1
|
Bruno PS, Biggers P, Nuru N, Versaci N, Chirila MI, Darie CC, Neagu AN. Small Biological Fighters Against Cancer: Viruses, Bacteria, Archaea, Fungi, Protozoa, and Microalgae. Biomedicines 2025; 13:665. [PMID: 40149641 PMCID: PMC11940145 DOI: 10.3390/biomedicines13030665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025] Open
Abstract
Despite the progress made in oncological theranostics, cancer remains a global health problem and a leading cause of death worldwide. Multidrug and radiation therapy resistance is an important challenge in cancer treatment. To overcome this great concern in clinical practice, conventional therapies are more and more used in combination with modern approaches to improve the quality of patients' lives. In this review, we emphasize how small biological entities, such as viruses, bacteria, archaea, fungi, protozoans, and microalgae, as well as their related structural compounds and toxins/metabolites/bioactive molecules, can prevent and suppress cancer or regulate malignant initiation, progression, metastasis, and responses to different therapies. All these small biological fighters are free-living or parasitic in nature and, furthermore, viruses, bacteria, archaea, fungi, and protozoans are components of human and animal microbiomes. Recently, polymorphic microbiomes have been recognized as a new emerging hallmark of cancer. Fortunately, there is no limit to the development of novel approaches in cancer biomedicine. Thus, viral vector-based cancer therapies based on genetically engineered viruses, bacteriotherapy, mycotherapy based on anti-cancer fungal bioactive compounds, use of protozoan parasite-derived proteins, nanoarchaeosomes, and microalgae-based microrobots have been more and more used in oncology, promoting biomimetic approaches and biology-inspired strategies to maximize cancer diagnostic and therapy efficiency, leading to an improved patients' quality of life.
Collapse
Affiliation(s)
- Pathea Shawnae Bruno
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (P.B.); (N.N.); (N.V.)
| | - Peter Biggers
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (P.B.); (N.N.); (N.V.)
| | - Niyogushima Nuru
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (P.B.); (N.N.); (N.V.)
| | - Nicholas Versaci
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (P.B.); (N.N.); (N.V.)
| | - Miruna Ioana Chirila
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I Bvd. 20A, 700505 Iasi, Romania;
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No. 16, 700115 Iasi, Romania
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (P.B.); (N.N.); (N.V.)
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I Bvd. 20A, 700505 Iasi, Romania;
| |
Collapse
|
2
|
Qian W, Chen Y, Li C, Li X, Lv C, Jia Y, Hu S, Zhang M, Wang T, Yan W, Qi M. Neospora caninum Inhibits Lewis Cancer and B16f10 Melanoma Lung Metastasis Development by Activating the Immune Response in Murine Models. Acta Parasitol 2025; 70:52. [PMID: 39918646 DOI: 10.1007/s11686-025-00996-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/20/2025] [Indexed: 02/09/2025]
Abstract
Malignant tumors are prevalent with high mortality rates in humans, dogs, and cats. Some microorganisms have been shown to inhibit cancer progression. The objective of this study is to evaluate the inhibitory effects of Neospora caninum, a livestock parasite, on three different tumor models in C57BL/6 mice, including Lewis subcutaneous tumors, Lewis and B16F10 melanoma lung metastasis. The results showed that a sufficient amount of N. caninum tachyzoites can significantly inhibit the development of subcutaneous tumors and lung metastasis (P < 0.001), and induce more than 50% tumor cell death in Lewis subcutaneous tumors. N. caninum treatment can significantly increases the infiltration of macrophages, NK cells, and CD8+ T cells (P < 0.0001) in Lewis subcutaneous tumors detected by immunohistochemistry, and the percentage of these immunocytes in the spleen (P < 0.05) of mice bearing B16F10 melanoma metastasis detected by flow cytometry. And with these changes, the mRNA expression levels of IL-12, IFN-γ, IL-2, IL-10, TNF-α and PD-L1 in tumor microenvironment and IL-12, IFN-γ, IL-2 in spleen were also significantly increased (P < 0.05). Altogether, our results indicate that a sufficient amount N. caninum tachyzoites not only inhibits the growth of Lewis subcutaneous tumors, but inhibits the development of Lewis and B16F10 melanomas lung metastatic in mice by activating potent immune responses. N. caninum and its anti-tumor properties may be an effective anti-tumor tool.
Collapse
Affiliation(s)
- Weifeng Qian
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Yaqi Chen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China
| | - Chen Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xiaojin Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China
- China Agricultural University, Beijing, 100193, China
| | - Chaochao Lv
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yanyan Jia
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China
| | - Suhui Hu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China
| | - Min Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China
| | - Tianqi Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China
| | - Wenchao Yan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China
| | - Meng Qi
- College of Animal Science, Tarim University, Alar, Xinjiang, 843300, China.
| |
Collapse
|
3
|
Li G, Li Q, Tong Y, Zeng J, Dang T, Yang N, Zhou Y, Ma L, Ge Q, Zhao Z. The anticancer mechanisms of Toxoplasma gondii rhoptry protein 16 on lung adenocarcinoma cells. Cancer Biol Ther 2024; 25:2392902. [PMID: 39174877 PMCID: PMC11346528 DOI: 10.1080/15384047.2024.2392902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/29/2024] [Accepted: 08/11/2024] [Indexed: 08/24/2024] Open
Abstract
Lung adenocarcinoma is the most prevalent subtype of lung cancer, which is the leading cause of cancer-related mortality worldwide. Toxoplasma gondii (T.gondii) Rhoptry protein 16 (ROP16) has been shown to quickly enter the nucleus, and through activate host cell signaling pathways by phosphorylation STAT3 and may affect the survival of tumor cells. This study constructed recombinant lentiviral expression vector of T. gondii ROP16 I/II/III and stably transfected them into A549 cells, and the effects of ROP16 on cell proliferation, cell cycle, apoptosis, invasion, and migration of A549 cells were explored by utilizing CCK-8, flow cytometry, qPCR, Western blotting, TUNEL, Transwell assay, and cell scratch assay, and these effects were confirmed in the primary human lung adenocarcinoma cells from postoperative cancer tissues of patients. The type I and III ROP16 activate STAT3 and inhibited A549 cell proliferation, regulated the expression of p21, CDK6, CyclinD1, and induced cell cycle arrest at the G1 phase. ROP16 also regulated the Bax, Bcl-2, p53, cleaved-Caspase3, and Caspase9, inducing cell apoptosis, and reduced the invasion and migration of A549 cells, while type II ROP16 protein had no such effect. Furthermore, in the regulation of ROP16 on primary lung adenocarcinoma cells, type I and III ROP16 showed the same anticancer potential. These findings confirmed the anti-lung adenocarcinoma effect of type I and III ROP16, offering fresh perspectives on the possible application of ROP16 as a target with adjuvant therapy for lung adenocarcinoma and propelling the field of precision therapy research toward parasite treatment of tumors.
Collapse
Affiliation(s)
- Guangqi Li
- Medical Laboratory Center, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Clinical Pathogenic Microorganisms, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Clinical Research Center of Medical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Qinhui Li
- College of Life Sciences, Ningxia University, Yinchuan, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, China
| | - Yongqing Tong
- Department of Clinical laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jin Zeng
- College of Life Sciences, Ningxia University, Yinchuan, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, China
| | - Tiantian Dang
- Medical Laboratory Center, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Clinical Pathogenic Microorganisms, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Clinical Research Center of Medical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ningai Yang
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yuning Zhou
- The First Clinical Medical College, Ningxia Medical University, Yinchuan, China
| | - Lei Ma
- College of Life Sciences, Ningxia University, Yinchuan, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, China
| | - Qirui Ge
- The First Clinical Medical College, Ningxia Medical University, Yinchuan, China
| | - Zhijun Zhao
- Medical Laboratory Center, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Clinical Pathogenic Microorganisms, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Clinical Research Center of Medical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
4
|
Wu R, Chen X, Chen H, Li M, Liang Y. Plasmodium infection downregulates hypoxia‑inducible factor 1α expression to suppress the vascularization and tumorigenesis of liver cancer. Oncol Lett 2024; 28:604. [PMID: 39483968 PMCID: PMC11525613 DOI: 10.3892/ol.2024.14737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/06/2024] [Indexed: 11/03/2024] Open
Abstract
Liver cancer is characterized by hypervascularization. Anti-angiogenic agents may normalize the tumor vasculature and improve the efficacy of other treatments. The present study aims to investigate the anti-angiogenic effect of Plasmodium infection in a mouse model of implanted liver cancer cells. HepG2 cells were injected into the left liver lobe of nude mice as a model of in situ hepatic tumorigenesis. Plasmodium yoelii parasitized erythrocytes were administered in the animal model of liver cancer to introduce Plasmodium infection. The tumor growth and microvascular density were determined in the presence or absence of Plasmodium infection. The expression levels of hypoxia-inducible factor 1α (HIF-1α) and angiogenesis-related factors were evaluated using western blotting and reverse transcription-quantitative PCR analysis. The results demonstrated that Plasmodium infection suppressed tumor growth and vascularization in the mouse model of implanted HepG2 cells. Plasmodium parasites reduced the expression of pro-angiogenic factors (vascular endothelial growth factor A and angiopoietin 2), matrix metalloproteinases [(MMP)2 and MMP9] and inflammatory cytokines [tumor necrosis factor α, interleukin 6 (IL)-6) and IL-1β] in both hepatic and tumor tissues. HIF-1α was downregulated in both hepatic and tumor tissues upon Plasmodium infection, and HIF-1α overexpression rescued angiogenesis and tumor growth under the condition of Plasmodium infection. In conclusion, the results of the present study demonstrated the anti-angiogenic and anti-tumorigenic effects of Plasmodium infection on liver cancer through downregulating HIF-1α expression, indicating that Plasmodium parasites could be developed as an intervention strategy to restrain neo-angiogenesis in liver cancer.
Collapse
Affiliation(s)
- Runling Wu
- Department of Geriatric Respiratory Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Xiao Chen
- Department of Medical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Huan Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Mei Li
- Department of Clinical Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yun Liang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
5
|
Eissa MM, Salem AE, El Skhawy N. Parasites revive hope for cancer therapy. Eur J Med Res 2024; 29:489. [PMID: 39367471 PMCID: PMC11453045 DOI: 10.1186/s40001-024-02057-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/10/2024] [Indexed: 10/06/2024] Open
Abstract
Parasites have attained a life-long stigma of being detrimental organisms with deleterious outcomes. Yet, recently, a creditable twist was verified that can dramatically change our perception of those parasites from being a source of misery to millions of people to a useful anti-cancerous tool. Various parasites have shown promise to combat cancer in different experimental models, including colorectal, lung, and breast cancers, among others. Helminths and protozoan parasites, as well as their derivatives such as Echinococcus granulosus protein KI-1, Toxoplasma gondii GRA15II, and Trypanosoma cruzi calreticulin, have demonstrated the ability to inhibit tumor growth, angiogenesis, and metastasis. This article provides an overview of the literature on various cancer types that have shown promising responses to parasite therapy in both in vitro and in vivo animal studies. Parasites have shown anti-neoplastic activity through a variety of mechanisms that collectively contribute to their anti-cancer properties. These include immunomodulation, inhibition of angiogenesis, and molecular mimicry with cancer cells. This review article sheds light on this intriguing emerging field and emphasizes the value of collaborative multidisciplinary research projects with funding agencies and pharmaceutical companies. Thus, these strategies would secure continuous exploration of this new avenue and accelerate the advancement of cancer therapy research. Although experimental studies are heavily conducted by leaps and bounds, further steps are definitely lagging. Upgrading research from the experimental level to the clinical trial would be a wise progression toward efficient exploitation of the anti-neoplastic capabilities of parasites, ultimately saving countless lives.
Collapse
Affiliation(s)
- Maha M Eissa
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Ahmed Ebada Salem
- Department of Radiology and Nuclear Medicine, School of Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 48123, USA
| | - Nahla El Skhawy
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
6
|
Xie Y, Wang J, Wang Y, Wen Y, Pu Y, Wang B. Parasite-enhanced immunotherapy: transforming the "cold" tumors to "hot" battlefields. Cell Commun Signal 2024; 22:448. [PMID: 39327550 PMCID: PMC11426008 DOI: 10.1186/s12964-024-01822-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/08/2024] [Indexed: 09/28/2024] Open
Abstract
Immunotherapy has emerged as a highly effective treatment for various tumors. However, the variable response rates associated with current immunotherapies often restrict their beneficial impact on a subset of patients. Therefore, more effective treatment approaches that can broaden the scope of therapeutic benefits to a larger patient population are urgently needed. Studies have shown that some parasites and their products, for example, Plasmodium, Toxoplasma, Trypanosoma, and Echinococcus, can effectively transform "cold" tumors into "hot" battlefields and reshape the tumor microenvironment, thereby stimulating innate and adaptive antitumor immune responses. These parasitic infections not only achieve the functional reversal of innate immune cells, such as neutrophils, macrophages, myeloid-derived suppressor cells, regulatory T cells, and dendritic cells, in tumors but also successfully activate CD4+/CD8+ T cells and even B cells to produce antibodies, ultimately resulting in an antitumor-specific immune response and antibody-dependent cellular cytotoxicity. Animal studies have confirmed these findings. This review discusses the abovementioned content and the challenges faced in the future clinical application of antitumor treatment strategies based on parasitic infections. With the potential of these parasites and their byproducts to function as anticancer agents, we anticipate that further investigations in this field could yield significant advancements in cancer treatment.
Collapse
Affiliation(s)
- Yujun Xie
- Laboratory of Tumor Immunobiology, Department of Public Health and Pathogen Biology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
- Graduate School, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Jinyan Wang
- College of Basic Medical Science, China Medical University, Shenyang, Liaoning, 110122, China
| | - Yafei Wang
- Faculty of Arts and Science, University of Toronto, Toronto, ON, M5S 3G3, Canada
| | - Yalin Wen
- Laboratory of Tumor Immunobiology, Department of Public Health and Pathogen Biology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
- Graduate School, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Yanping Pu
- Graduate School, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Benfan Wang
- Laboratory of Tumor Immunobiology, Department of Public Health and Pathogen Biology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.
- Institute of Surgery, The First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China.
| |
Collapse
|
7
|
Walter NS, Bhattacharyya S. Mining parasites for their potential as novel therapeutic agents against cancer. Med Oncol 2024; 41:211. [PMID: 39073638 DOI: 10.1007/s12032-024-02458-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Despite recent advances in the management and therapeutic of cancer, the treatment of the disease is limited by its high cost and severe side effects. In this scenario, there is an unmet need to identify novel treatment alternatives for this dreaded disease. Recently there is growing evidence that parasites may cause anticancer effects because of a negative correlation between parasitic infections and tumour growth despite some parasites that are known to exhibit pro-carcinogenic effects. It has been observed that parasites exert an anticancer effect either by activating the host's immune response or by secreting certain molecules that exhibit anticancer potential. The activation of the immune response by these parasitic organisms results in the inhibition of some of the hallmarks of cancer such as tumour proliferation, angiogenesis, and metastasis. This review summarizes the current advances as well as the mechanisms underlying the possible implications of this diverse group of organisms as anticancer agents.
Collapse
Affiliation(s)
- Neha Sylvia Walter
- Department of Biophysics, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Shalmoli Bhattacharyya
- Department of Biophysics, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India.
| |
Collapse
|
8
|
Guerriaud M, Poupet C, Lakhrif Z, Kohli E, Moiré N. Are genetically modified protozoa eligible for ATMP status? Concerning the legal categorization of an oncolytic protozoan drug candidate. Gene Ther 2024; 31:295-303. [PMID: 38429432 DOI: 10.1038/s41434-024-00445-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 03/03/2024]
Abstract
Neospora caninum is an obligate intracellular protozoan that affects several animal species. It is not pathogenic for humans, and its ability to infect and lyse a variety of cells and stimulate the immune system makes it an interesting drug candidate in oncology. The intrinsic oncolytic properties of N. caninum have been confirmed in several preclinical models. Moreover, it can be modified to improve its safety and/or efficacy against cancer cells. In this study, we propose the legal categorization of this new biological drug candidate and the impact of modifications, notably the integration of a suicide gene, the deletion of a gene allowing its multiplication in healthy cells, and/or the insertion of a gene coding for a therapeutic protein into its genome. When unmodified, N. caninum can be categorized as a biological medicinal product, whereas modifications aimed at increasing its safety classify it as a Somatic Cell Therapy Medicinal Product, and modifications aiming to increase its efficacy or both safety and efficacy make it as a Gene Therapy Medicinal Product. This categorization is fundamental because it determines the guidelines applicable for preclinical development. These guidelines being numerous and complex, we have focused on the key requirements necessary for the development of the future medicinal product.
Collapse
Affiliation(s)
- Mathieu Guerriaud
- Faculty of Health Sciences (Pharmacy), University of Burgundy, 7 bd Jeanne d'Arc, 21079, Dijon, Cedex, France.
- CREDIMI Laboratory EA 7532, 4 bd Gabriel, 21000, Dijon, France.
- Laboratory of Excellence LipSTIC ANR-11-LABX-0021, Dijon, France.
| | - Cyril Poupet
- Université de Tours, INRAE, ISP, 37380, Tours, France
| | - Zineb Lakhrif
- Université de Tours, INRAE, ISP, 37380, Tours, France
| | - Evelyne Kohli
- Faculty of Health Sciences (Pharmacy), University of Burgundy, 7 bd Jeanne d'Arc, 21079, Dijon, Cedex, France
- Laboratory of Excellence LipSTIC ANR-11-LABX-0021, Dijon, France
- UMR INSERM/uB/AGROSUP 1231, Team 3 HSP-Pathies, Labelled Ligue Nationale Contre le Cancer, Dijon, France
| | - Nathalie Moiré
- INRAE, Université de Tours, ISP, 37380, Nouzilly, France
| |
Collapse
|
9
|
Lotfalizadeh N, Sadr S, Morovati S, Lotfalizadeh M, Hajjafari A, Borji H. A potential cure for tumor-associated immunosuppression by Toxoplasma gondii. Cancer Rep (Hoboken) 2024; 7:e1963. [PMID: 38109851 PMCID: PMC10850000 DOI: 10.1002/cnr2.1963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/06/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Recently, immunotherapy has become very hopeful for cancer therapy. Cancer treatment through immunotherapy has excellent specificity and less toxicity than conventional chemoradiotherapy. Pathogens have been used in cancer immunotherapy for a long time. The current study aims to evaluate the possibility of Toxoplasma gondii (T. gondii) as a probable treatment for cancers such as melanoma, breast, ovarian, lung, and pancreatic cancer. RECENT FINDINGS Nonreplicating type I uracil auxotrophic mutants of T. gondii can stimulate immune responses against tumors by reverse immunosuppression at the cellular level. T. gondii can be utilized to research T helper 1 (Th1) cell immunity in intracellular infections. Avirulent T. gondii uracil auxotroph vaccine can change the tumor's immunosuppression and improve the production of type 1 helper cell cytokines, i.e., Interferon-gamma (IFN-γ) and Interleukin-12 (IL-12) and activate tumor-related Cluster of Differentiation 8 (CD8+) T cells to identify and destroy cancer cells. The T. gondii profilin protein, along with T. gondii secreted proteins, have been found to exhibit promising properties in the treatment of various cancers. These proteins are being studied for their potential to inhibit tumor growth and enhance the effectiveness of cancer therapies. Their unique mechanisms of action make them valuable candidates for targeted interventions in ovarian cancer, breast cancer, pancreatic cancer, melanoma, and lung cancer treatments. CONCLUSION In summary, the study underscores the significant potential of harnessing T. gondii, including its diverse array of proteins and antigens, particularly in its avirulent form, as a groundbreaking approach in cancer immunotherapy.
Collapse
Affiliation(s)
- Narges Lotfalizadeh
- Department of Pathobiology, Faculty of Veterinary MedicineFerdowsi University of MashhadMashhadIran
| | - Soheil Sadr
- Department of Pathobiology, Faculty of Veterinary MedicineFerdowsi University of MashhadMashhadIran
| | - Solmaz Morovati
- Division of Biotechnology, Department of Pathobiology, School of Veterinary MedicineShiraz UniversityShirazIran
| | - Mohammadhassan Lotfalizadeh
- Board Certificate Oral and Maxillofacial RadiologistNorth Khorasan University of Medical Sciences (NKUMS)BojnurdIran
| | - Ashkan Hajjafari
- Department of Pathobiology, Faculty of Veterinary MedicineIslamic Azad University, Science and Research BranchTehranIran
| | - Hassan Borji
- Department of Pathobiology, Faculty of Veterinary MedicineFerdowsi University of MashhadMashhadIran
| |
Collapse
|
10
|
Fonti N, Parisi F, Mancianti F, Freer G, Poli A. Cancerogenic parasites in veterinary medicine: a narrative literature review. Infect Agent Cancer 2023; 18:45. [PMID: 37496079 PMCID: PMC10373346 DOI: 10.1186/s13027-023-00522-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023] Open
Abstract
Parasite infection is one of the many environmental factors that can significantly contribute to carcinogenesis and is already known to be associated with a variety of malignancies in both human and veterinary medicine. However, the actual number of cancerogenic parasites and their relationship to tumor development is far from being fully understood, especially in veterinary medicine. Thus, the aim of this review is to investigate parasite-related cancers in domestic and wild animals and their burden in veterinary oncology. Spontaneous neoplasia with ascertained or putative parasite etiology in domestic and wild animals will be reviewed, and the multifarious mechanisms of protozoan and metazoan cancer induction will be discussed.
Collapse
Affiliation(s)
- Niccolò Fonti
- Dipartimento di Scienze veterinarie, Università di Pisa, Viale delle Piagge, 2, 56124, Pisa, Italy.
| | - Francesca Parisi
- Dipartimento di Scienze veterinarie, Università di Pisa, Viale delle Piagge, 2, 56124, Pisa, Italy
| | - Francesca Mancianti
- Dipartimento di Scienze veterinarie, Università di Pisa, Viale delle Piagge, 2, 56124, Pisa, Italy
| | - Giulia Freer
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Via Savi, 10, 56126, Pisa, Italy
| | - Alessandro Poli
- Dipartimento di Scienze veterinarie, Università di Pisa, Viale delle Piagge, 2, 56124, Pisa, Italy
| |
Collapse
|
11
|
Battistoni A, Lantier L, di Tommaso A, Ducournau C, Lajoie L, Samimi M, Coënon L, Rivière C, Epardaud M, Hertereau L, Poupée-Beaugé A, Rieu J, Mévélec MN, Lee GS, Moiré N, Germon S, Dimier-Poisson I. Nasal administration of recombinant Neospora caninum secreting IL-15/IL-15Rα inhibits metastatic melanoma development in lung. J Immunother Cancer 2023; 11:jitc-2023-006683. [PMID: 37192784 DOI: 10.1136/jitc-2023-006683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Metastases are the leading cause of mortality in many cancer types and lungs are one of the most common sites of metastasis alongside the liver, brain, and bones. In melanoma, 85% of late-stage patients harbor lung metastases. A local administration could enhance the targeting of metastases while limiting the systemic cytotoxicity. Therefore, intranasal administration of immunotherapeutic agents seems to be a promising approach to preferentially target lung metastases and decrease their burden on cancer mortality. From observations that certain microorganisms induce an acute infection of the tumor microenvironment leading to a local reactivating immune response, microbial-mediated immunotherapy is a next-generation field of investigation in which immunotherapies are engineered to overcome immune surveillance and escape from microenvironmental cancer defenses. METHODS The goal of our study is to evaluate the potential of the intranasal administration of Neospora caninum in a syngeneic C57BL6 mouse model of B16F10 melanoma lung metastases. It also compares the antitumoral properties of a wild-type N. caninum versus N. caninum secreting human interleukin (IL)-15 fused to the sushi domain of the IL-15 receptor α chain, a potent activator of cellular immune responses. RESULTS The treatment of murine lung metastases by intranasal administration of an N. caninum engineered to secrete human IL-15 impairs lung metastases from further progression with only 0,08% of lung surface harboring metastases versus 4,4% in wild-type N. caninum treated mice and 36% in untreated mice. The control of tumor development is associated with a strong increase in numbers, within the lung, of natural killer cells, CD8+ T cells and macrophages, up to twofold, fivefold and sixfold, respectively. Analysis of expression levels of CD86 and CD206 on macrophages surface revealed a polarization of these macrophages towards an antitumoral M1 phenotype. CONCLUSION Administration of IL-15/IL-15Rα-secreting N. caninum through intranasal administration, a non-invasive route, lend further support to N. caninum-demonstrated clear potential as an effective and safe immunotherapeutic approach for the treatment of metastatic solid cancers, whose existing therapeutic options are scarce. Combination of this armed protozoa with an intranasal route could reinforce the existing therapeutic arsenal against cancer and narrow the spectrum of incurable cancers.
Collapse
Affiliation(s)
- Arthur Battistoni
- Université de Tours, INRAE, ISP, F-37000, Faculté de pharmacie, Tours, France
| | - Louis Lantier
- Université de Tours, INRAE, ISP, F-37000, Faculté de pharmacie, Tours, France
- Kymeris Santé SA, Tours, France
| | - Anne di Tommaso
- Université de Tours, INRAE, ISP, F-37000, Faculté de pharmacie, Tours, France
| | - Céline Ducournau
- Université de Tours, INRAE, ISP, F-37000, Faculté de pharmacie, Tours, France
| | - Laurie Lajoie
- Université de Tours, INRAE, ISP, F-37000, Faculté de pharmacie, Tours, France
| | - Mahtab Samimi
- Department de Dermatologie, CHRU de Tours, Tours, France
| | - Loïs Coënon
- Université de Tours, INRAE, ISP, F-37000, Faculté de pharmacie, Tours, France
| | - Clément Rivière
- Université de Tours, INRAE, ISP, F-37000, Faculté de pharmacie, Tours, France
| | | | - Leslie Hertereau
- Université de Tours, INRAE, ISP, F-37000, Faculté de pharmacie, Tours, France
| | | | - Juliette Rieu
- Université de Tours, INRAE, ISP, F-37000, Faculté de pharmacie, Tours, France
| | | | | | - Nathalie Moiré
- INRAE, Université de Tours, ISP, F-37380, Nouzilly, France
| | - Stephanie Germon
- Université de Tours, INRAE, ISP, F-37000, Faculté de pharmacie, Tours, France
| | | |
Collapse
|