1
|
Zhao H, Li Z, Liu D, Zhang J, You Z, Shao Y, Li H, Yang J, Liu X, Wang M, Wu C, Chen J, Wang J, Kong G, Zhao L. PlexinA1 (PLXNA1) as a novel scaffold protein for the engineering of extracellular vesicles. J Extracell Vesicles 2024; 13:e70012. [PMID: 39508411 PMCID: PMC11541859 DOI: 10.1002/jev2.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/12/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024] Open
Abstract
Extracellular vesicles (EVs) had been described as a next-generation drug delivery system, due to the compelling evidence that they can facilitate the transfer of a variety of biomolecules between cells. The most frequently used strategy for loading protein cargoes is the endogenous engineering of EVs through genetic fusion of the protein of interest (POI) and scaffold proteins with high EV-sorting ability. However, the lack of scaffold proteins had become a major issue hindering the promotion of this technology. Herein, we proposed novel screening criteria that relax the inclusion requirement of candidate scaffold proteins and eventually identified a new scaffold protein, PLXNA1. The truncated PLXNA1 not only inherits the high EV-sorting ability of its full-length counterpart but also allows the fusion expression of POI in both outer surface and luminal areas, individually or simultaneously. In conclusion, our screening criteria expanded the range of potential scaffold proteins. The identified scaffold protein PLXNA1 showed great potential in developing therapeutic EVs.
Collapse
Affiliation(s)
| | - Zhi Li
- Echo Biotech Co., LtdBeijingChina
- The Center for Heart DevelopmentKey Lab of MOE for Development Biology and Protein ChemistryCollege of Life SciencesHunan Normal UniversityChangshaHunanChina
| | - Da Liu
- Echo Biotech Co., LtdBeijingChina
| | | | | | - Yuzhang Shao
- Department of PathologyHarbin Medical University Cancer HospitalHarbinHeilongjiangChina
| | | | - Jun Yang
- Echo Biotech Co., LtdBeijingChina
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Toh SY, Leong HS, Chong FT, Rodrigues-Junior DM, Ren MJ, Kwang XL, Lau DPX, Lee PH, Vettore AL, Teh BT, Tan DSW, Iyer NG. Therapeutic application of extracellular vesicular EGFR isoform D as a co-drug to target squamous cell cancers with tyrosine kinase inhibitors. Dev Cell 2024; 59:2189-2202.e8. [PMID: 39089249 DOI: 10.1016/j.devcel.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/31/2024] [Accepted: 07/09/2024] [Indexed: 08/03/2024]
Abstract
Targeting wild-type epidermal growth factor receptor (EGFR) using tyrosine kinase inhibitors (TKIs) never achieved its purported success in cancers such as head and neck squamous cell carcinoma, which are largely EGFR-dependent. We had previously shown that exceptional responders to TKIs have a genetic aberration that results in overexpression of an EGFR splice variant, isoform D (IsoD). IsoD lacks an integral transmembrane and kinase domain and is secreted in extracellular vesicles (EVs) in TKI-sensitive patient-derived cultures. Remarkably, the exquisite sensitivity to TKIs could be transferred to TKI-resistant tumor cells, and IsoD protein in the EV is necessary and sufficient to transfer the phenotype in vitro and in vivo across multiple models and drugs. This drug response requires an intact endocytic mechanism, binding to full-length EGFR, and signaling through Src-phosphorylation within the endosomal compartment. We propose a therapeutic strategy using EVs containing EGFR IsoD as a co-drug to expand the use of TKI therapy to EGFR-driven cancers.
Collapse
Affiliation(s)
- Shen Yon Toh
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, Singapore, Singapore; Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Hui Sun Leong
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, Singapore, Singapore; Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Fui Teen Chong
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, Singapore, Singapore; Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Dorival Mendes Rodrigues-Junior
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, Singapore, Singapore; Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Meng Jie Ren
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, Singapore, Singapore; Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Xue Lin Kwang
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, Singapore, Singapore; Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Dawn P X Lau
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, Singapore, Singapore; Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Po-Hsien Lee
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore, Singapore
| | - Andre Luiz Vettore
- Department of Biological Sciences, Universidade Federal de São Paulo, Diadema, Brazil
| | - Bin Tean Teh
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore, Singapore
| | - Daniel S W Tan
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, Singapore, Singapore; Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - N Gopalakrishna Iyer
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, Singapore, Singapore; Academic Clinical Program in Oncology, Duke-NUS Medical School, Singapore, Singapore; Department of Head and Neck Surgery, National Cancer Centre Singapore, Singapore, Singapore.
| |
Collapse
|
3
|
Küstermann C, Narbute K, Movčana V, Parfejevs V, Rūmnieks F, Kauķis P, Priedols M, Mikilps-Mikgelbs R, Mihailova M, Andersone S, Dzalbs A, Bajo-Santos C, Krams A, Abols A. iPSC-derived lung and lung cancer organoid model to evaluate cisplatin encapsulated autologous iPSC-derived mesenchymal stromal cell-isolated extracellular vesicles. Stem Cell Res Ther 2024; 15:246. [PMID: 39113093 PMCID: PMC11304910 DOI: 10.1186/s13287-024-03862-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/27/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Lung cancer remains a leading cause of cancer-related mortality globally. Although recent therapeutic advancements have provided targeted treatment approaches, the development of resistance and systemic toxicity remain primary concerns. Extracellular vesicles (EVs), especially those derived from mesenchymal stromal cells (MSC), have gained attention as promising drug delivery systems, offering biocompatibility and minimal immune responses. Recognizing the limitations of conventional 2D cell culture systems in mimicking the tumor microenvironment, this study aims to describe a proof-of-principle approach for using patient-specific organoid models for both lung cancer and normal lung tissue and the feasibility of employing autologous EVs derived from induced pluripotent stem cell (iPSC)-MSC in personalized medicine approaches. METHODS First, we reprogrammed healthy fibroblasts into iPSC. Next, we differentiated patient-derived iPSC into branching lung organoids (BLO) and generated patient-matched lung cancer organoids (LCO) from patient-derived tumor tissue. We show a streamlined process of MSC differentiation from iPSC and EV isolation from iPSC-MSC, encapsulated with 0.07 µg/mL of cytotoxic agent cisplatin and applied to both organoid models. Cytotoxicity of cisplatin and cisplatin-loaded EVs was recorded with LDH and CCK8 tests. RESULTS Fibroblast-derived iPSC showed a normal karyotype, pluripotency staining, and trilineage differentiation. iPSC-derived BLO showed expression of lung markers, like TMPRSS2 and MUC5A while patient-matched LCO showed expression of Napsin and CK5. Next, we compared the effects of iPSC-MSC derived EVs loaded with cisplatin against empty EVs and cisplatin alone in lung cancer organoid and healthy lung organoid models. As expected, we found a cytotoxic effect when LCO were treated with 20 µg/mL cisplatin. Treatment of LCO and BLO with empty EVs resulted in a cytotoxic effect after 24 h. However, EVs loaded with 0.07 µg/mL cisplatin failed to induce any cytotoxic effect in both organoid models. CONCLUSION We report on a proof-of-principle pipeline towards using autologous or allogeneic iPSC-MSC EVs as drug delivery tests for lung cancer in future. However, due to the time and labor-intensive processes, we conclude that this pipeline might not be feasible for personalized approaches at the moment.
Collapse
Affiliation(s)
- Caroline Küstermann
- Latvian Biomedical Research and Study Center, Rātsupītes Iela 1, Riga, 1067, Latvia.
| | - Karīna Narbute
- Latvian Biomedical Research and Study Center, Rātsupītes Iela 1, Riga, 1067, Latvia
| | - Valērija Movčana
- Latvian Biomedical Research and Study Center, Rātsupītes Iela 1, Riga, 1067, Latvia
| | - Vadims Parfejevs
- Faculty of Medicine, University of Latvia, Jelgavas Iela 3, Riga, Latvia
| | - Fēlikss Rūmnieks
- Latvian Biomedical Research and Study Center, Rātsupītes Iela 1, Riga, 1067, Latvia
| | - Pauls Kauķis
- Latvian Biomedical Research and Study Center, Rātsupītes Iela 1, Riga, 1067, Latvia
| | - Miks Priedols
- Latvian Biomedical Research and Study Center, Rātsupītes Iela 1, Riga, 1067, Latvia
| | - Rihards Mikilps-Mikgelbs
- Riga East Clinical University Hospital Center of Tuberculosis and Lung Diseases, Upeslejas, Ropažu Novads, Latvia
| | | | | | - Aigars Dzalbs
- IVF Riga Stem Cell Center, Zaļā Iela 1, Rīga, Latvia
| | - Cristina Bajo-Santos
- Latvian Biomedical Research and Study Center, Rātsupītes Iela 1, Riga, 1067, Latvia
| | - Alvils Krams
- Riga East Clinical University Hospital Center of Tuberculosis and Lung Diseases, Upeslejas, Ropažu Novads, Latvia
| | - Arturs Abols
- Latvian Biomedical Research and Study Center, Rātsupītes Iela 1, Riga, 1067, Latvia
| |
Collapse
|
4
|
Mohammadi AH, Bagheri F, Baghaei K. Chondroitin sulfate-tocopherol succinate modified exosomes for targeted drug delivery to CD44-positive cancer cells. Int J Biol Macromol 2024:133625. [PMID: 39084997 DOI: 10.1016/j.ijbiomac.2024.133625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024]
Abstract
Exosomes (Exos), natural nanovesicles released by various cell types, show potential as an effective drug delivery platform due to their intrinsic role as transporters of biomolecules between different cells. However, Exos functionalization with targeting ligands is a critical step to enhance their targeting capability, which could be challenging. In this study, Exos were modified to specifically bind to CD44-positive cells by anchoring chondroitin sulfate (CS) to their surface. Exo modification was facilitated with CS conjugation with alpha-tocopherol succinate (TOS) as an anchorage. The modified Exos were utilized for delivering curcumin (Cur) to pancreatic cancer (PC) cells. In vitro Cur release studies revealed that Exos play a crucial role in maintaining Cur within themselves, demonstrating their potential as effective carriers for drug delivery to targeted locations. Notably, Cur loaded into the modified Exos exhibited enhanced cytotoxicity compared to unmodified Exo-Cur. Meanwhile, Exo-Cur-TOS-CS induced apoptosis more effectively in AsPC-1 cells than unmodified Exos (70.2 % versus 56.9 %). It is worth mentioning that with CD44-mediated cancer-specific targeting, Exo-CS enabled increased intracellular accumulation in AsPC-1 cells, showing promise as a targeted platform for cancer therapy. These results confirm that Exo modification has a positive impact on enhancing the therapeutic efficacy and cytotoxicity of drugs.
Collapse
Affiliation(s)
- Amir Hossein Mohammadi
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Bagheri
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, Australia.
| |
Collapse
|
5
|
Eweje F, Walsh ML, Ahmad K, Ibrahim V, Alrefai A, Chen J, Chaikof EL. Protein-based nanoparticles for therapeutic nucleic acid delivery. Biomaterials 2024; 305:122464. [PMID: 38181574 PMCID: PMC10872380 DOI: 10.1016/j.biomaterials.2023.122464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/25/2023] [Accepted: 12/31/2023] [Indexed: 01/07/2024]
Abstract
To realize the full potential of emerging nucleic acid therapies, there is a need for effective delivery agents to transport cargo to cells of interest. Protein materials exhibit several unique properties, including biodegradability, biocompatibility, ease of functionalization via recombinant and chemical modifications, among other features, which establish a promising basis for therapeutic nucleic acid delivery systems. In this review, we highlight progress made in the use of non-viral protein-based nanoparticles for nucleic acid delivery in vitro and in vivo, while elaborating on key physicochemical properties that have enabled the use of these materials for nanoparticle formulation and drug delivery. To conclude, we comment on the prospects and unresolved challenges associated with the translation of protein-based nucleic acid delivery systems for therapeutic applications.
Collapse
Affiliation(s)
- Feyisayo Eweje
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Harvard and MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Harvard/MIT MD-PhD Program, Boston, MA, USA, 02115; Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Michelle L Walsh
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Harvard and MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Harvard/MIT MD-PhD Program, Boston, MA, USA, 02115
| | - Kiran Ahmad
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Vanessa Ibrahim
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Assma Alrefai
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Jiaxuan Chen
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| | - Elliot L Chaikof
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
6
|
Simon L, Lapinte V, Morille M. Exploring the role of polymers to overcome ongoing challenges in the field of extracellular vesicles. J Extracell Vesicles 2023; 12:e12386. [PMID: 38050832 PMCID: PMC10696644 DOI: 10.1002/jev2.12386] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023] Open
Abstract
Extracellular vesicles (EVs) are naturally occurring nanoparticles released from all eucaryotic and procaryotic cells. While their role was formerly largely underestimated, EVs are now clearly established as key mediators of intercellular communication. Therefore, these vesicles constitute an attractive topic of study for both basic and applied research with great potential, for example, as a new class of biomarkers, as cell-free therapeutics or as drug delivery systems. However, the complexity and biological origin of EVs sometimes complicate their identification and therapeutic use. Thus, this rapidly expanding research field requires new methods and tools for the production, enrichment, detection, and therapeutic application of EVs. In this review, we have sought to explain how polymer materials actively contributed to overcome some of the limitations associated to EVs. Indeed, thanks to their infinite diversity of composition and properties, polymers can act through a variety of strategies and at different stages of EVs development. Overall, we would like to emphasize the importance of multidisciplinary research involving polymers to address persistent limitations in the field of EVs.
Collapse
Affiliation(s)
| | | | - Marie Morille
- ICGM, Univ Montpellier, CNRS, ENSCMMontpellierFrance
- Institut universitaire de France (IUF)ParisFrance
| |
Collapse
|
7
|
Kawai-Harada Y, El Itawi H, Komuro H, Harada M. Evaluation of EV Storage Buffer for Efficient Preservation of Engineered Extracellular Vesicles. Int J Mol Sci 2023; 24:12841. [PMID: 37629020 PMCID: PMC10454675 DOI: 10.3390/ijms241612841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Extracellular vesicles (EVs), detectable in all bodily fluids, mediate intercellular communication by transporting molecules between cells. The capacity of EVs to transport molecules between distant organs has drawn interest for clinical applications in diagnostics and therapeutics. Although EVs hold potential for nucleic-acid-based and other molecular therapeutics, the lack of standardized technologies, including isolation, characterization, and storage, leaves many challenges for clinical applications, potentially resulting in misinterpretation of crucial findings. Previously, several groups demonstrated the problems of commonly used storage methods that distort EV integrity. This work aims to evaluate the process to optimize the storage conditions of EVs and then characterize them according to the experimental conditions and the models used previously. Our study reports a highly efficient EV storage condition, focusing on EV capacity to protect their molecular cargo from biological, chemical, and mechanical damage. Compared with commonly used EV storage conditions, our EV storage buffer leads to less size and particle number variation at both 4 °C and -80 °C, enhancing the ability to protect EVs while maintaining targeting functionality.
Collapse
Affiliation(s)
- Yuki Kawai-Harada
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (Y.K.-H.)
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Hanine El Itawi
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (Y.K.-H.)
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Hiroaki Komuro
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (Y.K.-H.)
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Masako Harada
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (Y.K.-H.)
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
8
|
Mohammadi AH, Ghazvinian Z, Bagheri F, Harada M, Baghaei K. Modification of Extracellular Vesicle Surfaces: An Approach for Targeted Drug Delivery. BioDrugs 2023; 37:353-374. [PMID: 37093521 DOI: 10.1007/s40259-023-00595-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2023] [Indexed: 04/25/2023]
Abstract
Extracellular vesicles (EVs) are a promising drug delivery vehicle candidate because of their natural origin and intrinsic function of transporting various molecules between different cells. Several advantages of the EV delivery platform include enhanced permeability and retention effect, efficient interaction with recipient cells, the ability to traverse biological barriers, high biocompatibility, high biodegradability, and low immunogenicity. Furthermore, EV membranes share approximately similar structures and contents to the cell membrane, which allows surface modification of EVs, an approach to enable specific targeting. Enhanced drug accumulation in intended sites and reduced adverse effects of chemotherapeutic drugs are the most prominent effects of targeted drug delivery. In order to improve the targeting ability of EVs, chemical modification and genetic engineering are the most adopted methods to date. Diverse chemical methods are employed to decorate EV surfaces with various ligands such as aptamers, carbohydrates, peptides, vitamins, and antibodies. In this review, we introduce the biogenesis, content, and cellular pathway of natural EVs and further discuss the genetic modification of EVs, and its challenges. Furthermore, we provide a comprehensive deliberation on the various chemical modification methods for improved drug delivery, which are directly related to increasing the therapeutic index.
Collapse
Affiliation(s)
- Amir Hossein Mohammadi
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Zeinab Ghazvinian
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Bagheri
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
| | - Masako Harada
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, USA.
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA.
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Zhang Y, Sultonova RD, You SH, Choi Y, Kim SY, Lee WS, Seong J, Min JJ, Hong Y. The anticancer effect of PASylated calreticulin-targeting L-ASNase in solid tumor bearing mice with immunogenic cell death-inducing chemotherapy. Biochem Pharmacol 2023; 210:115473. [PMID: 36863616 DOI: 10.1016/j.bcp.2023.115473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/03/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023]
Abstract
L-Asparaginase (L-ASNase), a bacterial enzyme that degrades asparagine, has been commonly used in combination with several chemical drugs to treat malignant hematopoietic cancers such as acute lymphoblastic leukemia (ALL). In contrast, the enzyme was known to inhibit the growth of solid tumor cells in vitro, but not to be effective in vivo. We previously reported that two novel monobodies (CRT3 and CRT4) bound specifically with calreticulin (CRT) exposed on tumor cells and tissues during immunogenic cell death (ICD). Here, we engineered L-ASNases conjugated with monobodies at the N-termini and PAS200 tags at the C-termini (CRT3LP and CRT4LP). These proteins were expected to possess four monobody and PAS200 tag moieties, which did not disrupt the L-ASNase conformation. These proteins were expressed 3.8-fold more highly in E. coli than those without PASylation. The purified proteins were highly soluble, with much greater apparent molecular weights than expected ones. Their affinity (Kd) against CRT was about 2 nM, 4-fold higher than that of monobodies. Their enzyme activity (∼6.5 IU/nmol) was similar to that of L-ASNase (∼7.2 IU/nmol), and their thermal stability was significantly increased at 55 °C. Their half-life times were > 9 h in mouse sera, about 5-fold longer than that of L-ASNase (∼1.8 h). Moreover, CRT3LP and CRT4LP bound specifically with CRT exposed on tumor cells in vitro, and additively suppressed the tumor growth in CT-26 and MC-38 tumor-bearing mice treated with ICD-inducing drugs (doxorubicin and mitoxantrone) but not with a non-ICD-inducing drug (gemcitabine). All data indicated that PASylated CRT-targeted L-ASNases enhanced the anticancer efficacy of ICD-inducing chemotherapy. Taken together, L-ASNase would be a potential anticancer drug for treating solid tumors.
Collapse
Affiliation(s)
- Ying Zhang
- Institute for Molecular Imaging and Theranostics, Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Rukhsora D Sultonova
- Institute for Molecular Imaging and Theranostics, Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Sung-Hwan You
- Institute for Molecular Imaging and Theranostics, Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Yoonjoo Choi
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun, Republic of Korea
| | - So-Young Kim
- Institute for Molecular Imaging and Theranostics, Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Wan-Sik Lee
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun, Republic of Korea
| | - Jihyoun Seong
- Institute for Molecular Imaging and Theranostics, Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea; Department of Microbiology, Chonnam National University Medical School, Hwasun, Republic of Korea
| | - Jung-Joon Min
- Institute for Molecular Imaging and Theranostics, Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea.
| | - Yeongjin Hong
- Institute for Molecular Imaging and Theranostics, Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea; Department of Microbiology, Chonnam National University Medical School, Hwasun, Republic of Korea.
| |
Collapse
|
10
|
Matsuzaka Y, Yashiro R. Extracellular Vesicle-Based SARS-CoV-2 Vaccine. Vaccines (Basel) 2023; 11:vaccines11030539. [PMID: 36992123 DOI: 10.3390/vaccines11030539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/06/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Messenger ribonucleic acid (RNA) vaccines are mainly used as SARS-CoV-2 vaccines. Despite several issues concerning storage, stability, effective period, and side effects, viral vector vaccines are widely used for the prevention and treatment of various diseases. Recently, viral vector-encapsulated extracellular vesicles (EVs) have been suggested as useful tools, owing to their safety and ability to escape from neutral antibodies. Herein, we summarize the possible cellular mechanisms underlying EV-based SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, The Institute of Medical Science, Center for Gene and Cell Therapy, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8551, Japan
| | - Ryu Yashiro
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8551, Japan
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo 181-8611, Japan
| |
Collapse
|
11
|
Komuro H, Aminova S, Lauro K, Harada M. Advances of engineered extracellular vesicles-based therapeutics strategy. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:655-681. [PMID: 36277506 PMCID: PMC9586594 DOI: 10.1080/14686996.2022.2133342] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 05/09/2023]
Abstract
Extracellular vesicles (EVs) are a heterogeneous population of lipid bilayer membrane-bound vesicles which encapsulate bioactive molecules, such as nucleic acids, proteins, and lipids. They mediate intercellular communication through transporting internally packaged molecules, making them attractive therapeutics carriers. Over the last decades, a significant amount of research has implied the potential of EVs servings as drug delivery vehicles for nuclear acids, proteins, and small molecular drugs. However, several challenges remain unresolved before the clinical application of EV-based therapeutics, including lack of specificity, stability, biodistribution, storage, large-scale manufacturing, and the comprehensive analysis of EV composition. Technical development is essential to overcome these issues and enhance the pre-clinical therapeutic effects. In this review, we summarize the current advancements in EV engineering which demonstrate their therapeutic potential.
Collapse
Affiliation(s)
- Hiroaki Komuro
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Shakhlo Aminova
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Katherine Lauro
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Masako Harada
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| |
Collapse
|