1
|
Efati M, Sahebkar A, Tavallaei S, Alidadi S, Hosseini H, Hamidi-Alamdari D. Protective effect of Leuco-methylene blue against acetaminophen-induced liver injury: an experimental study. Drug Chem Toxicol 2025:1-13. [PMID: 40207489 DOI: 10.1080/01480545.2025.2485347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/21/2025] [Accepted: 03/22/2025] [Indexed: 04/11/2025]
Abstract
Acetaminophen is a commonly used drug for mild to moderate pain relief; however, acetaminophen toxicity due to the formation of toxic metabolites is a major cause of drug-induced liver injury. Methylene blue is an FDA-approved drug for the treatment of methemoglobinemia and has potential applications in the treatment of carbon monoxide and cyanide poisoning. Leuco-methylene blue, a colorless form of methylene blue, is more effective in entering cells and counteracting oxidative stress, making it a valuable option in regulating mitochondrial function and ATP production. In this study, we aimed to evaluate the effect of LMB on liver damage caused by acetaminophen toxicity. Thirty-six rats were divided into six groups: control, APAP, NAC, LMB, MB, and NAC+LMB. All groups except the control received acetaminophen (1500 mg/kg), followed by treatments with NAC (100 mg/kg), LMB (5 mg/kg), MB (5 mg/kg), and NAC+LMB after 3 hours. The rats were sacrificed 24 hours post-acetaminophen administration. LMB significantly reduced serum levels of liver enzymes (ALT, AST, and ALP) and increased the expression of genes involved in mitochondrial biogenesis and antioxidant defense (PGC-1, Nrf2, and Tfam). Additionally, LMB significantly increased total antioxidant capacity and glutathione reductase levels, decreased the prooxidant-antioxidant balance (PAB), and reduced the expression of inflammatory cytokines (IL-6 and TNF-α) in the liver tissue. LMB effectively reduced the severity of acetaminophen-induced liver damage through antioxidant and anti-inflammatory effects. LMB can effectively ameliorate APAP-induced toxicity in rats, with comparable efficacy to N-acetylcysteine with respect to most complications of acetaminophen-induced toxicity in rats.
Collapse
Affiliation(s)
- Majid Efati
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Tavallaei
- Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soodeh Alidadi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hossein Hosseini
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Daryoush Hamidi-Alamdari
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Naseem A, Majeed Khan H, Umar A, Elshikh MS, Aljowaie RM, Gancarz M. Mechanistic insights of methylcinnamate in improving oxidative stress and inflammation in acetaminophen-induced hepatotoxic mice by upregulating Nrf2 pathway. J Pharm Pharmacol 2025; 77:418-429. [PMID: 39851237 DOI: 10.1093/jpp/rgaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025]
Abstract
BACKGROUND Methylcinnamate (MC), a safe flavoring agent naturally found in Occimum basilicum L. is reported to have an anti-inflammatory responses in various disease models. Acetaminophen (APAP) toxicity is a significant contributor to acute liver injury, which leads to oxidative stress and inflammation. The transcriptional factor nuclear factor erythroid 2-related factor 2 (Nrf2) regulated the cellular defense mechanisms aid to antioxidant response facilitation and reduction in inflammation against various disorders. METHODOLOGY This study evaluated the protective effects of MC in APAP-induced hepatotoxicity in mice and its anti-oxidant, anti-inflammatory, and Nrf2 mechanisms were studied. In-vitro 2,2-diphenyl-1-picrylhydrazyl assay showed the antioxidant capacity of MC. Mice were pretreated with MC (25, 50, 75, and 100 mg/kg) orally for 7 days. After a fasting period of 16 h, hepatotoxicity was induced by injecting APAP 300 mg/kg intraperitoneal on day 7. Liver profile, oxidative test, and histopathological changes were studied. Gene expression of interlukin-1β (IL-1β), interlukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), cytochrome P450 2E1 (CYP2E1), Nrf2, and NAD(P)H dehydrogenase (quinone) 1 (NQO-1) were estimated by real time quantitative polymerase chain reaction (RT-qPCR). IL-1β, IL-6, and TNF-α concentrations were also analyzed by enzyme-linked immunosorbent assay (ELISA). RESULTS The MC treatment showed a notable reduction in alanine transaminase, aspartate aminotransferase and alkaline phosphatase activities, and total bilirubin level of serum. Moreover, MC significantly attenuated oxidative stress by rising the antioxidant enzymes catalase, glutathione, and superoxide dismutase and reducing the malondialdehyde and nitric oxide levels in the liver. Furthermore, MC successfully mitigated the levels of IL-1β, IL-6, and TNF-α, which were estimated through RT-qPCR and ELISA. The RT-qPCR revealed a CYP2E1 enzyme inhibition and significant upregulation of hepatic Nrf2 and NQO-1 levels after MC therapy. Histopathological analysis showed improvement in liver injury within the MC treatment groups. CONCLUSION It was concluded from this study that pretreatment of MC had successfully protected the liver through anti-inflammatory, anti-oxidant activity upon subsequent activation of Nrf2.
Collapse
Affiliation(s)
- Afshan Naseem
- Department of Pharmacology, Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore 54000, Pakistan
| | - Humaira Majeed Khan
- Department of Pharmacology, Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore 54000, Pakistan
| | - Aisha Umar
- Institute of Botany, University of the Punjab, Quaid-e-Azam campus, Lahore, 54590, Pakistan
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Reem M Aljowaie
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Marek Gancarz
- Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116B, 30-149 Krakow, Poland
| |
Collapse
|
3
|
Einafshar E, Bahrami P, Pashaei F, Naseri P, Ay Gharanjik A, Mirteimoori A, Daraeebaf N, Marami Y, Sahebkar A, Hosseini H. The potential of curcumin in mitigating acetaminophen-induced liver damage. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03907-4. [PMID: 40009170 DOI: 10.1007/s00210-025-03907-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/10/2025] [Indexed: 02/27/2025]
Abstract
Acetaminophen (APAP) is a widely used over-the-counter medication for pain and fever, but its overuse can lead to liver toxicity, hepatocyte apoptosis, and necrosis. Despite therapeutic advances in drug-induced hepatotoxicity, APAP-induced liver damage still poses a medical challenge. Recently, natural products have emerged as potential options for mitigating the effects of APAP hepatotoxicity. Curcumin, a natural compound with antioxidant and anti-inflammatory properties, has shown promising results in drug-induced hepatotoxicity. However, further investigations are needed to assess the clinical benefits of curcumin. In this review, we discuss the mechanisms of APAP-induced liver damage and the role of curcumin in preventing liver necrosis, oxidative stress, inflammation, and apoptosis caused by APAP overdose. Through its ability to scavenge free radicals, prevent lipid peroxidation, restore glutathione (GSH) levels, and inhibit apoptosis, curcumin has been found to significantly reduce oxidative stress and protect liver tissue from APAP toxicity in various studies. This paper also reviews the potential of novel nanoformulations to enhance the bioavailability of curcumin for improved therapeutic outcomes. Overall, the evidence suggests that curcumin could be a promising intervention to mitigate the harmful effects of APAP overdose and improve liver health. However, further research is required to assess the optimal dosing and timing of curcumin administration in APAP toxicity.
Collapse
Affiliation(s)
- Elham Einafshar
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pegah Bahrami
- School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Pashaei
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Paniz Naseri
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Altin Ay Gharanjik
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atefe Mirteimoori
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nastaran Daraeebaf
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yegane Marami
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hossein Hosseini
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Li J, Liu H, Jia Y, Tuniyazi X, Liao X, Zhao J, Du Y, Fang Z, Lü G. SW033291 promotes liver regeneration after acetaminophen-induced liver injury in mice. Biochem Biophys Res Commun 2025; 749:151365. [PMID: 39855045 DOI: 10.1016/j.bbrc.2025.151365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
Acetaminophen (APAP) is a commonly utilized antipyretic and analgesic drug. Overdose of APAP is a primary contributor to drug-induced liver injury and acute liver failure (ALF). SW033291 has been shown to play a role in tissue regeneration in various diseases; however, its potential to facilitate liver regeneration following APAP-induced hepatic injury remains unexamined. Thus, this study focused on exploring the therapeutic impacts and mechanisms of SW033291 on liver damage by establishing models of APAP-induced acute liver injury in mice. The results showed that treatment with SW033291 reduces serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities, decreases the area of hepatic necrosis, increases glutathione (GSH) levels, and decreases tissue malondialdehyde (MDA) content, as well as the expression levels of tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in mice with liver injury. It could also promote hepatocyte proliferation and inhibit apoptosis by increasing tissue prostaglandin E2 (PGE2) levels. In conclusion, SW033291 demonstrates the capacity to ameliorate APAP-induced hepatic injury in mice by fostering liver regeneration, attenuating oxidative stress, and modulating inflammatory responses, thereby presenting itself as a promising candidate for the development of therapeutic interventions targeting acute liver failure.
Collapse
Affiliation(s)
- Jing Li
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Hui Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Yutong Jia
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Xiayidanmu Tuniyazi
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Xia Liao
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Jinlong Zhao
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Yun Du
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Ziyi Fang
- College of Life Sciences and Technology, Xinjiang University, Urumqi, 830054, Xinjiang, China
| | - Guodong Lü
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830054, Xinjiang, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China.
| |
Collapse
|
5
|
Wang L, Dong Z, Zhang Y, Peng L. Emerging Roles of High-mobility Group Box-1 in Liver Disease. J Clin Transl Hepatol 2024; 12:1043-1056. [PMID: 39649031 PMCID: PMC11622203 DOI: 10.14218/jcth.2024.00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 12/10/2024] Open
Abstract
High-mobility group box-1 (HMGB1) is an architectural chromosomal protein with various roles depending on its cellular localization. Extracellular HMGB1 functions as a prototypical damage-associated molecular pattern that triggers inflammation and adaptive immune responses, mediated by specific cell surface receptors, including receptors for advanced glycation end products and toll-like receptors. Post-translational modifications of HMGB1 significantly impact various cellular processes that contribute to the pathogenesis of liver diseases. Recent studies have highlighted the close relationship between HMGB1 and the pathogenesis of acute liver injuries, including acetaminophen-induced liver injury, hepatic ischemia-reperfusion injury, and acute liver failure. In chronic liver diseases, HMGB1 plays a role in nonalcoholic fatty liver disease, alcohol-associated liver disease, liver fibrosis, and hepatocellular carcinoma. Targeting HMGB1 as a therapeutic approach, either by inhibiting its release or blocking its extracellular function, is a promising strategy for treating liver diseases. This review aimed to summarize the available evidence on HMGB1's role in liver disease, focusing on its multifaceted signaling pathways, impact on disease progression, and the translation of these findings into clinical interventions.
Collapse
Affiliation(s)
- Lu Wang
- Department of Diagnostics, Second School of Clinical Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Zhiwei Dong
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yeqiong Zhang
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liang Peng
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Deng X, Li Y, Chen Y, Hu Q, Zhang W, Chen L, Lu X, Zeng J, Ma X, Efferth T. Paeoniflorin protects hepatocytes from APAP-induced damage through launching autophagy via the MAPK/mTOR signaling pathway. Cell Mol Biol Lett 2024; 29:119. [PMID: 39244559 PMCID: PMC11380789 DOI: 10.1186/s11658-024-00631-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/12/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Drug-induced liver injury (DILI) is gradually becoming a common global problem that causes acute liver failure, especially in acute hepatic damage caused by acetaminophen (APAP). Paeoniflorin (PF) has a wide range of therapeutic effects to alleviate a variety of hepatic diseases. However, the relationship between them is still poorly investigated in current studies. PURPOSE This work aimed to explore the protective effects of PF on APAP-induced hepatic damage and researched the potential molecular mechanisms. METHODS C57BL/6J male mice were injected with APAP to establish DILI model and were given PF for five consecutive days for treatment. Aiming to clarify the pharmacological effects, the molecular mechanisms of PF in APAP-induced DILI was elucidated by high-throughput and other techniques. RESULTS The results demonstrated that serum levels of ALP, γ-GT, AST, TBIL, and ALT were decreased in APAP mice by the preventive effects of PF. Moreover, PF notably alleviated hepatic tissue inflammation and edema. Meanwhile, the results of TUNEL staining and related apoptotic factors coincided with the results of transcriptomics, suggesting that PF inhibited hepatocyte apoptosis by regulated MAPK signaling. Besides, PF also acted on reactive oxygen species (ROS) to regulate the oxidative stress for recovery the damaged mitochondria. More importantly, transmission electron microscopy showed the generation of autophagosomes after PF treatment, and PF was also downregulated mTOR and upregulated the expression of autophagy markers such as ATG5, ATG7, and BECN1 at the mRNA level and LC3, p62, ATG5, and ATG7 at the protein level, implying that the process by which PF exerted its effects was accompanied by the occurrence of autophagy. In addition, combinined with molecular dynamics simulations and western blotting of MAPK, the results suggested p38 as a direct target for PF on APAP. Specifically, PF-activated autophagy through the downregulation of MAPK/mTOR signaling, which in turn reduced APAP injury. CONCLUSIONS Paeoniflorin mitigated liver injury by activating autophagy to suppress oxidative stress and apoptosis via the MAPK/mTOR signaling pathway. Taken together, our findings elucidate the role and mechanism of paeoniflorin in DILI, which is expected to provide a new therapeutic strategy for the development of paeoniflorin.
Collapse
Affiliation(s)
- Xinyu Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yubing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lisheng Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaohua Lu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, 55128, Germany.
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, 55128, Germany.
| |
Collapse
|
7
|
Babaei K, Azimi Nezhad M, Sedigh Ziabari SN, Mirzajani E, Mozdarani H, Sharami SH, Farzadi S, Mirhafez SR, Naghdipour Mirsadeghi M, Norollahi SE, Saadatian Z, Samadani AA. TLR signaling pathway and the effects of main immune cells and epigenetics factors on the diagnosis and treatment of infertility and sterility. Heliyon 2024; 10:e35345. [PMID: 39165943 PMCID: PMC11333914 DOI: 10.1016/j.heliyon.2024.e35345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/22/2024] Open
Abstract
Recurrent pregnancy loss (RPL), often known as spontaneous miscarriages occurring two or more times in a row, is a reproductive disease that affects certain couples. The cause of RPL is unknown in many cases, leading to difficulties in therapy and increased psychological suffering in couples. Toll-like receptors (TLR) have been identified as crucial regulators of inflammation in various human tissues. The occurrence of inflammation during parturition indicates that Toll-like receptor activity in tissues related to pregnancy may play a crucial role in the onset and continuation of normal function, as well as in various pregnancy complications like infection-related preterm. TLRs or their signaling molecules may serve as effective therapeutic targets for inhibiting premature activity. At the maternal-fetal interface, TLRs are found in both immune and non-immune cells, such as trophoblasts and decidual cells. TLR expression patterns are influenced by the phases of pregnancy. In this way, translational combinations like epigenetics, have indicated their impact on the TLRs.Importantly, abnormal DNA methylation patterns and histone alterations have an impressive performance in decreasing fertility by influencing gene expression and required molecular and cellular activities which are vital for a normal pregnancy and embryonic process. TLRs, play a central duty in the innate immune system and can regulate epigenetic elements by many different signaling pathways. The potential roles of TLRs in cells, epigenetics factors their ability to identify and react to infections, and their place in the innate immune system will all be covered in this narrative review essay.
Collapse
Affiliation(s)
- Kosar Babaei
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Mohsen Azimi Nezhad
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- UMR INSERM U 1122, IGE-PCV, Interactions Gène-Environment En Physiopathologie Cardiovascular Université De Lorraine, Nancy, France
| | - Seyedeh Nafise Sedigh Ziabari
- BSC of Midwifery, Reproductive Health Research Center, Al-Zahra Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Ebrahim Mirzajani
- Department of Biochemistry and Biophysics, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Hossein Mozdarani
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyedeh Hajar Sharami
- Reproductive Health Research Center, Department of Obstetrics and Gynecology, School of Medicine, Al-Zahra Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Sara Farzadi
- Department of Gynecology, School of Medicine, Alzahra Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyed Reza Mirhafez
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Misa Naghdipour Mirsadeghi
- Department of Gynecology, School of Medicine, Reproductive Health Research Center, Alzahra Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Zahra Saadatian
- Department of Physiology, Faculty of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
8
|
Lin J, Fan A, Yifu Z, Xie Q, Hong L, Zhou W. BTF3L4 Overexpression Mediates APAP-induced Liver Injury in Mouse and Cellular Models. J Clin Transl Hepatol 2024; 12:245-256. [PMID: 38426192 PMCID: PMC10899873 DOI: 10.14218/jcth.2023.00342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/01/2023] [Accepted: 11/17/2023] [Indexed: 03/02/2024] Open
Abstract
Background and Aims Acetaminophen (APAP)-induced liver injury (AILI) has an increasing incidence worldwide. However, the mechanisms contributing to such liver injury are largely unknown and no targeted therapy is currently available. The study aimed to investigate the effect of BTF3L4 overexpression on apoptosis and inflammation regulation in vitro and in vivo. Methods We performed a proteomic analysis of the AILI model and found basic transcription factor 3 like 4 (BTF3L4) was the only outlier transcription factor overexpressed in the AILI model in mice. BTF3L4 overexpression increased the degree of liver injury in the AILI model. Results BTF3L4 exerts its pathogenic effect by inducing an inflammatory response and damaging mitochondrial function. Increased BTF3L4 expression increases the degree of apoptosis, reactive oxygen species generation, and oxidative stress, which induces cell death and liver injury. The damage of mitochondrial function by BTF3L4 triggers a cascade of events, including reactive oxygen species accumulation and oxidative stress. According to the available AILI data, BTF3L4 expression is positively associated with inflammation and may be a potential biomarker of AILI. Conclusions Our results suggest that BTF3L4 is a pathogenic factor in AILI and may be a potential diagnostic maker for AILI.
Collapse
Affiliation(s)
- Junchao Lin
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, Shaanxi, China
| | - Aqiang Fan
- Department of Digestive Surgery, Xijing Hospital, Air Force Military Medical University, Xi’an, Shaanxi, China
| | - Zhujin Yifu
- Department of Digestive Surgery, Xijing Hospital, Air Force Military Medical University, Xi’an, Shaanxi, China
| | - Qibing Xie
- Department of Digestive Surgery, Xijing Hospital, Air Force Military Medical University, Xi’an, Shaanxi, China
| | - Liu Hong
- Department of Digestive Surgery, Xijing Hospital, Air Force Military Medical University, Xi’an, Shaanxi, China
| | - Wei Zhou
- Department of Digestive Surgery, Xijing Hospital, Air Force Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
9
|
Zhao S, Feng Y, Zhang J, Zhang Q, Wang J, Cui S. Comparative analysis of gene expression between mice and humans in acetaminophen-induced liver injury by integrating bioinformatics analysis. BMC Med Genomics 2024; 17:80. [PMID: 38549107 PMCID: PMC10976682 DOI: 10.1186/s12920-024-01848-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
OBJECTIVE Mice are routinely utilized as animal models of drug-induced liver injury (DILI), however, there are significant differences in the pathogenesis between mice and humans. This study aimed to compare gene expression between humans and mice in acetaminophen (APAP)-induced liver injury (AILI), and investigate the similarities and differences in biological processes between the two species. METHODS A pair of public datasets (GSE218879 and GSE120652) obtained from GEO were analyzed using "Limma" package in R language, and differentially expressed genes (DEGs) were identified, including co-expressed DEGs (co-DEGs) and specific-expressed DEGS (specific-DEGs). Analysis of Gene Set Enrichment Analysis (GSEA), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed analyses for specific-DEGs and co-DEGs. The co-DEGs were also used to construct transcription factor (TF)-gene network, gene-miRNA interactions network and protein-protein interaction (PPI) network for analyzing hub genes. RESULTS Mouse samples contained 1052 up-regulated genes and 1064 down-regulated genes, while human samples contained 1156 up-regulated genes and 1557 down-regulated genes. After taking the intersection between the DEGs, only 154 co-down-regulated and 89 co-up-regulated DEGs were identified, with a proportion of less than 10%. It was suggested that significant differences in gene expression between mice and humans in drug-induced liver injury. Mouse-specific-DEGs predominantly engaged in processes related to apoptosis and endoplasmic reticulum stress, while human-specific-DEGs were concentrated around catabolic process. Analysis of co-regulated genes reveals showed that they were mainly enriched in biosynthetic and metabolism-related processes. Then a PPI network which contains 189 nodes and 380 edges was constructed from the co-DEGs and two modules were obtained by Mcode. We screened out 10 hub genes by three algorithms of Degree, MCC and MNC, including CYP7A1, LSS, SREBF1, FASN, CD44, SPP1, ITGAV, ANXA5, LGALS3 and PDGFRA. Besides, TFs such as FOXC1, HINFP, NFKB1, miRNAs like mir-744-5p, mir-335-5p, mir-149-3p, mir-218-5p, mir-10a-5p may be the key regulatory factors of hub genes. CONCLUSIONS The DEGs of AILI mice models and those of patients were compared, and common biological processes were identified. The signaling pathways and hub genes in co-expression were identified between mice and humans through a series of bioinformatics analyses, which may be more valuable to reveal molecular mechanisms of AILI.
Collapse
Affiliation(s)
- Shanmin Zhao
- Department of Laboratory Animal Sciences, School of Basic Medicine, Naval Medical University, NO. 800 Xiangyin Road, 200433, Shanghai, China
| | - Yan Feng
- Department of Laboratory Animal Sciences, School of Basic Medicine, Naval Medical University, NO. 800 Xiangyin Road, 200433, Shanghai, China
| | - Jingyuan Zhang
- Department of Laboratory Animal Sciences, School of Basic Medicine, Naval Medical University, NO. 800 Xiangyin Road, 200433, Shanghai, China
| | - Qianqian Zhang
- Department of Laboratory Animal Sciences, School of Basic Medicine, Naval Medical University, NO. 800 Xiangyin Road, 200433, Shanghai, China
| | - Junyang Wang
- Department of Laboratory Animal Sciences, School of Basic Medicine, Naval Medical University, NO. 800 Xiangyin Road, 200433, Shanghai, China
| | - Shufang Cui
- Department of Laboratory Animal Sciences, School of Basic Medicine, Naval Medical University, NO. 800 Xiangyin Road, 200433, Shanghai, China.
| |
Collapse
|
10
|
Zheng Y, Wang L, Wang J, Zhao T, Wang J. Modulation of the HIF-1α-NCOA4-FTH1 Signaling Axis Regulating Ferroptosis-induced Hepatic Stellate Cell Senescence to Explore the Anti-hepatic Fibrosis Mechanism of Curcumol. Curr Med Chem 2024; 31:2821-2837. [PMID: 38351696 DOI: 10.2174/0109298673271261231213051410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/08/2023] [Accepted: 11/23/2023] [Indexed: 06/05/2024]
Abstract
INTRODUCTION Senescence of activated hepatic stellate cells (HSC) reduces extracellular matrix expression to reverse liver fibrosis. Ferroptosis is closely related to cellular senescence, but its regulatory mechanisms need to be further investigated. The iron ions weakly bound to ferritin in the cell are called labile iron pool (LIP), and together with ferritin, they maintain cellular iron homeostasis and regulate the cell's sensitivity to ferroptosis. METHODS We used lipopolysaccharide (LPS) to construct a pathological model group and divided the hepatic stellate cells into a blank group, a model group, and a curcumol 12.5 mg/L group, a curcumol 25 mg/L group, and a curcumol 50 mg/L group. HIF-1α-NCOA4- FTH1 signalling axis, ferroptosis and cellular senescence were detected by various cellular molecular biology experiments. RESULT We found that curcumol could induce hepatic stellate cell senescence by promoting iron death in hepatic stellate cells. Curcumol induced massive deposition of iron ions in hepatic stellate cells by activating the HIF-1α-NCOA4-FTH1 signalling axis, which further led to iron overload and lipid peroxidation-induced ferroptosis. Interestingly, our knockdown of HIF-1α rescued curcumol-induced LIP and iron deposition in hepatic stellate cells, suggesting that HIF-1α is a key target of curcumol in regulating iron metabolism and ferroptosis. We were able to rescue curcumol-induced hepatic stellate cell senescence when we reduced LIP and iron ion deposition using iron chelators. CONCLUSION Overall, curcumol induces ferroptosis and cellular senescence by increasing HIF-1α expression and increasing NCOA4 interaction with FTH1, leading to massive deposition of LIP and iron ions, which may be the molecular biological mechanism of its anti-liver fibrosis.
Collapse
Affiliation(s)
- Yang Zheng
- Department of Medicine, Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine, Nanning, 530222, Guangxi , China
| | - Lei Wang
- Department of Medicine, Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine, Nanning, 530222, Guangxi , China
| | - Jiaru Wang
- Department of Physiology, College of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, 530222, Guangxi , China
| | - Tiejian Zhao
- Department of Physiology, College of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, 530222, Guangxi , China
| | - Jiahui Wang
- Department of Medicine, Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine, Nanning, 530222, Guangxi , China
| |
Collapse
|
11
|
Xie D, Ouyang S. The role and mechanisms of macrophage polarization and hepatocyte pyroptosis in acute liver failure. Front Immunol 2023; 14:1279264. [PMID: 37954583 PMCID: PMC10639160 DOI: 10.3389/fimmu.2023.1279264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Acute liver failure (ALF) is a severe liver disease caused by disruptions in the body's immune microenvironment. In the early stages of ALF, Kupffer cells (KCs) become depleted and recruit monocytes derived from the bone marrow or abdomen to replace the depleted macrophages entering the liver. These monocytes differentiate into mature macrophages, which are activated in the immune microenvironment of the liver and polarized to perform various functions. Macrophage polarization can occur in two directions: pro-inflammatory M1 macrophages and anti-inflammatory M2 macrophages. Controlling the ratio and direction of M1 and M2 in ALF can help reduce liver injury. However, the liver damage caused by pyroptosis should not be underestimated, as it is a caspase-dependent form of cell death. Inhibiting pyroptosis has been shown to effectively reduce liver damage induced by ALF. Furthermore, macrophage polarization and pyroptosis share common binding sites, signaling pathways, and outcomes. In the review, we describe the role of macrophage polarization and pyroptosis in the pathogenesis of ALF. Additionally, we preliminarily explore the relationship between macrophage polarization and pyroptosis, as well as their effects on ALF.
Collapse
Affiliation(s)
| | - Shi Ouyang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, Department of Infectious Diseases, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
12
|
Lan T, Wang W, Huang DL, Zeng XX, Wang XX, Wang J, Tong YH, Mao ZJ, Wang SW. Essential oil extracted from Quzhou Aurantii Fructus prevents acute liver failure through inhibiting lipopolysaccharide-mediated inflammatory response. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:36. [PMID: 37804362 PMCID: PMC10560171 DOI: 10.1007/s13659-023-00398-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/11/2023] [Indexed: 10/09/2023]
Abstract
Quzhou Aurantii Fructus (QAF) has a long history as a folk medicine and food for the treatment of liver diseases. While our earlier study provided evidence of hepatoprotective properties contained within the flavonoids and limonins constituents in QAF, the potential preventative effects afforded by essential oil components present within QAF remains enigmatic. In this study, we prepared Quzhou Aurantii Fructus essential oil (QAFEO) and confirmed its anti-inflammatory effects on liver inflammation through experimentation on lipopolysaccharide and D-galactosamine (LPS/D-GalN) induced acute liver failure (ALF) mouse models. Using RNA-sequence (RNA-seq) analysis, we found that QAFEO prevented ALF by systematically blunting the pathways involved in response to LPS and toll-like receptor signaling pathways. QAFEO effectively suppressed the phosphorylation of tank-binding kinase 1 (TBK1), TGF-beta activated kinase 1 (TAK1), interferon regulatory factor 3 (IRF3), and the activation of mitogen activated kinase-like protein (MAPK) and nuclear factor-kappa B (NF-κB) pathways in vivo and in vitro. Importantly, QAFEO substantially reduced myeloid differentiation primary response gene 88 (MyD88)- toll-like receptor 4 (TLR4) interaction levels. Moreover, 8 compounds from QAFEO could directly bind to REAL, TAK1, MyD88, TBK1, and IRF3. Taken together, the results of our study support the notion that QAFEO exerts a hepatoprotective effect through inhibiting LPS-mediated inflammatory response.
Collapse
Affiliation(s)
- Tian Lan
- The Joint Innovation Center for Health and Medicine, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, No. 100 Minjiang Road, Quzhou, 324000, China
| | - Wen Wang
- Preventive Treatment Center, Zhejiang Chinese Medical University Affiliated Four-provinces Marginal Hospital of Traditional Chinese Medicine, Quzhou Hospital of Traditional Chinese Medicine, Quzhou, 324000, China
| | - De-Lian Huang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xi-Xi Zeng
- The Joint Innovation Center for Health and Medicine, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, No. 100 Minjiang Road, Quzhou, 324000, China
| | - Xiao-Xiao Wang
- Department of Drug Analysis Center, Quzhou Institute for Food and Drug Control, Quzhou, 324000, China
| | - Jian Wang
- Department of Drug Analysis Center, Quzhou Institute for Food and Drug Control, Quzhou, 324000, China
| | - Yu-Hua Tong
- The Joint Innovation Center for Health and Medicine, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, No. 100 Minjiang Road, Quzhou, 324000, China.
- Department of Ophthalmology, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, 324000, China.
| | - Zhu-Jun Mao
- Department of Ophthalmology, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, 324000, China.
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, China.
| | - Si-Wei Wang
- The Joint Innovation Center for Health and Medicine, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, No. 100 Minjiang Road, Quzhou, 324000, China.
- Department of Ophthalmology, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, 324000, China.
| |
Collapse
|
13
|
Nelli F, Virtuoso A, Giannarelli D, Fabbri A, Giron Berrios JR, Marrucci E, Fiore C, Ruggeri EM. Effects of Acetaminophen Exposure on Outcomes of Patients Receiving Immune Checkpoint Inhibitors for Advanced Non-Small-Cell Lung Cancer: A Propensity Score-Matched Analysis. Curr Oncol 2023; 30:8117-8133. [PMID: 37754504 PMCID: PMC10527930 DOI: 10.3390/curroncol30090589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/10/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
(1) Background: Several studies have investigated potential interactions between immune checkpoint inhibitors (ICIs) and commonly prescribed medications. Although acetaminophen (APAP) has not been considered susceptible to interaction with ICIs, recent research has shown that detectable plasma levels of this drug can hinder the efficacy of PD-1/PD-L1 blockade therapies. A reliable assessment of the potential interaction between APAP and ICIs in advanced non-small cell lung cancer (NSCLC) patients would be worthwhile since it is often prescribed in this condition. We sought to evaluate the impact of the concomitant use of APAP in patients with advanced NSCLC on PD-1/PD-L1 blockade using real-world evidence. (2) Methods: This study included consecutive patients with histologically proven stage IV NSCLC who underwent first-line therapy with pembrolizumab as a single agent or in combination with platinum-based chemotherapy, or second-line therapy with pembrolizumab, nivolumab, or atezolizumab. The intensity of APAP exposure was classified as low (therapeutic intake lasting less than 24 h or a cumulative intake lower than 60 doses of 1000 mg) or high (therapeutic intake lasting more than 24 h or a total intake exceeding 60 doses of 1000 mg). The favorable outcome of anti-PD-1/PD-L1 therapies was defined by durable clinical benefit (DCB). Progression-free survival (PFS) and overall survival (OS) were relevant to our efficacy analysis. Propensity score matching (PSM) methods were applied to adjust for differences between the APAP exposure subgroups. (3) Results: Over the course of April 2018 to October 2022, 80 patients were treated with first-line pembrolizumab either as single-agent therapy or in combination with platinum-based chemotherapy. During the period from June 2015 to November 2022, 145 patients were given anti-PD-1/PD-L1 blockade therapy as second-line treatment. Subsequent efficacy analyses relied on adjusted PSM populations in both treatment settings. Multivariate testing revealed that only the level of APAP and corticosteroid intake had an independent effect on DCB in both treatment lines. Multivariate Cox regression analysis confirmed high exposure to APAP and immunosuppressive corticosteroid therapy as independent predictors of shorter PFS and OS in both treatment settings. (4) Conclusions: Our findings would strengthen the available evidence that concomitant intake of APAP blunts the efficacy of ICIs in patients with advanced NSCLC. The detrimental effects appear to depend on the cumulative dose and duration of exposure to APAP. The inherent shortcomings of the current research warrant confirmation in larger independent series.
Collapse
Affiliation(s)
- Fabrizio Nelli
- Thoracic Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
| | - Antonella Virtuoso
- Thoracic Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
| | - Diana Giannarelli
- Biostatistics Unit, Scientific Directorate, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Agnese Fabbri
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
| | - Julio Rodrigo Giron Berrios
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
| | - Eleonora Marrucci
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
| | - Cristina Fiore
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
| | - Enzo Maria Ruggeri
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
| |
Collapse
|
14
|
Shaker ME, Gomaa HAM, Hazem SH, Abdelgawad MA, El-Mesery M, Shaaban AA. Mitigation of acetaminophen-induced liver toxicity by the novel phosphatidylinositol 3-kinase inhibitor alpelisib. Front Pharmacol 2023; 14:1212771. [PMID: 37608890 PMCID: PMC10441125 DOI: 10.3389/fphar.2023.1212771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/26/2023] [Indexed: 08/24/2023] Open
Abstract
The sterile inflammatory response mediated by Toll-like receptors (TLRs) 4 and 9 is implicated in the massive hepatic damage caused by acetaminophen (APAP)-overdose. There is a crosstalk between TLR-dependent signaling with other intracellular kinases like phosphatidylinositol 3-kinases (PI3Ks). Nevertheless, the detailed role of PI3Kα is still unknown in hepatic sterile inflammation. Accordingly, the effect of the novel PI3Kα inhibitor alpelisib was investigated in the setting of APAP-driven sterile inflammation in the liver. This was examined by pretreating mice with alpelisib (5 and 10 mg/kg, oral) 2 h before APAP (500 mg/kg, i.p.)-intoxication. The results indicated that alpelisib dose-dependently lowered APAP-induced escalation in serum liver function biomarkers and hepatic necroinflammation score. Alpelisib also attenuated APAP-induced rise in cleaved caspase 3 and proliferating cell nuclear antigen (PCNA) in the liver hepatocytes, as indices for apoptosis and proliferation. Mechanistically, inhibition of PI3Kα by alpelisib limited APAP-induced overproduction of the pro-inflammatory tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 in the blood circulation via switching off the activation of several signal transduction proteins, including extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), signal transducer and activator of transcription-3 (Stat-3), glycogen Synthase Kinase (GSK)-3β and nuclear factor (NF)-κB. Alpelisib also impaired APAP-instigated immune cell infiltration in the liver via reducing systemic granulocyte/macrophage-colony stimulating factor (GM-CSF) release and reversed APAP-induced abnormalities in the systemic and hepatic levels of the anti-inflammatory IL-10 and IL-22. In conclusion, selective modulation of the PI3Kα activity by alpelisib can hinder the inflammatory response and infiltration of immune cells occurring by APAP-hepatotoxicity.
Collapse
Affiliation(s)
- Mohamed E. Shaker
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Hesham A. M. Gomaa
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Sara H. Hazem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al-Jawf, Saudi Arabia
| | - Mohamed El-Mesery
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Ahmed A. Shaaban
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
15
|
Li X, Zhi Y, Li J, Lei X, Ju Y, Zhang Y, Zheng Y, Kong X, Xue F, Zhong W, Chen X, Tang J, Li X, Mao Y. Single-cell RNA sequencing to reveal non-parenchymal cell heterogeneity and immune network of acetaminophen-induced liver injury in mice. Arch Toxicol 2023; 97:1979-1995. [PMID: 37202523 DOI: 10.1007/s00204-023-03513-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/26/2023] [Indexed: 05/20/2023]
Abstract
The role of non-parenchymal cells (NPCs) in the early phase of acetaminophen (APAP)-induced liver injury (AILI) remains unclear. Therefore, single-cell sequencing (scRNA-seq) was performed to explore the heterogeneity and immune network of NPCs in the livers of mice with AILI. Mice were challenged with saline, 300 mg/kg APAP, or 750 mg/kg APAP (n = 3 for each group). After 3 h, the liver samples were collected, digested, and subjected to scRNA-seq. Immunohistochemistry and immunofluorescence were performed to confirm the expression of Makorin ring finger protein 1 (Mkrn1). We identified 14 distinct cell subtypes among the 120,599 cells. A variety of NPCs were involved, even in the early stages of AILI, indicating highly heterogeneous transcriptome dynamics. Cholangiocyte cluster 3, which had high deleted in malignant brain tumors 1 (Dmbt1) expression, was found to perform drug metabolism and detoxification functions. Liver sinusoidal endothelial cells exhibited fenestrae loss and angiogenesis. Macrophage cluster 1 displayed a M1 polarization phenotype, whereas cluster 3 tended to exhibit M2 polarization. Kupffer cells (KCs) exhibited pro-inflammatory effects due to the high expression of Cxcl2. qRT-PCR and western blotting verified that the LIFR-OSM axis might promote the activation of MAPK signaling pathway in RAW264.7 macrophages. Mkrn1 was highly expressed in the liver macrophages of AILI mice and AILI patients. Interaction patterns between macrophages/KCs and other NPCs were complex and diverse. NPCs were highly heterogeneous and were involved in the immune network during the early phase of AILI. In addition, we propose that Mkrn1 may serve as a potential biomarker of AILI.
Collapse
Affiliation(s)
- Xiaoyun Li
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Diseases, NHC Key Laboratory of Digestive Diseases, Shanghai Research Center of Fatty Liver Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Zhi
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Diseases, NHC Key Laboratory of Digestive Diseases, Shanghai Research Center of Fatty Liver Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Li
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Diseases, NHC Key Laboratory of Digestive Diseases, Shanghai Research Center of Fatty Liver Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaohong Lei
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Diseases, NHC Key Laboratory of Digestive Diseases, Shanghai Research Center of Fatty Liver Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Ju
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yuting Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yufan Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xiaming Kong
- Singleron Biotechnologies Ltd, Nanjing, Jiangsu, China
| | - Feng Xue
- Department of Liver Surgery and Liver Transplantation Center, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Zhong
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Diseases, NHC Key Laboratory of Digestive Diseases, Shanghai Research Center of Fatty Liver Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyu Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Diseases, NHC Key Laboratory of Digestive Diseases, Shanghai Research Center of Fatty Liver Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jieting Tang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Diseases, NHC Key Laboratory of Digestive Diseases, Shanghai Research Center of Fatty Liver Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Xiaobo Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Yimin Mao
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Diseases, NHC Key Laboratory of Digestive Diseases, Shanghai Research Center of Fatty Liver Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
16
|
Yang T, Qu X, Zhao J, Wang X, Wang Q, Dai J, Zhu C, Li J, Jiang L. Macrophage PTEN controls STING-induced inflammation and necroptosis through NICD/NRF2 signaling in APAP-induced liver injury. Cell Commun Signal 2023; 21:160. [PMID: 37370115 DOI: 10.1186/s12964-023-01175-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) signaling has been known to play a critical role in maintaining cellular and tissue homeostasis, which also has an essential role in the inflammatory response. However, it remains unidentified whether and how the macrophage PTEN may govern the innate immune signaling stimulator of interferon genes (STING) mediated inflammation and hepatocyte necroptosis in APAP-induced liver injury (AILI). METHODS Myeloid-specific PTEN knockout (PTENM-KO) and floxed PTEN (PTENFL/FL) mice were treated with APAP (400 mg/kg) or PBS. In a parallel in vitro study, bone marrow-derived macrophages (BMMs) were isolated from these conditional knockout mice and transfected with CRISPR/Cas9-mediated Notch1 knockout (KO) or CRISPR/Cas9-mediated STING activation vector followed by LPS (100 ng/ml) stimulation. RESULTS Here, we report that myeloid-specific PTEN knockout (PTENM-KO) mice were resistant to oxidative stress-induced hepatocellular injury with reduced macrophage/neutrophil accumulation and proinflammatory mediators in AILI. PTENM-KO increased the interaction of nuclear Notch intracellular domain (NICD) and nuclear factor (erythroid-derived 2)-like 2 (NRF2) in the macrophage nucleus, reducing reactive oxygen species (ROS) generation. Mechanistically, it is worth noting that macrophage NICD and NRF2 co-localize within the nucleus under inflammatory conditions. Additionally, Notch1 promotes the interaction of immunoglobulin kappa J region (RBPjκ) with NRF2. Disruption of the Notch1 signal in PTEN deletion macrophages, reduced RBPjκ and NRF2 binding, and activated STING signaling. Moreover, PTENM-KO macrophages with STING activated led to ROS generation and TNF-α release, resulting in hepatocyte necroptosis upon co-culture with primary hepatocytes. CONCLUSIONS Our findings demonstrate that the macrophage PTEN-NICD/NRF2-STING axis is critical to regulating oxidative stress-induced liver inflammation and necroptosis in AILI and implies the therapeutic potential for managing sterile liver inflammation. Video Abstract.
Collapse
Affiliation(s)
- Tao Yang
- Department of Infectious Diseases, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
- Department of Respiratory and Critical Care Medicine, The Affiliated People's Hospital of Jiangsu University, The Zhenjiang Clinical Medical College of Nanjing Medical University, Zhenjiang, China
| | - Xiaoye Qu
- Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiaying Zhao
- Department of Infectious Diseases, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Xiao Wang
- Department of Infectious Diseases, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Qian Wang
- Department of Infectious Diseases, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Jingjing Dai
- Department of Infectious Diseases, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Chuanlong Zhu
- Department of Infectious Diseases, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Jun Li
- Department of Infectious Diseases, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China.
| | - Longfeng Jiang
- Department of Infectious Diseases, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China.
| |
Collapse
|
17
|
Ishida Y, Zhang S, Kuninaka Y, Ishigami A, Nosaka M, Harie I, Kimura A, Mukaida N, Kondo T. Essential Involvement of Neutrophil Elastase in Acute Acetaminophen Hepatotoxicity Using BALB/c Mice. Int J Mol Sci 2023; 24:ijms24097845. [PMID: 37175553 PMCID: PMC10177873 DOI: 10.3390/ijms24097845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Intense neutrophil infiltration into the liver is a characteristic of acetaminophen-induced acute liver injury. Neutrophil elastase is released by neutrophils during inflammation. To elucidate the involvement of neutrophil elastase in acetaminophen-induced liver injury, we investigated the efficacy of a potent and specific neutrophil elastase inhibitor, sivelestat, in mice with acetaminophen-induced acute liver injury. Intraperitoneal administration of 750 mg/kg of acetaminophen caused severe liver damage, such as elevated serum transaminase levels, centrilobular hepatic necrosis, and neutrophil infiltration, with approximately 50% mortality in BALB/c mice within 48 h of administration. However, in mice treated with sivelestat 30 min after the acetaminophen challenge, all mice survived, with reduced serum transaminase elevation and diminished hepatic necrosis. In addition, mice treated with sivelestat had reduced NOS-II expression and hepatic neutrophil infiltration after the acetaminophen challenge. Furthermore, treatment with sivelestat at 3 h after the acetaminophen challenge significantly improved survival. These findings indicate a new clinical application for sivelestat in the treatment of acetaminophen-induced liver failure through mechanisms involving the regulation of neutrophil migration and NO production.
Collapse
Affiliation(s)
- Yuko Ishida
- Department of Forensic Medicine, Wakayama Medical University, Wakayama 641-0012, Japan
| | - Siying Zhang
- Department of Forensic Medicine, Wakayama Medical University, Wakayama 641-0012, Japan
| | - Yumi Kuninaka
- Department of Forensic Medicine, Wakayama Medical University, Wakayama 641-0012, Japan
| | - Akiko Ishigami
- Department of Forensic Medicine, Wakayama Medical University, Wakayama 641-0012, Japan
| | - Mizuho Nosaka
- Department of Forensic Medicine, Wakayama Medical University, Wakayama 641-0012, Japan
| | - Isui Harie
- Department of Forensic Medicine, Wakayama Medical University, Wakayama 641-0012, Japan
| | - Akihiko Kimura
- Department of Forensic Medicine, Wakayama Medical University, Wakayama 641-0012, Japan
| | - Naofumi Mukaida
- Department of Forensic Medicine, Wakayama Medical University, Wakayama 641-0012, Japan
| | - Toshikazu Kondo
- Department of Forensic Medicine, Wakayama Medical University, Wakayama 641-0012, Japan
| |
Collapse
|
18
|
Chen Y, Cui T, Xiao S, Li T, Zhong Y, Tang K, Guo J, Huang S, Chen J, Li J, Wang Q, Huang J, Pan H, Gao Y. Hepatic ZBTB22-mediated detoxification ameliorates acetaminophen-induced liver injury by inhibiting pregnane X receptor signaling. iScience 2023; 26:106318. [PMID: 36950116 PMCID: PMC10025966 DOI: 10.1016/j.isci.2023.106318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/30/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Overdose acetaminophen (APAP) can cause acute liver injury (ALI), but the underlying mechanism remains undetermined. This study explored the role of hepatic Zinc Finger And BTB Domain Containing 22 (ZBTB22) in defense against APAP-mediated hepatotoxicity. The results showed that hepatic ZBTB22 expression was significantly reduced in patients with ALI and mice. In mouse primary hepatocytes (MPHs), ZBTB22 deletion aggravated APAP overdose-induced ALI, whereas ZBTB22 overexpression attenuated that pathological progression. The results were further verified in ZBTB22 over-express or knockout mice models. In parallel, hepatocyte-specific ZBTB22 knockout also enhanced ALI. Furthermore, ZBTB22 decreased pregnane X receptor (PXR) expression, and the PXR activator pregnane-16α-carbonitrile suppressed the protective effect of ZBTB22 in APAP-induced ZBTB22-overexpressing mice. Collectively, our findings highlight the protective effect of ZBTB22 against APAP-induced ALI and unravel PXR signaling as the potential mechanism. Strategies to increase hepatic ZBTB22 expression represent a promising therapeutic approach for APAP overdose-induced ALI.
Collapse
Affiliation(s)
- Yingjian Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Tianqi Cui
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Shaorong Xiao
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Tianyao Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Yadi Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Kaijia Tang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Jingyi Guo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Shangyi Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Jiabing Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Jiayu Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510080, China
- Corresponding author
| | - Jiawen Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510080, China
- Corresponding author
| | - Huafeng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510080, China
- Corresponding author
| | - Yong Gao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510080, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Corresponding author
| |
Collapse
|
19
|
Jiang P, Liu Z, Fang T, Zhang Z, Zhang Y, Wang D, Little PJ, Xu S, Weng J. Growth differentiation factor 15 is dispensable for acetaminophen-induced liver injury in mice. Basic Clin Pharmacol Toxicol 2023; 132:343-353. [PMID: 36602134 DOI: 10.1111/bcpt.13834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/20/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Acetaminophen (APAP)-induced liver injury (AILI) has been recognized as a pivotal contributor to drug-induced liver failure in Western countries, but its molecular mechanism remains poorly understood. Growth differentiation factor 15 (GDF15) is a pleiotropic factor that alleviates non-alcoholic liver steatohepatitis, liver fibrosis and liver injury. The aim of the present study was to examine the possibility whether GDF15 confers protection against AILI. We found that the gene expression of Gdf15 was increased significantly after APAP overdose in mice. Next, the role of Gdf15 in AILI was evaluated by hepatic Gdf15 overexpression (using adeno-associated virus serotype 8), injection with recombinant human GDF15 (rhGDF15) and Gdf15 knockout mice after challenge with APAP. A marked elevation of Gdf15 was observed after AILI. However, there were no significant differences in AILI-related liver injury and JNK phosphorylation after Gdf15 overexpression, rhGDF15 injection or Gdf15 deficiency. Together, we conclude that, despite a noticeable elevation of Gdf15 level after AILI, Gdf15 is dispensable for APAP-induced AILI. Our study further suggests that genomic analysis of mRNA expression after APAP overdose is of limited relevance unless followed up by a functional analysis of candidate genes in vivo.
Collapse
Affiliation(s)
- Peng Jiang
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China.,Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhenghong Liu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| | - Tingyu Fang
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| | - Zhidan Zhang
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| | - Yu Zhang
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| | - Dongdong Wang
- Centre for Metabolism, Obesity and Diabetes Research and the Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Peter J Little
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, Queensland, Australia.,Sunshine Coast Health Institute and School of Health and Behavioural Sciences, University of the Sunshine Coast, Birtinya, Queensland, Australia
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| | - Jianping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| |
Collapse
|
20
|
Liao J, Lu Q, Li Z, Li J, Zhao Q, Li J. Acetaminophen-induced liver injury: Molecular mechanism and treatments from natural products. Front Pharmacol 2023; 14:1122632. [PMID: 37050900 PMCID: PMC10083499 DOI: 10.3389/fphar.2023.1122632] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Acetaminophen (APAP) is a widely used analgesic and antipyretic over-the-counter medicine worldwide. Hepatotoxicity caused by APAP overdose is one of the leading causes of acute liver failure (ALF) in the US and in some parts of Europe, limiting its clinical application. Excessive APAP metabolism depletes glutathione and increases N-acetyl-p-benzoquinoneimide (NAPQI) levels, leading to oxidative stress, DNA damage, and cell necrosis in the liver, which in turn leads to liver damage. Studies have shown that natural products such as polyphenols, terpenes, anthraquinones, and sulforaphane can activate the hepatocyte antioxidant defense system with Nrf2 as the core player, reduce oxidative stress damage, and protect the liver. As the key enzyme metabolizing APAP into NAPQI, cytochrome P450 enzymes are also considered to be intriguing target for the treatment of APAP-induced liver injury. Here, we systematically review the hepatoprotective activity and molecular mechanisms of the natural products that are found to counteract the hepatotoxicity caused by APAP, providing reference information for future preclinical and clinical trials of such natural products.
Collapse
Affiliation(s)
- Jiaqing Liao
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, China
- School of Pharmacy, Chengdu University, Chengdu, China
| | - Qiuxia Lu
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Zhiqi Li
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Jintao Li
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, China
- School of Pharmacy, Chengdu University, Chengdu, China
| | - Qi Zhao
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
- *Correspondence: Qi Zhao, ; Jian Li,
| | - Jian Li
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, China
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
- *Correspondence: Qi Zhao, ; Jian Li,
| |
Collapse
|
21
|
Zhang L, Ma T, Yan Y, Chen YY, Zhu XH, Ren HZ. The Diagnostic and Therapeutic Value of NCAPG as a Proposed Biomarker Candidate in Acute Liver Failure. Comb Chem High Throughput Screen 2023; 26:2738-2748. [PMID: 37066775 DOI: 10.2174/1386207326666230416165707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 04/18/2023]
Abstract
BACKGROUND Acute Liver Failure (ALF) is a difficult problem to solve in clinical practice. The presence of non-SMC condensin I complex subunit G (NCAPG) has previously been linked to vascular invasion of digestive system tumors, foreshadowing poor prognosis. Its role in ALF biology, however, remains unknown. This article explores the role of NCAPG as a potential biomarker candidate for the accurate diagnosis and targeted treatment of ALF. METHODS The study included transcription data (GSE14668, GSE38941, GSE62029, GSE96851, and GSE120652) of ALF, normal tissues, and clinical samples, where NCAPG was selected as the differential gene by the "DESeq2" R package to analyze the immune cell functions and signal pathways. Furthermore, RT-qPCR and Western blot analyses were used to confirm the RNA and protein levels of NCAPG in ALF cell models, respectively. RESULTS Bioinformatics analysis revealed that NACPG was up-regulated in ALF tissues, and the functional signaling pathway was primarily associated with immune infiltration. Based on the results of clinical samples, we suggest that NCAPG was overexpressed in ALF tissues. We also found that the expression of NCAPG increased with the degree of liver injury in vitro. Enrichment analysis suggested that NCAPG influenced ALF as a PI3K/AKT pathway activator. CONCLUSION Our study suggests that NCAPG is a preliminary tool for the diagnosis of ALF. It can affect ALF via the PI3K/AKT pathway and is a potential therapeutic target to improve prognosis.
Collapse
Affiliation(s)
- Lu Zhang
- Nanjing Drum Tower Hospital, Clinical College of Xuzhou Medical University, Xuzhou, China
| | - Tao Ma
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yang Yan
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yu-Yan Chen
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xin-Hua Zhu
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Hao-Zhen Ren
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|