1
|
Wu Y, Song P, Wang M, Liu H, Jing Y, Su J. Extracellular derivatives for bone metabolism. J Adv Res 2024; 66:329-347. [PMID: 38218580 PMCID: PMC11674789 DOI: 10.1016/j.jare.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/13/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Bone metabolism can maintain the normal homeostasis and function of bone tissue. Once the bone metabolism balance is broken, it will cause osteoporosis, osteoarthritis, bone defects, bone tumors, or other bone diseases. However, such orthopedic diseases still have many limitations in clinical treatment, such as drug restrictions, drug tolerance, drug side effects, and implant rejection. AIM OF REVIEW In complex bone therapy and bone regeneration, extracellular derivatives have become a promising research focus to solve the problems of bone metabolic diseases. These derivatives, which include components such as extracellular matrix, growth factors, and extracellular vesicles, have significant therapeutic potential. It has the advantages of good biocompatibility, low immune response, and dynamic demand for bone tissue. The purpose of this review is to provide a comprehensive perspective on extracellular derivatives for bone metabolism and elucidate the intrinsic properties and versatility of extracellular derivatives. Further discussion of them as innovative advanced orthopedic materials for improving the effectiveness of bone therapy and regeneration processes. KEY SCIENTIFIC CONCEPTS OF REVIEW In this review, we first listed the types and functions of three extracellular derivatives. Then, we discussed the effects of extracellular derivatives of different cell sources on bone metabolism. Subsequently, we collected applications of extracellular derivatives in the treatment of bone metabolic diseases and summarized the advantages and challenges of extracellular derivatives in clinical applications. Finally, we prospected the extracellular derivatives in novel orthopedic materials and clinical applications. We hope that the comprehensive understanding of extracellular derivatives in bone metabolism will provide new solutions to bone diseases.
Collapse
Affiliation(s)
- Yan Wu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Peiran Song
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Miaomiao Wang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Department of Rehabilitation Medicine, Shanghai Zhongye Hospital, Shanghai 200941, China
| | - Han Liu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China.
| | - Yingying Jing
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China.
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China; Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
2
|
Santos da Silva T, da Silva-Júnior LN, Horvath-Pereira BDO, Valbão MCM, Garcia MHH, Lopes JB, Reis CHB, Barreto RDSN, Buchaim DV, Buchaim RL, Miglino MA. The Role of the Pancreatic Extracellular Matrix as a Tissue Engineering Support for the Bioartificial Pancreas. Biomimetics (Basel) 2024; 9:598. [PMID: 39451804 PMCID: PMC11505355 DOI: 10.3390/biomimetics9100598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/22/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic condition primarily managed with insulin replacement, leading to significant treatment costs. Complications include vasculopathy, cardiovascular diseases, nephropathy, neuropathy, and reticulopathy. Pancreatic islet transplantation is an option but its success does not depend solely on adequate vascularization. The main limitations to clinical islet transplantation are the scarcity of human pancreas, the need for immunosuppression, and the inadequacy of the islet isolation process. Despite extensive research, T1DM remains a major global health issue. In 2015, diabetes affected approximately 415 million people, with projected expenditures of USD 1.7 trillion by 2030. Pancreas transplantation faces challenges due to limited organ availability and complex vascularization. T1DM is caused by the autoimmune destruction of insulin-producing pancreatic cells. Advances in biomaterials, particularly the extracellular matrix (ECM), show promise in tissue reconstruction and transplantation, offering structural and regulatory functions critical for cell migration, differentiation, and adhesion. Tissue engineering aims to create bioartificial pancreases integrating insulin-producing cells and suitable frameworks. This involves decellularization and recellularization techniques to develop biological scaffolds. The challenges include replicating the pancreas's intricate architecture and maintaining cell viability and functionality. Emerging technologies, such as 3D printing and advanced biomaterials, have shown potential in constructing bioartificial organs. ECM components, including collagens and glycoproteins, play essential roles in cell adhesion, migration, and differentiation. Clinical applications focus on developing functional scaffolds for transplantation, with ongoing research addressing immunological responses and long-term efficacy. Pancreatic bioengineering represents a promising avenue for T1DM treatment, requiring further research to ensure successful implementation.
Collapse
Affiliation(s)
- Thamires Santos da Silva
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
| | - Leandro Norberto da Silva-Júnior
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
- Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil; (M.C.M.V.); (M.H.H.G.); (J.B.L.)
| | - Bianca de Oliveira Horvath-Pereira
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
| | - Maria Carolina Miglino Valbão
- Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil; (M.C.M.V.); (M.H.H.G.); (J.B.L.)
| | | | - Juliana Barbosa Lopes
- Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil; (M.C.M.V.); (M.H.H.G.); (J.B.L.)
| | - Carlos Henrique Bertoni Reis
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil;
- UNIMAR Beneficent Hospital (HBU), Medical School, University of Marilia (UNIMAR), Marilia 17525-160, Brazil
| | - Rodrigo da Silva Nunes Barreto
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal 14884-900, Brazil
| | - Daniela Vieira Buchaim
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil;
- Medical School, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
| | - Rogerio Leone Buchaim
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of Sao Paulo, Bauru 17012-901, Brazil
| | - Maria Angelica Miglino
- Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil; (M.C.M.V.); (M.H.H.G.); (J.B.L.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil;
- Postgraduate Program in Animal Health, Production and Environment, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
| |
Collapse
|
3
|
Yadav S, Rawal G. Advances in Understanding and Managing Floating Knee Injuries: A Comprehensive Review. Cureus 2024; 16:e57122. [PMID: 38681444 PMCID: PMC11055540 DOI: 10.7759/cureus.57122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2024] [Indexed: 05/01/2024] Open
Abstract
Fractures of the ipsilateral tibia and femur, frequently combined with soft tissue damage and dislocations, describe floating knee injuries, a complicated orthopedic condition. Epidemiological data suggest that floating knee injuries account for a small but significant proportion of traumatic orthopedic injuries, with a higher incidence observed in younger males engaged in high-risk activities. Anatomically, floating knee injuries involve fractures of the femur and tibia, ligamentous disruptions, and soft tissue damage, contributing to the complexity and severity of these injuries. An extensive analysis of floating knee injuries is given in this paper, including information about epidemiology, anatomy, pathophysiology, categorization, management approaches, complications, prognosis, and current and upcoming developments.
Collapse
Affiliation(s)
- Sankalp Yadav
- Medicine, Shri Madan Lal Khurana Chest Clinic, New Delhi, IND
| | - Gautam Rawal
- Respiratory Medical Critical Care, Max Super Speciality Hospital, New Delhi, IND
| |
Collapse
|
4
|
Bacevich BM, Smith RDJ, Reihl AM, Mazzocca AD, Hutchinson ID. Advances with Platelet-Rich Plasma for Bone Healing. Biologics 2024; 18:29-59. [PMID: 38299120 PMCID: PMC10827634 DOI: 10.2147/btt.s290341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
Despite significant advances in the understanding and delivery of osteosynthesis, fracture non-union remains a challenging clinical problem in orthopaedic surgery. To bridge the gap, basic science characterization of fracture healing provides a platform to identify and target biological strategies to enhance fracture healing. Of immense interest, Platelet-rich plasma (PRP) is a point of care orthobiologic that has been extensively studied in bone and soft tissue healing given its relative ease of translation from the benchtop to the clinic. The aim of this narrative review is to describe and relate pre-clinical in-vitro and in-vivo findings to clinical observations investigating the efficacy of PRP to enhance bone healing for primary fracture management and non-union treatment. A particular emphasis is placed on the heterogeneity of PRP preparation techniques, composition, activation strategies, and delivery. In the context of existing data, the routine use of PRP to enhance primary fracture healing and non-union management cannot be supported. However, it is acknowledged that extensive heterogeneity of PRP treatments in clinical studies adds obscurity; ultimately, refinement (and consensus) of PRP treatments for specific clinical indications, including repetition studies are warranted.
Collapse
Affiliation(s)
- Blake M Bacevich
- Division of Sports Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Massachusetts General Brigham, Boston, MA, USA
| | - Richard David James Smith
- Division of Sports Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Massachusetts General Brigham, Boston, MA, USA
| | - Alec M Reihl
- Division of Sports Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Massachusetts General Brigham, Boston, MA, USA
| | - Augustus D Mazzocca
- Division of Sports Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Massachusetts General Brigham, Boston, MA, USA
- Medical Director, Division of Sports Medicine, Department of Orthopaedic Surgery, Massachusetts General Brigham, Boston, MA, USA
| | - Ian D Hutchinson
- Division of Sports Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Massachusetts General Brigham, Boston, MA, USA
| |
Collapse
|
5
|
Alarçin E, Yaşayan G, Bal-Öztürk A, Cecen B. Hydrogel Biomaterial in Bone Tissue Engineering. BIOMATERIAL-BASED HYDROGELS 2024:387-427. [DOI: 10.1007/978-981-99-8826-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Lu R, Li Y, Xu A, King B, Ruan KH. Reprogramming Megakaryocytes for Controlled Release of Platelet-like Particles Carrying a Single-Chain Thromboxane A 2 Receptor-G-Protein Complex with Therapeutic Potential. Cells 2023; 12:2775. [PMID: 38132095 PMCID: PMC10741393 DOI: 10.3390/cells12242775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023] Open
Abstract
In this study, we reported that novel single-chain fusion proteins linking thromboxane A2 (TXA2) receptor (TP) to a selected G-protein α-subunit q (SC-TP-Gαq) or to α-subunit s (SC-TP-Gαs) could be stably expressed in megakaryocytes (MKs). We tested the MK-released platelet-linked particles (PLPs) to be used as a vehicle to deliver the overexpressed SC-TP-Gαq or the SC-TP-Gαs to regulate human platelet function. To understand how the single-chain TP-Gα fusion proteins could regulate opposite platelet activities by an identical ligand TXA2, we tested their dual functions-binding to ligands and directly linking to different signaling pathways within a single polypeptide chain-using a 3D structural model. The immature MKs were cultured and transfected with cDNAs constructed from structural models of the individual SC-TP-Gαq and SC-TP-Gαs, respectively. After transient expression was identified, the immature MKs stably expressing SC-TP-Gαq or SC-TP-Gαs (stable cell lines) were selected. The stable cell lines were induced into mature MKs which released PLPs. Western blot analysis confirmed that the released PLPs were carrying the recombinant SC-TP-Gαq or SC-TP-Gαs. Flow cytometry analysis showed that the PLPs carrying SC-TP-Gαq were able to perform the activity by promoting platelet aggregation. In contrast, PLPs carrying SC-TP-Gαs reversed Gq to Gs signaling to inhibit platelet aggregation. This is the first time demonstrating that SC-TP-Gαq and SC-TP-Gαs were successfully overexpressed in MK cells and released as PLPs with proper folding and programmed biological activities. This bio-engineering led to the formation of two sets of biologically active PLP forms mediating calcium and cAMP signaling, respectively. As a result, these PLPs are able to bind to identical endogenous TXA2 with opposite activities, inhibiting and promoting platelet aggregation as reprogrammed for therapeutic process. Results also demonstrated that the nucleus-free PLPs could be used to deliver recombinant membrane-bound GPCRs to regulate cellular activity in general.
Collapse
Affiliation(s)
| | | | | | | | - Ke-He Ruan
- The Center for Experimental Therapeutics and Pharmacoinformatics, Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (R.L.); (Y.L.); (A.X.); (B.K.)
| |
Collapse
|
7
|
Antonelli F. 3D Cell Models in Radiobiology: Improving the Predictive Value of In Vitro Research. Int J Mol Sci 2023; 24:10620. [PMID: 37445795 DOI: 10.3390/ijms241310620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Cancer is intrinsically complex, comprising both heterogeneous cellular composition and extracellular matrix. In vitro cancer research models have been widely used in the past to model and study cancer. Although two-dimensional (2D) cell culture models have traditionally been used for cancer research, they have many limitations, such as the disturbance of interactions between cellular and extracellular environments and changes in cell morphology, polarity, division mechanism, differentiation and cell motion. Moreover, 2D cell models are usually monotypic. This implies that 2D tumor models are ineffective at accurately recapitulating complex aspects of tumor cell growth, as well as their radiation responses. Over the past decade there has been significant uptake of three-dimensional (3D) in vitro models by cancer researchers, highlighting a complementary model for studies of radiation effects on tumors, especially in conjunction with chemotherapy. The introduction of 3D cell culture approaches aims to model in vivo tissue interactions with radiation by positioning itself halfway between 2D cell and animal models, and thus opening up new possibilities in the study of radiation response mechanisms of healthy and tumor tissues.
Collapse
Affiliation(s)
- Francesca Antonelli
- Laboratory of Biomedical Technologies, Division of Health Protection Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy
| |
Collapse
|
8
|
Chen X, Li H, Ma Y, Jiang Y. Calcium Phosphate-Based Nanomaterials: Preparation, Multifunction, and Application for Bone Tissue Engineering. Molecules 2023; 28:4790. [PMID: 37375345 DOI: 10.3390/molecules28124790] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Calcium phosphate is the main inorganic component of bone. Calcium phosphate-based biomaterials have demonstrated great potential in bone tissue engineering due to their superior biocompatibility, pH-responsive degradability, excellent osteoinductivity, and similar components to bone. Calcium phosphate nanomaterials have gained more and more attention for their enhanced bioactivity and better integration with host tissues. Additionally, they can also be easily functionalized with metal ions, bioactive molecules/proteins, as well as therapeutic drugs; thus, calcium phosphate-based biomaterials have been widely used in many other fields, such as drug delivery, cancer therapy, and as nanoprobes in bioimaging. Thus, the preparation methods of calcium phosphate nanomaterials were systematically reviewed, and the multifunction strategies of calcium phosphate-based biomaterials have also been comprehensively summarized. Finally, the applications and perspectives of functionalized calcium phosphate biomaterials in bone tissue engineering, including bone defect repair, bone regeneration, and drug delivery, were illustrated and discussed by presenting typical examples.
Collapse
Affiliation(s)
- Xin Chen
- Department of Orthopedics, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai 201800, China
| | - Huizhang Li
- Department of Orthopedics, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai 201800, China
| | - Yinhua Ma
- Department of Orthopedics, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai 201800, China
| | - Yingying Jiang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| |
Collapse
|
9
|
Takematsu E, Murphy M, Hou S, Steininger H, Alam A, Ambrosi TH, Chan CKF. Optimizing Delivery of Therapeutic Growth Factors for Bone and Cartilage Regeneration. Gels 2023; 9:gels9050377. [PMID: 37232969 DOI: 10.3390/gels9050377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Bone- and cartilage-related diseases, such as osteoporosis and osteoarthritis, affect millions of people worldwide, impairing their quality of life and increasing mortality. Osteoporosis significantly increases the bone fracture risk of the spine, hip, and wrist. For successful fracture treatment and to facilitate proper healing in the most complicated cases, one of the most promising methods is to deliver a therapeutic protein to accelerate bone regeneration. Similarly, in the setting of osteoarthritis, where degraded cartilage does not regenerate, therapeutic proteins hold great promise to promote new cartilage formation. For both osteoporosis and osteoarthritis treatments, targeted delivery of therapeutic growth factors, with the aid of hydrogels, to bone and cartilage is a key to advance the field of regenerative medicine. In this review article, we propose five important aspects of therapeutic growth factor delivery for bone and cartilage regeneration: (1) protection of protein growth factors from physical and enzymatic degradation, (2) targeted growth factor delivery, (3) controlling GF release kinetics, (4) long-term stability of regenerated tissues, and (5) osteoimmunomodulatory effects of therapeutic growth factors and carriers/scaffolds.
Collapse
Affiliation(s)
- Eri Takematsu
- Department of Surgery, Stanford Medicine, Stanford, CA 94305, USA
| | - Matthew Murphy
- Blond McIndoe Laboratories, School of Biological Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PR, UK
| | - Sophia Hou
- Department of Surgery, Stanford Medicine, Stanford, CA 94305, USA
| | - Holly Steininger
- School of Medicine, University of California, San Francisco, CA 94143, USA
| | - Alina Alam
- Department of Surgery, Stanford Medicine, Stanford, CA 94305, USA
| | - Thomas H Ambrosi
- Department of Orthopaedic Surgery, University of California, Davis, CA 95817, USA
| | - Charles K F Chan
- Department of Surgery, Stanford Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford Medicine, Stanford, CA 94305, USA
| |
Collapse
|