-1.3 mol% of 3HHx from CG. Further supplementation with capric and lauric acids increased the 3HHx molar fraction to 9.7% and 18%, respectively. In a 5 L fermenter, the Oh_219 strain produced 15.3 g/L PHB from 29.6 g/L biomass using a two-stage fermentation system. This is the highest yield reported for PHA production from glycerol by Burkholderia spp. Additionally, PHB produced from CG had a lower melting point than that from pure glycerol and fructose. Taken together, Burkholderia sp. Oh_219 is a promising new candidate strain for producing PHA from CG.
Collapse
Affiliation(s)
- Suk-Jin Oh
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; (S.-J.O.); (G.L.); (Y.H.); (S.K.B.)
| | - Gaeun Lim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; (S.-J.O.); (G.L.); (Y.H.); (S.K.B.)
| | - Yebin Han
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; (S.-J.O.); (G.L.); (Y.H.); (S.K.B.)
| | - Wooseong Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea;
| | - Hwang-Soo Joo
- Department of Biotechnology, College of Engineering, Duksung Women’s University, Seoul 01370, Republic of Korea;
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea;
| | - Jae-Seok Kim
- Department of Laboratory Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul 05355, Republic of Korea;
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; (S.-J.O.); (G.L.); (Y.H.); (S.K.B.)
- Institute for Ubiquitous Information Technology and Applications, Konkuk University, Seoul 05029, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; (S.-J.O.); (G.L.); (Y.H.); (S.K.B.)
- Institute for Ubiquitous Information Technology and Applications, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
8
|
Jung HJ, Kim B, Choi TR, Oh SJ, Kim S, Lee Y, Shin Y, Choi S, Oh J, Park SY, Lee YS, Choi YH, Yang YH. Novel differential scanning calorimetry (DSC) application to select polyhydroxyalkanoate (PHA) producers correlating 3-hydroxyhexanoate (3-HHx) monomer with melting enthalpy. Bioprocess Biosyst Eng 2024; 47:1619-1631. [PMID: 39103701 DOI: 10.1007/s00449-024-03054-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/19/2024] [Indexed: 08/07/2024]
Abstract
Polyhydroxyalkanoate (PHA) is an environmental alternative to petroleum-based plastics because of its biodegradability. The polymer properties of PHA have been improved by the incorporation of different monomers. Traditionally, the monomer composition of PHA has been analyzed using gas chromatography (GC) and nuclear magnetic resonance (NMR), providing accurate monomer composition. However, sequential analysis of the thermal properties of PHA using differential scanning calorimetry (DSC) remains necessary, providing crucial insights into its thermal characteristics. To shorten the monomer composition and thermal property analysis, we directly applied DSC to the analysis of the obtained PHA film and observed a high correlation (r2 = 0.98) between melting enthalpy and the 3-hydroxyhexanoate (3-HHx) mole fraction in the polymer. A higher 3-HHx fraction resulted in a lower melting enthalpy as 3-HHx provided the polymer with higher flexibility. Based on this, we selected the poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(3HB-co-3HHx)) producing strain from Cupriavidus strains that newly screened and transformed with vectors containing P(3HB-co-3HHx) biosynthetic genes, achieving an average error rate below 1.8% between GC and DSC results. Cupriavidus sp. BK2 showed a high 3-HHx mole fraction, up to 10.38 mol%, with Tm (℃) = 171.5 and ΔH of Tm (J/g) = 48.0, simultaneously detected via DSC. This study is an example of the expansion of DSC for PHA analysis from polymer science to microbial engineering.
Collapse
Affiliation(s)
- Hee Ju Jung
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Byungchan Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Tae-Rim Choi
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Suk Jin Oh
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Suwon Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Yeda Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Yuni Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Suhye Choi
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jinok Oh
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - So Yeon Park
- Innovation Center, Lotte Chemical LTD, Seoul, Republic of Korea
| | - Young Sik Lee
- Innovation Center, Lotte Chemical LTD, Seoul, Republic of Korea
| | - Young Heon Choi
- Innovation Center, Lotte Chemical LTD, Seoul, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea.
- Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Biglari N, Abdeshahian P, Orita I, Fukui T, Sudesh K. Improving Bioplastic Production: Enhanced P(3HB- co-3HHx) Synthesis from Glucose by Using Mutant Cupriavidus necator. IRANIAN JOURNAL OF BIOTECHNOLOGY 2024; 22:e3884. [PMID: 40225295 PMCID: PMC11993232 DOI: 10.30498/ijb.2024.445254.3884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 11/19/2024] [Indexed: 04/15/2025]
Abstract
Background Biodegradable polyhydroxyalkanoates (PHAs) hold promises for various applications in industries ranging from packaging to biomedical engineering, highlighting the importance of this pioneering research in sustainable materials synthesis. Objectives The objective of this investigation was to present the successful production of polyhydroxyalkanoate (PHA) copolymer P(3HB-co-3HHx) from glucose utilizing a newly mutated strain of Cupriavidus necator. This mutant strain carries the pBPP-ccrMeJAc-emd plasmid which harbors a short-chain-length-specific PhaJ enzyme. The primary aim is to demonstrate the enhanced production efficiency and specificity of P(3HB-co-3HHx) through genetic manipulation and enzyme engineering, thereby advancing the feasibility and sustainability of PHA-based bioplastic production. Materials and Methods To design the inputs conditions,a central composite factorial design (CCFD) based on a one-variable-at-a-time (OVAT) experiment was conducted. This experiment aimed to identify key chemical factors and their operational ranges affecting PHBHHx production by the mutant strain. Later, batch and repeated fed-batch (RFB) culture were run in a stirred tank bioreactor (STBR) with a working volume of 2 L which was inoculated by 200 ml (10% v/v) of freshly grown seed culture (18 h). This methodology ensured controlled exploration of individual variables, facilitating the selection of optimal conditions for PHBHHx production. Total glucose concentrations during fermentation were assessed through the phenol-sulfuric acid assay. Results The study demonstrates the effectiveness of the designed model in predicting PHBHHx production during fermentation runs with predicted values closely aligning with experimental results. This underscores the model satisfactory fitness with the experimental design. Additionally, a surprising enhancement was observed in the fermentation process with repeated fed-batch (RFB) leading to a substantial increase in cell dry weight (CDW), PHBHHX concentration, and 3HHx fraction, approximately 7 times, 7 times and 4.5 times, respectively. Confirmation of copolymer production was further validated through analytical techniques including FTIR spectroscopy, NMR, and TEM analysis. These findings collectively highlight the promising potential of RFB as a method to significantly improve PHBHHx production covering the way for further advancements in biopolymer manufacturing processes. Conclusions Our study reveals the potential of newly engineered C. necator NSDG-GGΔB1/pBPP-ccrMeJAc-emd mutant strain for efficient PHBHHx copolymer production. Process parameters such as glucose and urea concentration, and agitation rate significantly influenced PHBHHx yield. This research stands out by utilizing a novel strain for PHBHHx synthesis. Characterization confirmed high-quality polymer production. Our findings offer a sustainable approach for converting inexpensive carbon sources into valuable PHBHHx though further optimization for scale-up is warranted.
Collapse
Affiliation(s)
- Nazila Biglari
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Peyman Abdeshahian
- Department of Biology, Faculty of Basic Sciences, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | - Izumi Orita
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Toshiaki Fukui
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Kumar Sudesh
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| |
Collapse
|
10
|
de Souza F, Gupta RK. Bacteria for Bioplastics: Progress, Applications, and Challenges. ACS OMEGA 2024; 9:8666-8686. [PMID: 38434856 PMCID: PMC10905720 DOI: 10.1021/acsomega.3c07372] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 03/05/2024]
Abstract
Bioplastics are one of the answers that can point society toward a sustainable future. Under this premise, the synthesis of polymers with competitive properties using low-cost starting materials is a highly desired factor in the industry. Also, tackling environmental issues such as nonbiodegradable waste generation, high carbon footprint, and consumption of nonrenewable resources are some of the current concerns worldwide. The scientific community has been placing efforts into the biosynthesis of polymers using bacteria and other microbes. These microorganisms can be convenient reactors to consume food and agricultural wastes and convert them into biopolymers with inherently attractive properties such as biodegradability, biocompatibility, and appreciable mechanical and chemical properties. Such biopolymers can be applied to several fields such as packing, cosmetics, pharmaceutical, medical, biomedical, and agricultural. Thus, intending to elucidate the science of microbes to produce polymers, this review starts with a brief introduction to bioplastics by describing their importance and the methods for their production. The second section dives into the importance of bacteria regarding the biochemical routes for the synthesis of polymers along with their advantages and disadvantages. The third section covers some of the main parameters that influence biopolymers' production. Some of the main applications of biopolymers along with a comparison between the polymers obtained from microorganisms and the petrochemical-based ones are presented. Finally, some discussion about the future aspects and main challenges in this field is provided to elucidate the main issues that should be tackled for the wide application of microorganisms for the preparation of bioplastics.
Collapse
Affiliation(s)
- Felipe
Martins de Souza
- National
Institute for Materials Advancement, Pittsburgh
State University, 1204 Research Road, Pittsburgh, Kansas 66762, United States
| | - Ram K. Gupta
- National
Institute for Materials Advancement, Pittsburgh
State University, 1204 Research Road, Pittsburgh, Kansas 66762, United States
- Department
of Chemistry, Pittsburgh State University, 1701 South Broadway Street, Pittsburgh, Kansas 66762, United States
| |
Collapse
|
11
|
Huong KH, Orita I, Fukui T. Microaerobic insights into production of polyhydroxyalkanoates containing 3-hydroxyhexanoate via native reverse β-oxidation from glucose in Ralstonia eutropha H16. Microb Cell Fact 2024; 23:21. [PMID: 38221622 PMCID: PMC10788006 DOI: 10.1186/s12934-024-02294-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/01/2024] [Indexed: 01/16/2024] Open
Abstract
BACKGROUND Ralstonia eutropha H16, a facultative chemolitoautotroph, is an important workhorse for bioindustrial production of useful compounds such as polyhydroxyalkanoates (PHAs). Despite the extensive studies to date, some of its physiological properties remain not fully understood. RESULTS This study demonstrated that the knallgas bacterium exhibited altered PHA production behaviors under slow-shaking condition, as compared to its usual aerobic condition. One of them was a notable increase in PHA accumulation, ranging from 3.0 to 4.5-fold in the mutants lacking of at least two NADPH-acetoacetyl-CoA reductases (PhaB1, PhaB3 and/or phaB2) when compared to their respective aerobic counterpart, suggesting the probable existence of (R)-3HB-CoA-providing route(s) independent on PhaBs. Interestingly, PHA production was still considerably high even with an excess nitrogen source under this regime. The present study further uncovered the conditional activation of native reverse β-oxidation (rBOX) allowing formation of (R)-3HHx-CoA, a crucial precursor for poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx)], solely from glucose. This native rBOX led to the natural incorporation of 3.9 mol% 3HHx in a triple phaB-deleted mutant (∆phaB1∆phaB1∆phaB2-C2). Gene deletion experiments elucidated that the native rBOX was mediated by previously characterized (S)-3HB-CoA dehydrogenases (PaaH1/Had), β-ketothiolase (BktB), (R)-2-enoyl-CoA hydratase (PhaJ4a), and unknown crotonase(s) and reductase(s) for crotonyl-CoA to butyryl-CoA conversion prior to elongation. The introduction of heterologous enzymes, crotonyl-CoA carboxylase/reductase (Ccr) and ethylmalonyl-CoA decarboxylase (Emd) along with (R)-2-enoyl-CoA hydratase (PhaJ) aided the native rBOX, resulting in remarkably high 3HHx composition (up to 37.9 mol%) in the polyester chains under the low-aerated condition. CONCLUSION These findings shed new light on the robust characteristics of Ralstonia eutropha H16 and have the potential for the development of new strategies for practical P(3HB-co-3HHx) copolyesters production from sugars under low-aerated conditions.
Collapse
Affiliation(s)
- Kai-Hee Huong
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
| | - Izumi Orita
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
| | - Toshiaki Fukui
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan.
| |
Collapse
|
12
|
Jaffur BN, Kumar G, Jeetah P, Ramakrishna S, Bhatia SK. Current advances and emerging trends in sustainable polyhydroxyalkanoate modification from organic waste streams for material applications. Int J Biol Macromol 2023; 253:126781. [PMID: 37696371 DOI: 10.1016/j.ijbiomac.2023.126781] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023]
Abstract
The current processes for producing polyhydroxyalkanoates (PHAs) are costly, owing to the high cost of cultivation feedstocks, and the need to sterilise the growth medium, which is energy-intensive. PHA has been identified as a promising biomaterial with a wide range of potential applications and its functionalization from waste streams has made significant advances recently, which can help foster the growth of a circular economy and waste reduction. Recent developments and novel approaches in the functionalization of PHAs derived from various waste streams offer opportunities for addressing these issues. This study focuses on the development of sustainable, efficient, and cutting-edge methods, such as advanced bioprocess engineering, novel catalysts, and advances in materials science. Chemical techniques, such as epoxidation, oxidation, and esterification, have been employed for PHA functionalization, while enzymatic and microbial methods have indicated promise. PHB/polylactic acid blends with cellulose fibers showed improved tensile strength by 24.45-32.08 % and decreased water vapor and oxygen transmission rates while PHB/Polycaprolactone blends with a 1:1 ratio demonstrated an elongation at break four to six times higher than pure PHB, without altering tensile strength or elastic modulus. Moreover, PHB films blended with both polyethylene glycol and esterified sodium alginate showed improvements in crystallinity and decreased hydrophobicity.
Collapse
Affiliation(s)
- Bibi Nausheen Jaffur
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit 80837, Mauritius.
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental, Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway; School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, South Korea
| | - Pratima Jeetah
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit 80837, Mauritius
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore
| | - Shashi Kant Bhatia
- Department of Biological Engineering, Konkuk University, Seoul 05029, South Korea
| |
Collapse
|
13
|
Morlino MS, Serna García R, Savio F, Zampieri G, Morosinotto T, Treu L, Campanaro S. Cupriavidus necator as a platform for polyhydroxyalkanoate production: An overview of strains, metabolism, and modeling approaches. Biotechnol Adv 2023; 69:108264. [PMID: 37775073 DOI: 10.1016/j.biotechadv.2023.108264] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Cupriavidus necator is a bacterium with a high phenotypic diversity and versatile metabolic capabilities. It has been extensively studied as a model hydrogen oxidizer, as well as a producer of polyhydroxyalkanoates (PHA), plastic-like biopolymers with a high potential to substitute petroleum-based materials. Thanks to its adaptability to diverse metabolic lifestyles and to the ability to accumulate large amounts of PHA, C. necator is employed in many biotechnological processes, with particular focus on PHA production from waste carbon sources. The large availability of genomic information has enabled a characterization of C. necator's metabolism, leading to the establishment of metabolic models which are used to devise and optimize culture conditions and genetic engineering approaches. In this work, the characteristics of available C. necator strains and genomes are reviewed, underlining how a thorough comprehension of the genetic variability of C. necator is lacking and it could be instrumental for wider application of this microorganism. The metabolic paradigms of C. necator and how they are connected to PHA production and accumulation are described, also recapitulating the variety of carbon substrates used for PHA accumulation, highlighting the most promising strategies to increase the yield. Finally, the review describes and critically analyzes currently available genome-scale metabolic models and reduced metabolic network applications commonly employed in the optimization of PHA production. Overall, it appears that the capacity of C. necator of performing CO2 bioconversion to PHA is still underexplored, both in biotechnological applications and in metabolic modeling. However, the accurate characterization of this organism and the efforts in using it for gas fermentation can help tackle this challenging perspective in the future.
Collapse
Affiliation(s)
- Maria Silvia Morlino
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy
| | - Rebecca Serna García
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100 Burjassot, Valencia, Spain
| | - Filippo Savio
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy
| | - Guido Zampieri
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy
| | - Tomas Morosinotto
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy
| | - Laura Treu
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy.
| | - Stefano Campanaro
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy
| |
Collapse
|
14
|
Tanaka K, Orita I, Fukui T. Production of Poly(3-hydroxybutyrate- co-3-hydroxyhexanoate) from CO 2 via pH-Stat Jar Cultivation of an Engineered Hydrogen-Oxidizing Bacterium Cupriavidus necator. Bioengineering (Basel) 2023; 10:1304. [PMID: 38002428 PMCID: PMC10669266 DOI: 10.3390/bioengineering10111304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/21/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
The copolyester of 3-hydroxybutyrate (3HB) and 3-hydoxyhexanoate (3HHx), PHBHHx, is a biodegradable plastic characterized by high flexibility, softness, a wide process window, and marine biodegradability. PHBHHx is usually produced from structurally related carbon sources, such as vegetable oils or fatty acids, but not from inexpensive carbon sources such as sugars. In previous studies, we demonstrated that engineered strains of a hydrogen-oxidizing bacterium, Cupriavidus necator, synthesized PHBHHx with a high cellular content not only from sugars but also from CO2 as the sole carbon source in the flask culture. In this study, the highly efficient production of PHBHHx from CO2 was investigated via pH-stat jar cultivation of recombinant C. necator strains while feeding the substrate gas mixture (H2/O2/CO2 = 80:10:10 v/v%) to a complete mineral medium in a recycled-gas, closed-circuit culture system. As a result, the dry cell mass and PHBHHx concentration with the strain MF01/pBPP-ccrMeJAc-emd reached up to 59.62 ± 3.18 g·L-1 and 49.31 ± 3.14 g·L-1, respectively, after 216 h of jar cultivation with limited addition of ammonia and phosphate solutions. The 3HHx composition was close to 10 mol%, which is suitable for practical applications. It is expected that the autotrophic cultivation of the recombinant C. necator can be feasible for the mass production of PHBHHx from CO2.
Collapse
Affiliation(s)
- Kenji Tanaka
- Faculty of Humanity-Oriented Science and Engineering, Kindai University, 11-6 Kayanomori, Iizuka-shi 820-8555, Japan
| | - Izumi Orita
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan; (I.O.); (T.F.)
| | - Toshiaki Fukui
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan; (I.O.); (T.F.)
| |
Collapse
|
15
|
Trakunjae C, Boondaeng A, Apiwatanapiwat W, Janchai P, Neoh SZ, Sudesh K, Vaithanomsat P. Statistical optimization of P(3HB-co-3HHx) copolymers production by Cupriavidus necator PHB -4/pBBR_CnPro-phaC Rp and its properties characterization. Sci Rep 2023; 13:9005. [PMID: 37268758 DOI: 10.1038/s41598-023-36180-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/29/2023] [Indexed: 06/04/2023] Open
Abstract
Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx)] is a bacterial copolymer in the polyhydroxyalkanoates (PHAs) family, a next-generation bioplastic. Our research team recently engineered a newly P(3HB-co-3HHx)-producing bacterial strain, Cupriavidus necator PHB-4/pBBR_CnPro-phaCRp. This strain can produce P(3HB-co-2 mol% 3HHx) using crude palm kernel oil (CPKO) as a sole carbon substrate. However, the improvement of P(3HB-co-3HHx) copolymer production by this strain has not been studied so far. Thus, this study aims to enhance the production of P(3HB-co-3HHx) copolymers containing higher 3HHx monomer compositions using response surface methodology (RSM). Three significant factors for P(3HB-co-3HHx) copolymers production, i.e., CPKO concentration, sodium hexanoate concentration, and cultivation time, were studied in the flask scale. As a result, a maximum of 3.6 ± 0.4 g/L of P(3HB-co-3HHx) with 4 mol% 3HHx compositions was obtained using the RSM optimized condition. Likewise, the higher 3HHx monomer composition (5 mol%) was obtained when scaling up the fermentation in a 10L-stirrer bioreactor. Furthermore, the produced polymer's properties were similar to marketable P(3HB-co-3HHx), making this polymer suitable for a wide range of applications.
Collapse
Affiliation(s)
- Chanaporn Trakunjae
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, Bangkok, 10900, Thailand
| | - Antika Boondaeng
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, Bangkok, 10900, Thailand
| | - Waraporn Apiwatanapiwat
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, Bangkok, 10900, Thailand
| | - Phornphimon Janchai
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, Bangkok, 10900, Thailand
| | - Soon Zher Neoh
- Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia USM, 11800, Penang, Malaysia
| | - Kumar Sudesh
- Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia USM, 11800, Penang, Malaysia
| | - Pilanee Vaithanomsat
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
16
|
Santolin L, Thiele I, Neubauer P, Riedel SL. Tailoring the HHx monomer content of P(HB- co-HHx) by flexible substrate compositions: scale-up from deep-well-plates to laboratory bioreactor cultivations. Front Bioeng Biotechnol 2023; 11:1081072. [PMID: 37214303 PMCID: PMC10193151 DOI: 10.3389/fbioe.2023.1081072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
The enhanced material properties exhibited by the microbially synthetized polyhydroxyalkanoate (PHA) copolymer poly(hydroxybutyrate-co-hydroxyhexanoate) [P(HB-co-HHx)] evidence that this naturally biodegrading biopolymer could replace various functionalities of established petrochemical plastics. In fact, the thermal processability, toughness and degradation rate of P(HB-co-HHx) can be tuned by modulating its HHx molar content enabling to manufacture polymers à-la-carte. We have developed a simple batch strategy to precisely control the HHx content of P(HB-co-HHx) to obtain tailor-made PHAs with defined properties. By adjusting the ratio of fructose to canola oil as substrates for the cultivation of recombinant Ralstonia eutropha Re2058/pCB113, the molar fraction of HHx in P(HB-co-HHx) could be adjusted within a range of 2-17 mol% without compromising polymer yields. The chosen strategy proved to be robust from the mL-scale in deep-well-plates to 1-L batch bioreactor cultivations.
Collapse
Affiliation(s)
- Lara Santolin
- Technische Universität Berlin, Institute of Biotechnology, Chair of Bioprocess Engineering, Berlin, Germany
| | - Isabel Thiele
- Technische Universität Berlin, Institute of Biotechnology, Chair of Bioprocess Engineering, Berlin, Germany
| | - Peter Neubauer
- Technische Universität Berlin, Institute of Biotechnology, Chair of Bioprocess Engineering, Berlin, Germany
| | - Sebastian L. Riedel
- Technische Universität Berlin, Institute of Biotechnology, Chair of Bioprocess Engineering, Berlin, Germany
- Berliner Hochschule für Technik, Department VIII – Mechanical Engineering, Event Technology and Process Engineering, Laboratory of Environmental and Bioprocess Engineering, Berlin, Germany
| |
Collapse
|
17
|
Calvey CH, Sànchez I Nogué V, White AM, Kneucker CM, Woodworth SP, Alt HM, Eckert CA, Johnson CW. Improving growth of Cupriavidus necator H16 on formate using adaptive laboratory evolution-informed engineering. Metab Eng 2023; 75:78-90. [PMID: 36368470 DOI: 10.1016/j.ymben.2022.10.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 11/11/2022]
Abstract
Conversion of CO2 to value-added products presents an opportunity to reduce GHG emissions while generating revenue. Formate, which can be generated by the electrochemical reduction of CO2, has been proposed as a promising intermediate compound for microbial upgrading. Here we present progress towards improving the soil bacterium Cupriavidus necator H16, which is capable of growing on formate as its sole source of carbon and energy using the Calvin-Benson-Bassham (CBB) cycle, as a host for formate utilization. Using adaptive laboratory evolution, we generated several isolates that exhibited faster growth rates on formate. The genomes of these isolates were sequenced, and resulting mutations were systematically reintroduced by metabolic engineering, to identify those that improved growth. The metabolic impact of several mutations was investigated further using RNA-seq transcriptomics. We found that deletion of a transcriptional regulator implicated in quorum sensing, PhcA, reduced expression of several operons and led to improved growth on formate. Growth was also improved by deleting large genomic regions present on the extrachromosomal megaplasmid pHG1, particularly two hydrogenase operons and the megaplasmid CBB operon, one of two copies present in the genome. Based on these findings, we generated a rationally engineered ΔphcA and megaplasmid-deficient strain that exhibited a 24% faster maximum growth rate on formate. Moreover, this strain achieved a 7% growth rate improvement on succinate and a 19% increase on fructose, demonstrating the broad utility of microbial genome reduction. This strain has the potential to serve as an improved microbial chassis for biological conversion of formate to value-added products.
Collapse
Affiliation(s)
- Christopher H Calvey
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Violeta Sànchez I Nogué
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Aleena M White
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Colin M Kneucker
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Sean P Woodworth
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Hannah M Alt
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Carrie A Eckert
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Christopher W Johnson
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.
| |
Collapse
|
18
|
Novel Production Methods of Polyhydroxyalkanoates and Their Innovative Uses in Biomedicine and Industry. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238351. [PMID: 36500442 PMCID: PMC9740486 DOI: 10.3390/molecules27238351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
Polyhydroxyalkanoate (PHA), a biodegradable polymer obtained from microorganisms and plants, have been widely used in biomedical applications and devices, such as sutures, cardiac valves, bone scaffold, and drug delivery of compounds with pharmaceutical interests, as well as in food packaging. This review focuses on the use of polyhydroxyalkanoates beyond the most common uses, aiming to inform about the potential uses of the biopolymer as a biosensor, cosmetics, drug delivery, flame retardancy, and electrospinning, among other interesting uses. The novel applications are based on the production and composition of the polymer, which can be modified by genetic engineering, a semi-synthetic approach, by changing feeding carbon sources and/or supplement addition, among others. The future of PHA is promising, and despite its production costs being higher than petroleum-based plastics, tools given by synthetic biology, bioinformatics, and machine learning, among others, have allowed for great production yields, monomer and polymer functionalization, stability, and versatility, a key feature to increase the uses of this interesting family of polymers.
Collapse
|
19
|
Gutschmann B, Huang B, Santolin L, Thiele I, Neubauer P, Riedel SL. Native feedstock options for the polyhydroxyalkanoate industry in Europe: A review. Microbiol Res 2022; 264:127177. [DOI: 10.1016/j.micres.2022.127177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/05/2022] [Accepted: 08/24/2022] [Indexed: 11/26/2022]
|
20
|
Miyahara Y, Wang CT, Ishii-Hyakutake M, Tsuge T. Continuous Supply of Non-Combustible Gas Mixture for Safe Autotrophic Culture to Produce Polyhydroxyalkanoate by Hydrogen-Oxidizing Bacteria. Bioengineering (Basel) 2022; 9:bioengineering9100586. [PMID: 36290554 PMCID: PMC9598887 DOI: 10.3390/bioengineering9100586] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 11/26/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) are eco-friendly plastics that are thermoplastic and biodegradable in nature. The hydrogen-oxidizing bacterium Ralstonia eutropha can biosynthesize poly[(R)-3-hydroxybutyrate] [P(3HB)], the most common PHA, from carbon dioxide using hydrogen and oxygen as energy sources. In conventional autotrophic cultivation using R. eutropha, a gas mixture containing 75−80 vol% hydrogen is supplied; however, a gas mixture with such a high hydrogen content has a risk of explosion due to gas leakage. In this study, we aimed to develop an efficient cell culture system with a continuous supply of a non-combustible gas mixture (H2: O2: CO2: N2 = 3.8: 7.3: 13.0: 75.9) for safe autotrophic culture to produce P(3HB) by hydrogen-oxidizing bacteria, with a controlled hydrogen concentration under a lower explosive limit concentration. When the gas mixture was continuously supplied to the jar fermentor, the cell growth of R. eutropha H16 significantly improved compared to that in previous studies using flask cultures. Furthermore, an increased gas flow rate and agitation speed enhanced both cell growth and P(3HB) production. Nitrogen source deficiency promoted P(3HB) production, achieving up to 2.94 g/L P(3HB) and 89 wt% P(3HB) content in the cells after 144 h cultivation. R. eutropha NCIMB 11599, recombinant R. eutropha PHB-4, and Azohydromonas lata grew in a low-hydrogen-content gas mixture. R. eutropha H16 and recombinant R. eutropha PHB-4 expressing PHA synthase from Bacillus cereus YB-4 synthesized P(3HB) with a high weight-average molecular weight of 13.5−16.9 × 105. Thus, this autotrophic culture system is highly beneficial for PHA production from carbon dioxide using hydrogen-oxidizing bacteria as the risk of explosion is eliminated.
Collapse
Affiliation(s)
- Yuki Miyahara
- Correspondence: (Y.M.); (T.T.); Tel.: +81-45-924-5420 (T.T.)
| | | | | | - Takeharu Tsuge
- Correspondence: (Y.M.); (T.T.); Tel.: +81-45-924-5420 (T.T.)
| |
Collapse
|
21
|
Biosynthesis of P(3HB-co-3HHx) Copolymers by a Newly Engineered Strain of Cupriavidus necator PHB−4/pBBR_CnPro-phaCRp for Skin Tissue Engineering Application. Polymers (Basel) 2022; 14:polym14194074. [PMID: 36236022 PMCID: PMC9570888 DOI: 10.3390/polym14194074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/14/2022] [Accepted: 09/18/2022] [Indexed: 11/17/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) are biodegradable polymers synthesized by certain bacteria and archaea with functions comparable to conventional plastics. Previously, our research group reported a newly PHA-producing bacterial strain, Rhodococcus pyridinivorans BSRT1-1, from the soil in Thailand. However, this strain’s PHA synthase (phaCRp) gene has not yet been characterized. Thus, this study aims to synthesize PHA using a newly engineered bacterial strain, Cupriavidus necator PHB−4/pBBR_CnPro-phaCRp, which harbors the phaCRp from strain BSRT1-1, and characterize the properties of PHA for skin tissue engineering application. To the best of our knowledge, this is the first study on the characterization of the PhaC from R. pyridinivorans species. The results demonstrated that the expression of the phaCRp in C. necator PHB−4 had developed in PHA production up to 3.1 ± 0.3 g/L when using 10 g/L of crude palm kernel oil (CPKO) as a sole carbon source. Interestingly, the engineered strain produced a 3-hydroxybutyrate (3HB) with 2 mol% of 3-hydroxyhexanoate (3HHx) monomer without adding precursor substrates. In addition, the 70 L stirrer bioreactor improved P(3HB-co-2 mol% 3HHx) yield 1.4-fold over the flask scale without altering monomer composition. Furthermore, the characterization of copolymer properties showed that this copolymer is promising for skin tissue engineering applications.
Collapse
|
22
|
Gao Q, Yang H, Wang C, Xie XY, Liu KX, Lin Y, Han SY, Zhu M, Neureiter M, Lin Y, Ye JW. Advances and trends in microbial production of polyhydroxyalkanoates and their building blocks. Front Bioeng Biotechnol 2022; 10:966598. [PMID: 35928942 PMCID: PMC9343942 DOI: 10.3389/fbioe.2022.966598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
With the rapid development of synthetic biology, a variety of biopolymers can be obtained by recombinant microorganisms. Polyhydroxyalkanoates (PHA) is one of the most popular one with promising material properties, such as biodegradability and biocompatibility against the petrol-based plastics. This study reviews the recent studies focusing on the microbial synthesis of PHA, including chassis engineering, pathways engineering for various substrates utilization and PHA monomer synthesis, and PHA synthase modification. In particular, advances in metabolic engineering of dominant workhorses, for example Halomonas, Ralstonia eutropha, Escherichia coli and Pseudomonas, with outstanding PHA accumulation capability, were summarized and discussed, providing a full landscape of diverse PHA biosynthesis. Meanwhile, we also introduced the recent efforts focusing on structural analysis and mutagenesis of PHA synthase, which significantly determines the polymerization activity of varied monomer structures and PHA molecular weight. Besides, perspectives and solutions were thus proposed for achieving scale-up PHA of low cost with customized material property in the coming future.
Collapse
Affiliation(s)
- Qiang Gao
- Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, QH, China
| | - Hao Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Chi Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Xin-Ying Xie
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Kai-Xuan Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Ying Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shuang-Yan Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Mingjun Zhu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Markus Neureiter
- Institute for Environmental Biotechnology, Department of Agrobiotechnology, University of Natural Resources and Life Sciences, Tulln, Austria
- *Correspondence: Markus Neureiter, ; Yina Lin, ; Jian-Wen Ye,
| | - Yina Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Markus Neureiter, ; Yina Lin, ; Jian-Wen Ye,
| | - Jian-Wen Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Markus Neureiter, ; Yina Lin, ; Jian-Wen Ye,
| |
Collapse
|
23
|
Koller M. Advances in Polyhydroxyalkanoate (PHA) Production, Volume 3. Bioengineering (Basel) 2022; 9:bioengineering9070328. [PMID: 35877379 PMCID: PMC9312071 DOI: 10.3390/bioengineering9070328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 07/17/2022] [Indexed: 01/19/2023] Open
Abstract
Steadily increasing R&D activities in the field of microbial polyhydroxyalkanoate (PHA) biopolyesters are committed to growing global threats from climate change, aggravating plastic pollution, and the shortage of fossil resources. These prevailing issues paved the way to launch the third Special Issue of Bioengineering dedicated to future-oriented biomaterials, characterized by their versatile plastic-like properties. Fifteen individual contributions to the Special Issue, written by renowned groups of researchers from all over the world, perfectly mirror the current research directions in the PHA sector: inexpensive feedstock like carbon-rich waste from agriculture, mitigation of CO2 for PHA biosynthesis by cyanobacteria or wild type and engineered “knallgas” bacteria, powerful extremophilic PHA production strains, novel tools for rapid in situ determination of PHA in photobioreactors, modelling of the dynamics of PHA production by mixed microbial cultures from inexpensive raw materials, enhanced bioreactor design for high-throughput PHA production by sophisticated cell retention systems, sustainable and efficient PHA recovery from biomass assisted by supercritical water, enhanced processing of PHA by application of novel antioxidant additives, and the development of compatible biopolymer blends. Moreover, elastomeric medium chain length PHA (mcl-PHA) are covered in-depth, inter alia, by introduction of a novel class of bioactive mcl-PHA-based networks, in addition to the first presentation of the new rubber-like polythioester poly(3-mercapto-2-methylpropionate). Finally, the present Special Issue is concluded by a critical essay on past, ongoing, and announced global endeavors for PHA commercialization.
Collapse
Affiliation(s)
- Martin Koller
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28/IV, 8010 Graz, Austria; ; Tel.: +43-316-380-5463
- ARENA—Arbeitsgemeinschaft für Ressourcenschonende und Nachhaltige Technologien, Inffeldgasse 21b, 8010 Graz, Austria
| |
Collapse
|
24
|
Review of the Developments of Bacterial Medium-Chain-Length Polyhydroxyalkanoates (mcl-PHAs). Bioengineering (Basel) 2022; 9:bioengineering9050225. [PMID: 35621503 PMCID: PMC9137849 DOI: 10.3390/bioengineering9050225] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 12/30/2022] Open
Abstract
Synthetic plastics derived from fossil fuels—such as polyethylene, polypropylene, polyvinyl chloride, and polystyrene—are non-degradable. A large amount of plastic waste enters landfills and pollutes the environment. Hence, there is an urgent need to produce biodegradable plastics such as polyhydroxyalkanoates (PHAs). PHAs have garnered increasing interest as replaceable materials to conventional plastics due to their broad applicability in various purposes such as food packaging, agriculture, tissue-engineering scaffolds, and drug delivery. Based on the chain length of 3-hydroxyalkanoate repeat units, there are three types PHAs, i.e., short-chain-length (scl-PHAs, 4 to 5 carbon atoms), medium-chain-length (mcl-PHAs, 6 to 14 carbon atoms), and long-chain-length (lcl-PHAs, more than 14 carbon atoms). Previous reviews discussed the recent developments in scl-PHAs, but there are limited reviews specifically focused on the developments of mcl-PHAs. Hence, this review focused on the mcl-PHA production, using various carbon (organic/inorganic) sources and at different operation modes (continuous, batch, fed-batch, and high-cell density). This review also focused on recent developments on extraction methods of mcl-PHAs (solvent, non-solvent, enzymatic, ultrasound); physical/thermal properties (Mw, Mn, PDI, Tm, Tg, and crystallinity); applications in various fields; and their production at pilot and industrial scales in Asia, Europe, North America, and South America.
Collapse
|
25
|
Lambauer V, Kratzer R. Lab-Scale Cultivation of Cupriavidus necator on Explosive Gas Mixtures: Carbon Dioxide Fixation into Polyhydroxybutyrate. Bioengineering (Basel) 2022; 9:204. [PMID: 35621482 PMCID: PMC9138072 DOI: 10.3390/bioengineering9050204] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
Aerobic, hydrogen oxidizing bacteria are capable of efficient, non-phototrophic CO2 assimilation, using H2 as a reducing agent. The presence of explosive gas mixtures requires strict safety measures for bioreactor and process design. Here, we report a simplified, reproducible, and safe cultivation method to produce Cupriavidus necator H16 on a gram scale. Conditions for long-term strain maintenance and mineral media composition were optimized. Cultivations on the gaseous substrates H2, O2, and CO2 were accomplished in an explosion-proof bioreactor situated in a strong, grounded fume hood. Cells grew under O2 control and H2 and CO2 excess. The starting gas mixture was H2:CO2:O2 in a ratio of 85:10:2 (partial pressure of O2 0.02 atm). Dissolved oxygen was measured online and was kept below 1.6 mg/L by a stepwise increase of the O2 supply. Use of gas compositions within the explosion limits of oxyhydrogen facilitated production of 13.1 ± 0.4 g/L total biomass (gram cell dry mass) with a content of 79 ± 2% poly-(R)-3-hydroxybutyrate in a simple cultivation set-up with dissolved oxygen as the single controlled parameter. Approximately 98% of the obtained PHB was formed from CO2.
Collapse
Affiliation(s)
- Vera Lambauer
- Austrian Centre of Industrial Biotechnology (ACIB), Krenngasse 37, A-8010 Graz, Austria;
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12/II, A-8010 Graz, Austria
| | - Regina Kratzer
- Austrian Centre of Industrial Biotechnology (ACIB), Krenngasse 37, A-8010 Graz, Austria;
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12/II, A-8010 Graz, Austria
| |
Collapse
|
26
|
Yan X, Liu X, Yu LP, Wu F, Jiang XR, Chen GQ. Biosynthesis of diverse α,ω-diol-derived polyhydroxyalkanoates by engineered Halomonas bluephagenesis. Metab Eng 2022; 72:275-288. [DOI: 10.1016/j.ymben.2022.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 01/08/2023]
|
27
|
Zher Neoh S, Fey Chek M, Tiang Tan H, Linares-Pastén JA, Nandakumar A, Hakoshima T, Sudesh K. Polyhydroxyalkanoate synthase (PhaC): The key enzyme for biopolyester synthesis. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|