1
|
Osna NA, Poluektova LY. Elucidating the role of extracellular vesicles in liver injury induced by HIV. Expert Rev Gastroenterol Hepatol 2023; 17:701-708. [PMID: 37378531 PMCID: PMC10528210 DOI: 10.1080/17474124.2023.2230867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/26/2023] [Accepted: 06/26/2023] [Indexed: 06/29/2023]
Abstract
INTRODUCTION Liver disease is known as one of the leading co-morbidities in HIV infection, with 18% of non-AIDS-related mortality. There is constant crosstalk between liver parenchymal (hepatocytes) and non-parenchymal cells (macrophages, hepatic stellate cells, endothelial cells), and extracellular vesicles (EVs) are one of the most important ways of cell-to-cell communication. AREAS COVERED We briefly cover the role of EVs in liver disease as well as what is known about the role of small EVs, exosomes, in HIV-induced liver disease potentiated by alcohol as one of the second hits. We also touch large EVs, apoptotic bodies (ABs), in HIV-induced liver injury, the mechanisms of their formation and potentiation by second hits, and their role in the progression of liver disease. EXPERT OPINION/COMMENTARY Liver cells are an important source of EVs, which may provide the connection between different organs via secretion into the circulating blood (exosomes) or serve for the communication between the cells within the organ (ABs). Understanding the role of liver EVs in HIV infection and the involvement of second hits in EV generation would provide a new angle for the analysis of HIV-related liver disease pathogenesis and progression to end-stage liver disease.
Collapse
Affiliation(s)
- Natalia A. Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Internal Medicine, the University of Nebraska Medical Center, Omaha, NE 68105, USA
- Department of Pharmacology and Experimental Neuroscience, the University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Larisa Y. Poluektova
- Department of Pharmacology and Experimental Neuroscience, the University of Nebraska Medical Center, Omaha, NE 68105, USA
| |
Collapse
|
2
|
Kharbanda KK, Chokshi S, Tikhanovich I, Weinman SA, New-Aaron M, Ganesan M, Osna NA. A Pathogenic Role of Non-Parenchymal Liver Cells in Alcohol-Associated Liver Disease of Infectious and Non-Infectious Origin. BIOLOGY 2023; 12:255. [PMID: 36829532 PMCID: PMC9953685 DOI: 10.3390/biology12020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023]
Abstract
Now, much is known regarding the impact of chronic and heavy alcohol consumption on the disruption of physiological liver functions and the induction of structural distortions in the hepatic tissues in alcohol-associated liver disease (ALD). This review deliberates the effects of alcohol on the activity and properties of liver non-parenchymal cells (NPCs), which are either residential or infiltrated into the liver from the general circulation. NPCs play a pivotal role in the regulation of organ inflammation and fibrosis, both in the context of hepatotropic infections and in non-infectious settings. Here, we overview how NPC functions in ALD are regulated by second hits, such as gender and the exposure to bacterial or viral infections. As an example of the virus-mediated trigger of liver injury, we focused on HIV infections potentiated by alcohol exposure, since this combination was only limitedly studied in relation to the role of hepatic stellate cells (HSCs) in the development of liver fibrosis. The review specifically focusses on liver macrophages, HSC, and T-lymphocytes and their regulation of ALD pathogenesis and outcomes. It also illustrates the activation of NPCs by the engulfment of apoptotic bodies, a frequent event observed when hepatocytes are exposed to ethanol metabolites and infections. As an example of such a double-hit-induced apoptotic hepatocyte death, we deliberate on the hepatotoxic accumulation of HIV proteins, which in combination with ethanol metabolites, causes intensive hepatic cell death and pro-fibrotic activation of HSCs engulfing these HIV- and malondialdehyde-expressing apoptotic hepatocytes.
Collapse
Affiliation(s)
- Kusum K. Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shilpa Chokshi
- Institute of Hepatology, Foundation for Liver Research, London SE5 9NT, UK
- Faculty of Life Sciences and Medicine, King’s College London, London SE5 8AF, UK
| | - Irina Tikhanovich
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, MO 66160, USA
| | - Steven A. Weinman
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, MO 66160, USA
- Research Service, Kansas City Veterans Administration Medical Center, Kansas City, MO 64128, USA
| | - Moses New-Aaron
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Natalia A. Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
3
|
Effect of Ethanol on Exosome Biogenesis: Possible Mechanisms and Therapeutic Implications. Biomolecules 2023; 13:biom13020222. [PMID: 36830592 PMCID: PMC9953654 DOI: 10.3390/biom13020222] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 01/26/2023] Open
Abstract
Most eukaryotic cells, including hepatocytes, secrete exosomes into the extracellular space, which are vesicles facilitating horizontal cell-to-cell communication of molecular signals and physiological cues. The molecular cues for cellular functions are carried by exosomes via specific mRNAs, microRNAs, and proteins. Exosomes released by liver cells are a vital part of biomolecular communication in liver diseases. Importantly, exosomes play a critical role in mediating alcohol-associated liver disease (ALD) and are potential biomarkers for ALD. Moreover, alcohol exposure itself promotes exosome biogenesis and release from the livers of humans and rodent models. However, the mechanisms by which alcohol promotes exosome biogenesis in hepatocytes are still unclear. Of note, alcohol exposure leads to liver injury by modulating various cellular processes, including autophagy, ER stress, oxidative stress, and epigenetics. Evidence suggests that there is a link between each of these processes with exosome biogenesis. The aim of this review article is to discuss the interplay between ethanol exposure and these altered cellular processes in promoting hepatocyte exosome biogenesis and release. Based on the available literature, we summarize and discuss the potential mechanisms by which ethanol induces exosome release from hepatocytes, which in turn leads to the progression of ALD.
Collapse
|
4
|
Osna NA, Rasineni K, Ganesan M, Donohue TM, Kharbanda KK. Pathogenesis of Alcohol-Associated Liver Disease. J Clin Exp Hepatol 2022; 12:1492-1513. [PMID: 36340300 PMCID: PMC9630031 DOI: 10.1016/j.jceh.2022.05.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022] Open
Abstract
Excessive alcohol consumption is a global healthcare problem with enormous social, economic, and clinical consequences. While chronic, heavy alcohol consumption causes structural damage and/or disrupts normal organ function in virtually every tissue of the body, the liver sustains the greatest damage. This is primarily because the liver is the first to see alcohol absorbed from the gastrointestinal tract via the portal circulation and second, because the liver is the principal site of ethanol metabolism. Alcohol-induced damage remains one of the most prevalent disorders of the liver and a leading cause of death or transplantation from liver disease. Despite extensive research on the pathophysiology of this disease, there are still no targeted therapies available. Given the multifactorial mechanisms for alcohol-associated liver disease pathogenesis, it is conceivable that a multitherapeutic regimen is needed to treat different stages in the spectrum of this disease.
Collapse
Key Words
- AA, Arachidonic acid
- ADH, Alcohol dehydrogenase
- AH, Alcoholic hepatitis
- ALD, Alcohol-associated liver disease
- ALDH, Aldehyde dehydrogenase
- ALT, Alanine transaminase
- ASH, Alcohol-associated steatohepatitis
- AST, Aspartate transaminase
- AUD, Alcohol use disorder
- BHMT, Betaine-homocysteine-methyltransferase
- CD, Cluster of differentiation
- COX, Cycloxygenase
- CTLs, Cytotoxic T-lymphocytes
- CYP, Cytochrome P450
- CYP2E1, Cytochrome P450 2E1
- Cu/Zn SOD, Copper/zinc superoxide dismutase
- DAMPs, Damage-associated molecular patterns
- DC, Dendritic cells
- EDN1, Endothelin 1
- ER, Endoplasmic reticulum
- ETOH, Ethanol
- EVs, Extracellular vesicles
- FABP4, Fatty acid-binding protein 4
- FAF2, Fas-associated factor family member 2
- FMT, Fecal microbiota transplant
- Fn14, Fibroblast growth factor-inducible 14
- GHS-R1a, Growth hormone secretagogue receptor type 1a
- GI, GOsteopontinastrointestinal tract
- GSH Px, Glutathione peroxidase
- GSSG Rdx, Glutathione reductase
- GST, Glutathione-S-transferase
- GWAS, Genome-wide association studies
- H2O2, Hydrogen peroxide
- HA, Hyaluronan
- HCC, Hepatocellular carcinoma
- HNE, 4-hydroxynonenal
- HPMA, 3-hydroxypropylmercapturic acid
- HSC, Hepatic stellate cells
- HSD17B13, 17 beta hydroxy steroid dehydrogenase 13
- HSP 90, Heat shock protein 90
- IFN, Interferon
- IL, Interleukin
- IRF3, Interferon regulatory factor 3
- JAK, Janus kinase
- KC, Kupffer cells
- LCN2, Lipocalin 2
- M-D, Mallory–Denk
- MAA, Malondialdehyde-acetaldehyde protein adducts
- MAT, Methionine adenosyltransferase
- MCP, Macrophage chemotactic protein
- MDA, Malondialdehyde
- MIF, Macrophage migration inhibitory factor
- Mn SOD, Manganese superoxide dismutase
- Mt, Mitochondrial
- NK, Natural killer
- NKT, Natural killer T-lymphocytes
- OPN, Osteopontin
- PAMP, Pathogen-associated molecular patterns
- PNPLA3, Patatin-like phospholipase domain containing 3
- PUFA, Polyunsaturated fatty acid
- RIG1, Retinoic acid inducible gene 1
- SAH, S-adenosylhomocysteine
- SAM, S-adenosylmethionine
- SCD, Stearoyl-CoA desaturase
- STAT, Signal transduction and activator of transcription
- TIMP1, Tissue inhibitor matrix metalloproteinase 1
- TLR, Toll-like receptor
- TNF, Tumor necrosis factor-α
- alcohol
- alcohol-associated liver disease
- ethanol metabolism
- liver
- miRNA, MicroRNA
- p90RSK, 90 kDa ribosomal S6 kinase
Collapse
Affiliation(s)
- Natalia A. Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
- Department of Internal Medicine, Omaha, NE, 68198, USA
| | - Karuna Rasineni
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
- Department of Internal Medicine, Omaha, NE, 68198, USA
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
- Department of Internal Medicine, Omaha, NE, 68198, USA
| | - Terrence M. Donohue
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
- Department of Internal Medicine, Omaha, NE, 68198, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kusum K. Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
- Department of Internal Medicine, Omaha, NE, 68198, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
5
|
Neuman MG, Seitz HK, Tuma PL, Osna NA, Casey CA, Kharbanda KK, Cohen LB, Malnick SDH, Adhikari R, Mitra R, Dagur RS, Ganesan M, Srinivas C, Madan Kumar A, New-Aaron M, Poluektova L, Thomes PG, Rasineni K, Opris M, Teschke R. Alcohol: basic and translational research; 15th annual Charles Lieber &1st Samuel French satellite symposium. Exp Mol Pathol 2022; 126:104750. [PMID: 35192844 PMCID: PMC9167794 DOI: 10.1016/j.yexmp.2022.104750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/28/2021] [Accepted: 01/24/2022] [Indexed: 02/05/2023]
Abstract
The present review is based on the research presented at the symposium dedicated to the legacy of the two scientists that made important discoveries in the field of alcohol-induced liver damage: Professors C.S. Lieber and S.W. French. The invited speakers described pharmacological, toxicological and patho-physiological effects of alcohol misuse. Moreover, genetic biomarkers determining adverse drug reactions due to interactions between therapeutics used for chronic or infectious diseases and alcohol exposure were discussed. The researchers presented their work in areas of alcohol-induced impairment in lipid protein trafficking and endocytosis, as well as the role of lipids in the development of fatty liver. The researchers showed that alcohol leads to covalent modifications that promote hepatic dysfunction and injury. We concluded that using new advanced techniques and research ideas leads to important discoveries in science.
Collapse
Affiliation(s)
- Manuela G Neuman
- In Vitro Drug Safety and Biotechnology, Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada.
| | - Helmut K Seitz
- Centre of Liver and Alcohol Diseases, Ethianum Clinic, University of Heidelberg, Germany
| | - Pamela L Tuma
- The Catholic University of America, Department of Biology, Washington, DC 20064, USA
| | - Natalia A Osna
- VA-Nebraska-Western Iowa Health Care System, Department of Veterans' Affairs, Omaha, NE, and Department of Internal Medicine, Section of Gastroenterology-Hepatology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Carol A Casey
- VA-Nebraska-Western Iowa Health Care System, Department of Veterans' Affairs, Omaha, NE, and Department of Internal Medicine, Section of Gastroenterology-Hepatology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kusum K Kharbanda
- VA-Nebraska-Western Iowa Health Care System, Department of Veterans' Affairs, Omaha, NE, and Department of Internal Medicine, Section of Gastroenterology-Hepatology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lawrence B Cohen
- Division of Gastroenterology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Steve D H Malnick
- Department of Internal Medicine C, Kaplan Medical Center, Affiliated Hebrew University, Jerusalem, Israel
| | - Raghabendra Adhikari
- The Catholic University of America, Department of Biology, Washington, DC 20064, USA
| | - Ramyajit Mitra
- The Catholic University of America, Department of Biology, Washington, DC 20064, USA
| | - Raghubendra Singh Dagur
- VA-Nebraska-Western Iowa Health Care System, Department of Veterans' Affairs, Omaha, NE, and Department of Internal Medicine, Section of Gastroenterology-Hepatology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Murali Ganesan
- VA-Nebraska-Western Iowa Health Care System, Department of Veterans' Affairs, Omaha, NE, and Department of Internal Medicine, Section of Gastroenterology-Hepatology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Chava Srinivas
- VA-Nebraska-Western Iowa Health Care System, Department of Veterans' Affairs, Omaha, NE, and Department of Internal Medicine, Section of Gastroenterology-Hepatology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Arumugam Madan Kumar
- VA-Nebraska-Western Iowa Health Care System, Department of Veterans' Affairs, Omaha, NE, and Department of Internal Medicine, Section of Gastroenterology-Hepatology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Moses New-Aaron
- VA-Nebraska-Western Iowa Health Care System, Department of Veterans' Affairs, Omaha, NE, and Department of Internal Medicine, Section of Gastroenterology-Hepatology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Larisa Poluektova
- VA-Nebraska-Western Iowa Health Care System, Department of Veterans' Affairs, Omaha, NE, and Department of Internal Medicine, Section of Gastroenterology-Hepatology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Paul G Thomes
- VA-Nebraska-Western Iowa Health Care System, Department of Veterans' Affairs, Omaha, NE, and Department of Internal Medicine, Section of Gastroenterology-Hepatology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Karuna Rasineni
- VA-Nebraska-Western Iowa Health Care System, Department of Veterans' Affairs, Omaha, NE, and Department of Internal Medicine, Section of Gastroenterology-Hepatology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mihai Opris
- In Vitro Drug Safety and Biotechnology, Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada; Family Medicine Clinic CAR, Bucharest, Romania
| | - Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Hanau, Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/ Main, Frankfurt/Main, Germany
| |
Collapse
|
6
|
Osna NA, New-Aaron M, Dagur RS, Thomes P, Simon L, Levitt D, McTernan P, Molina PE, Choi HY, Machida K, Sherman KE, Riva A, Phillips S, Chokshi S, Kharbanda KK, Weinman S, Ganesan M. A review of alcohol-pathogen interactions: New insights into combined disease pathomechanisms. Alcohol Clin Exp Res 2022; 46:359-370. [PMID: 35076108 PMCID: PMC8920772 DOI: 10.1111/acer.14777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/05/2023]
Abstract
Progression of chronic infections to end-stage diseases and poor treatment results are frequently associated with alcohol abuse. Alcohol metabolism suppresses innate and adaptive immunity leading to increased viral load and its spread. In case of hepatotropic infections, viruses accelerate alcohol-induced hepatitis and liver fibrosis, thereby promoting end-stage outcomes, including cirrhosis and hepatocellular carcinoma (HCC). In this review, we concentrate on several unexplored aspects of these phenomena, which illustrate the combined effects of viral/bacterial infections and alcohol in disease development. We review alcohol-induced alterations implicated in immunometabolism as a central mechanism impacting metabolic homeostasis and viral pathogenesis in Simian immunodeficiency virus/human immunodeficiency virus infection. Furthermore, in hepatocytes, both HIV infection and alcohol activate oxidative stress to cause lysosomal dysfunction and leakage and apoptotic cell death, thereby increasing hepatotoxicity. In addition, we discuss the mechanisms of hepatocellular carcinoma and tumor signaling in hepatitis C virus infection. Finally, we analyze studies that review and describe the immune derangements in hepatotropic viral infections focusing on the development of novel targets and strategies to restore effective immunocompetency in alcohol-associated liver disease. In conclusion, alcohol exacerbates the pathogenesis of viral infections, contributing to a chronic course and poor outcomes, but the mechanisms behind these events are virus specific and depend on virus-alcohol interactions, which differ among the various infections.
Collapse
Affiliation(s)
- Natalia A. Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Moses New-Aaron
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Environmental Health, Occupational Health, and Toxicology, College of Public Health, Department of Environmental Health, Occupational Health, and Toxicology, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Raghubendra S. Dagur
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Paul Thomes
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Liz Simon
- Department of Physiology & Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | - Danielle Levitt
- Department of Physiology & Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | - Patrick McTernan
- Department of Physiology & Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | - Patricia E. Molina
- Department of Physiology & Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | - Hye Yeon Choi
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089-9020, USA
| | - Keigo Machida
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089-9020, USA
- Southern California Research Center for ALPD and Cirrhosis, Los Angeles, CA 90089-9141, USA
| | - Kenneth E. Sherman
- Department of Internal Medicine, Division of Digestive Disease, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0595, USA
| | - Antonio Riva
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
| | - Sandra Phillips
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
| | - Shilpa Chokshi
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
| | - Kusum K. Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Steven Weinman
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
7
|
Osna NA, Eguchi A, Feldstein AE, Tsukamoto H, Dagur RS, Ganesan M, New-Aaron M, Arumugam MK, Chava S, Ribeiro M, Szabo G, Mueller S, Wang S, Chen C, Weinman SA, Kharbanda KK. Cell-to-Cell Communications in Alcohol-Associated Liver Disease. Front Physiol 2022; 13:831004. [PMID: 35264978 PMCID: PMC8899290 DOI: 10.3389/fphys.2022.831004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/26/2022] [Indexed: 02/05/2023] Open
Abstract
This review covers some important new aspects of the alcohol-induced communications between liver parenchymal and non-parenchymal cells leading to liver injury development. The information exchange between various cell types may promote end-stage liver disease progression and involves multiple mechanisms, such as direct cell-to-cell interactions, extracellular vesicles (EVs) or chemokines, cytokines, and growth factors contained in extracellular fluids/cell culture supernatants. Here, we highlighted the role of EVs derived from alcohol-exposed hepatocytes (HCs) in activation of non-parenchymal cells, liver macrophages (LM), and hepatic stellate cells (HSC). The review also concentrates on EV-mediated crosstalk between liver parenchymal and non-parenchymal cells in the settings of HIV- and alcohol co-exposure. In addition, we overviewed the literature on the crosstalk between cell death pathways and inflammasome activation in alcohol-activated HCs and macrophages. Furthermore, we covered highly clinically relevant studies on the role of non-inflammatory factors, sinusoidal pressure (SP), and hepatic arterialization in alcohol-induced hepatic fibrogenesis. We strongly believe that the review will disclose major mechanisms of cell-to-cell communications pertained to alcohol-induced liver injury progression and will identify therapeutically important targets, which can be used for alcohol-associated liver disease (ALD) prevention.
Collapse
Affiliation(s)
- Natalia A. Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Akiko Eguchi
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Ariel E. Feldstein
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
| | - Hidekazu Tsukamoto
- Southern California Research Center for ALPD and Cirrhosis and Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
- Greater Los Angeles VA HealthCare System, Los Angeles, CA, United States
| | - Raghubendra S. Dagur
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Moses New-Aaron
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Department of Environmental Health, Occupational Health, and Toxicology, College of Public Health, University of Nebraska Medical Center, Omaha, NE, United States
| | - Madan Kumar Arumugam
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Srinivas Chava
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Marcelle Ribeiro
- Harvard Medical School and Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Gyongyi Szabo
- Harvard Medical School and Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Sebastian Mueller
- Salem Medical Center and Center for Alcohol Research, University of Heidelberg, Heidelberg, Germany
| | - Shijin Wang
- Salem Medical Center and Center for Alcohol Research, University of Heidelberg, Heidelberg, Germany
| | - Cheng Chen
- Salem Medical Center and Center for Alcohol Research, University of Heidelberg, Heidelberg, Germany
| | - Steven A. Weinman
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Kusum K. Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
8
|
Datta G, Miller NM, Du W, Geiger JD, Chang S, Chen X. Endolysosome Localization of ERα Is Involved in the Protective Effect of 17α-Estradiol against HIV-1 gp120-Induced Neuronal Injury. J Neurosci 2021; 41:10365-10381. [PMID: 34764157 PMCID: PMC8672688 DOI: 10.1523/jneurosci.1475-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/26/2022] Open
Abstract
Neurotoxic HIV-1 viral proteins contribute to the development of HIV-associated neurocognitive disorder (HAND), the prevalence of which remains high (30-50%) with no effective treatment available. Estrogen is a known neuroprotective agent; however, the diverse mechanisms of estrogen action on the different types of estrogen receptors is not completely understood. In this study, we determined the extent to which and mechanisms by which 17α-estradiol (17αE2), a natural less-feminizing estrogen, offers neuroprotection against HIV-1 gp120-induced neuronal injury. Endolysosomes are important for neuronal function, and endolysosomal dysfunction contributes to HAND and other neurodegenerative disorders. In hippocampal neurons, estrogen receptor α (ERα) is localized to endolysosomes and 17αE2 acidifies endolysosomes. ERα knockdown or overexpressing an ERα mutant that is deficient in endolysosome localization prevents 17αE2-induced endolysosome acidification. Furthermore, 17αE2-induced increases in dendritic spine density depend on endolysosome localization of ERα. Pretreatment with 17αE2 protected against HIV-1 gp120-induced endolysosome deacidification and reductions in dendritic spines; such protective effects depended on endolysosome localization of ERα. In male HIV-1 transgenic rats, we show that 17αE2 treatment prevents the development of enlarged endolysosomes and reduction in dendritic spines. Our findings demonstrate a novel endolysosome-dependent pathway that governs the ERα-mediated neuroprotective actions of 17αE2, findings that might lead to the development of novel therapeutic strategies against HAND.SIGNIFICANCE STATEMENT Extranuclear presence of membrane-bound estrogen receptors (ERs) underlie the enhancing effect of estrogen on cognition and synaptic function. The estrogen receptor subtype ERα is present on endolysosomes and plays a critical role in the enhancing effects of 17αE2 on endolysosomes and dendritic spines. These findings provide novel insight into the neuroprotective actions of estrogen. Furthermore, 17αE2 protected against HIV-1 gp120-induced endolysosome dysfunction and reductions in dendritic spines, and these protective effects of 17αE2 were mediated via endolysosome localization of ERα. Such findings provide a rationale for developing 17αE2 as a therapeutic strategy against HIV-associated neurocognitive disorders.
Collapse
Affiliation(s)
- Gaurav Datta
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9037
| | - Nicole M Miller
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9037
| | - Wenjuan Du
- Institute of Neuroimmune Pharmacology and Department of Biological Sciences, Seton Hall University, South Orange, New Jersey 07079
| | - Jonathan D Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9037
| | - Sulie Chang
- Institute of Neuroimmune Pharmacology and Department of Biological Sciences, Seton Hall University, South Orange, New Jersey 07079
| | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9037
| |
Collapse
|
9
|
New-Aaron M, Thomes PG, Ganesan M, Dagur RS, Donohue TM, Kusum KK, Poluektova LY, Osna NA. Alcohol-Induced Lysosomal Damage and Suppression of Lysosome Biogenesis Contribute to Hepatotoxicity in HIV-Exposed Liver Cells. Biomolecules 2021; 11:1497. [PMID: 34680130 PMCID: PMC8533635 DOI: 10.3390/biom11101497] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 02/05/2023] Open
Abstract
Although the causes of hepatotoxicity among alcohol-abusing HIV patients are multifactorial, alcohol remains the least explored "second hit" for HIV-related hepatotoxicity. Here, we investigated whether metabolically derived acetaldehyde impairs lysosomes to enhance HIV-induced hepatotoxicity. We exposed Cytochrome P450 2E1 (CYP2E1)-expressing Huh 7.5 (also known as RLW) cells to an acetaldehyde-generating system (AGS) for 24 h. We then infected (or not) the cells with HIV-1ADA then exposed them again to AGS for another 48 h. Lysosome damage was assessed by galectin 3/LAMP1 co-localization and cathepsin leakage. Expression of lysosome biogenesis-transcription factor, TFEB, was measured by its protein levels and by in situ immunofluorescence. Exposure of cells to both AGS + HIV caused the greatest amount of lysosome leakage and its impaired lysosomal biogenesis, leading to intrinsic apoptosis. Furthermore, the movement of TFEB from cytosol to the nucleus via microtubules was impaired by AGS exposure. The latter impairment appeared to occur by acetylation of α-tubulin. Moreover, ZKSCAN3, a repressor of lysosome gene activation by TFEB, was amplified by AGS. Both these changes contributed to AGS-elicited disruption of lysosome biogenesis. Our findings indicate that metabolically generated acetaldehyde damages lysosomes and likely prevents their repair and restoration, thereby exacerbating HIV-induced hepatotoxicity.
Collapse
Affiliation(s)
- Moses New-Aaron
- Department of Environmental Health, Occupational Health, and Toxicology, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (P.G.T.); (M.G.); (R.S.D.); (T.M.D.J.); (K.K.K.)
| | - Paul G. Thomes
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (P.G.T.); (M.G.); (R.S.D.); (T.M.D.J.); (K.K.K.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (P.G.T.); (M.G.); (R.S.D.); (T.M.D.J.); (K.K.K.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Raghubendra Singh Dagur
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (P.G.T.); (M.G.); (R.S.D.); (T.M.D.J.); (K.K.K.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Terrence M. Donohue
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (P.G.T.); (M.G.); (R.S.D.); (T.M.D.J.); (K.K.K.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Kharbanda K. Kusum
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (P.G.T.); (M.G.); (R.S.D.); (T.M.D.J.); (K.K.K.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Larisa Y. Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68105, USA;
| | - Natalia A. Osna
- Department of Environmental Health, Occupational Health, and Toxicology, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (P.G.T.); (M.G.); (R.S.D.); (T.M.D.J.); (K.K.K.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68105, USA;
| |
Collapse
|
10
|
Wu D, Zhu H, Wang H. Extracellular Vesicles in Non-alcoholic Fatty Liver Disease and Alcoholic Liver Disease. Front Physiol 2021; 12:707429. [PMID: 34335310 PMCID: PMC8316622 DOI: 10.3389/fphys.2021.707429] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
As the largest vital solid organ in the body, liver is consisting of multiple types of cells including hepatocytes, Kupffer cell, hepatic stellate cells (HSCs), liver sinusoidal endothelial cells (LSECs), and other immune cells. The communication between these cells is critical in maintaining liver function homeostasis, and dysregulation of such communication contributes to the pathogenesis of various liver diseases. Extracellular vesicles (EVs), including exosomes and ectosomes, act as important mediators of cell-to-cell communication. EVs can be produced and uptaken by a wide range of cells including all types of cells in the liver. Growing evidences show that EVs are involved in the development of liver diseases, especially non-alcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD). In this review, we will summarize recent advance in how EVs production are altered in NAFLD and ALD and how the changes of EVs quantity and cargos influence the progression of these diseases. The therapeutic and diagnostic potential of EVs in NAFLD and ALD will be also discussed in this review.
Collapse
Affiliation(s)
- Dongqing Wu
- Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei, China
| | - Huaqing Zhu
- Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| |
Collapse
|
11
|
Chivero ET, Dagur RS, Peeples ES, Sil S, Liao K, Ma R, Chen L, Gurumurthy CB, Buch S, Hu G. Biogenesis, physiological functions and potential applications of extracellular vesicles in substance use disorders. Cell Mol Life Sci 2021; 78:4849-4865. [PMID: 33821293 PMCID: PMC10563196 DOI: 10.1007/s00018-021-03824-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/02/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023]
Abstract
Substance use disorder (SUD) is a growing health problem that affects several millions of people worldwide, resulting in negative socioeconomic impacts and increased health care costs. Emerging evidence suggests that extracellular vesicles (EVs) play a crucial role in SUD pathogenesis. EVs, including exosomes and microvesicles, are membrane-encapsulated particles that are released into the extracellular space by most types of cells. EVs are important players in mediating cell-to-cell communication through transfer of cargo such as proteins, lipids and nucleic acids. The EV cargo can alter the status of recipient cells, thereby contributing to both physiological and pathological processes; some of these play critical roles in SUD. Although the functions of EVs under several pathological conditions have been extensively reviewed, EV functions and potential applications in SUD remain less studied. In this review, we provide an overview of the current knowledge of the role of EVs in SUD, including alcohol, cocaine, heroin, marijuana, nicotine and opiate abuse. The review will focus on the biogenesis and cargo composition of EVs as well as the potential use of EVs as biomarkers of SUD or therapeutic targets in SUD.
Collapse
Affiliation(s)
- Ernest T Chivero
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| | - Raghubendra Singh Dagur
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68105, USA
| | - Eric S Peeples
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Ke Liao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Rong Ma
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Liang Chen
- Department of Computer Science, College of Engineering, Shantou University, Shantou, Guangdong, China
- Key Laboratory of Intelligent Manufacturing Technology, Ministry of Education, Shantou University, Shantou, Guangdong, China
| | - Channabasavaiah B Gurumurthy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| |
Collapse
|