1
|
Fañanás‐Pueyo I, Carrera‐Castaño G, Pernas M, Oñate‐Sánchez L. Signalling and regulation of plant development by carbon/nitrogen balance. PHYSIOLOGIA PLANTARUM 2025; 177:e70228. [PMID: 40269445 PMCID: PMC12018728 DOI: 10.1111/ppl.70228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/13/2025] [Indexed: 04/25/2025]
Abstract
The two most abundant macronutrients in plant cells are carbon (C) and nitrogen (N). Coordination of their cellular metabolism is a fundamental factor in guaranteeing the optimal growth and development of plants. N availability and assimilation profoundly affect plant gene expression and modulate root and stem architecture, thus affecting whole plant growth and crop yield. N status also affects C fixation, as it is an important component of the photosynthetic machinery in leaves. Reciprocally, increasing C supply promotes N uptake and assimilation. There is extensive knowledge of the different mechanisms that plants use for sensing and signalling their nutritional status to regulate the assimilation, metabolism and transport of C and N. However, the crosstalk between C and N pathways has received much less attention. Plant growth and development are greatly affected by suboptimal C/N balance, which can arise from nutrient deficiencies or/and environmental cues. Mechanisms that integrate and respond to changes in this specific nutritional balance have started to arise. This review will examine the specific responses to C/N imbalance in plants by focusing on the main inorganic and organic metabolites involved, how they are sensed and transported, and the interconnection between the early signalling components and hormonal networks that underlies plants' adaptive responses.
Collapse
Affiliation(s)
- Iris Fañanás‐Pueyo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) ‐ Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPMPozuelo de Alarcón (Madrid)Spain
| | - Gerardo Carrera‐Castaño
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) ‐ Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPMPozuelo de Alarcón (Madrid)Spain
| | - Mónica Pernas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) ‐ Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPMPozuelo de Alarcón (Madrid)Spain
| | - Luis Oñate‐Sánchez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) ‐ Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPMPozuelo de Alarcón (Madrid)Spain
- Departamento de Biotecnología‐Biología VegetalEscuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPMMadridSpain
| |
Collapse
|
2
|
Korek M, Uhrig RG, Marzec M. Strigolactone insensitivity affects differential shoot and root transcriptome in barley. J Appl Genet 2025; 66:15-28. [PMID: 38877382 PMCID: PMC11762224 DOI: 10.1007/s13353-024-00885-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/24/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
Strigolactones (SLs) are plant hormones that play a crucial role in regulating various aspects of plant architecture, such as shoot and root branching. However, the knowledge of SL-responsive genes and transcription factors (TFs) that control the shaping of plant architecture remains elusive. Here, transcriptomic analysis was conducted using the SL-insensitive barley mutant hvd14.d (carried mutation in SL receptor DWARF14, HvD14) and its wild-type (WT) to unravel the differences in gene expression separately in root and shoot tissues. This approach enabled us to select more than six thousand SL-dependent genes that were exclusive to each studied organ or not tissue-specific. The data obtained, along with in silico analyses, found several TFs that exhibited changed expression between the analyzed genotypes and that recognized binding sites in promoters of other identified differentially expressed genes (DEGs). In total, 28 TFs that recognize motifs over-represented in DEG promoters were identified. Moreover, nearly half of the identified TFs were connected in a single network of known and predicted interactions, highlighting the complexity and multidimensionality of SL-related signalling in barley. Finally, the SL control on the expression of one of the identified TFs in HvD14- and dose-dependent manners was proved. Obtained results bring us closer to understanding the signalling pathways regulating SL-dependent plant development.
Collapse
Affiliation(s)
- Magdalena Korek
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Jagiellonska 28, 40-032, Katowice, Poland
| | - R Glen Uhrig
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB, T6G 2E9, Canada
| | - Marek Marzec
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Jagiellonska 28, 40-032, Katowice, Poland.
| |
Collapse
|
3
|
Fichtner F, Humphreys JL, Barbier FF, Feil R, Westhoff P, Moseler A, Lunn JE, Smith SM, Beveridge CA. Strigolactone signalling inhibits trehalose 6-phosphate signalling independently of BRC1 to suppress shoot branching. THE NEW PHYTOLOGIST 2024; 244:900-913. [PMID: 39187924 DOI: 10.1111/nph.20072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/03/2024] [Indexed: 08/28/2024]
Abstract
The phytohormone strigolactone (SL) inhibits shoot branching, whereas the signalling metabolite trehalose 6-phosphate (Tre6P) promotes branching. How Tre6P and SL signalling may interact and which molecular mechanisms might be involved remains largely unknown. Transcript profiling of Arabidopsis SL mutants revealed a cluster of differentially expressed genes highly enriched in the Tre6P pathway compared with wild-type (WT) plants or brc1 mutants. Tre6P-related genes were also differentially expressed in axillary buds of garden pea (Pisum sativum) SL mutants. Tre6P levels were elevated in the SL signalling mutant more axillary (max) growth 2 compared with other SL mutants or WT plants indicating a role of MAX2-dependent SL signalling in regulating Tre6P levels. A transgenic approach to increase Tre6P levels demonstrated that all SL mutant lines and brc1 flowered earlier, showing all of these mutants were responsive to Tre6P. Elevated Tre6P led to increased branching in WT plants but not in max2 and max4 mutants, indicating some dependency between the SL pathway and Tre6P regulation of shoot branching. By contrast, elevated Tre6P led to an enhanced branching phenotype in brc1 mutants indicating independence between BRC1 and Tre6P. A model is proposed whereby SL signalling represses branching via Tre6P and independently of the BRC1 pathway.
Collapse
Affiliation(s)
- Franziska Fichtner
- School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD, 4072, Australia
- ARC Centre for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD, 4072, Australia
- Faculty of Mathematics and Natural Sciences, Institute of Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany
- Cluster of Excellence in Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf, 40225, Germany
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Jazmine L Humphreys
- ARC Centre for Plant Success in Nature and Agriculture, School of Natural Sciences, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Francois F Barbier
- School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD, 4072, Australia
- ARC Centre for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD, 4072, Australia
- Institute for Plant Sciences of Montpellier, University of Montpellier, CNRS, INRAe, Institut Agro, Montpellier, 34060, France
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Philipp Westhoff
- Cluster of Excellence in Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Anna Moseler
- INRES-Chemical Signalling, University of Bonn, Bonn, 53113, Germany
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Steven M Smith
- ARC Centre for Plant Success in Nature and Agriculture, School of Natural Sciences, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Christine A Beveridge
- School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD, 4072, Australia
- ARC Centre for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD, 4072, Australia
| |
Collapse
|
4
|
Palayam M, Yan L, Nagalakshmi U, Gilio AK, Cornu D, Boyer FD, Dinesh-Kumar SP, Shabek N. Structural insights into strigolactone catabolism by carboxylesterases reveal a conserved conformational regulation. Nat Commun 2024; 15:6500. [PMID: 39090154 PMCID: PMC11294565 DOI: 10.1038/s41467-024-50928-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 07/18/2024] [Indexed: 08/04/2024] Open
Abstract
Phytohormone levels are regulated through specialized enzymes, participating not only in their biosynthesis but also in post-signaling processes for signal inactivation and cue depletion. Arabidopsis thaliana (At) carboxylesterase 15 (CXE15) and carboxylesterase 20 (CXE20) have been shown to deplete strigolactones (SLs) that coordinate various growth and developmental processes and function as signaling molecules in the rhizosphere. Here, we elucidate the X-ray crystal structures of AtCXE15 (both apo and SL intermediate bound) and AtCXE20, revealing insights into the mechanisms of SL binding and catabolism. The N-terminal regions of CXE15 and CXE20 exhibit distinct secondary structures, with CXE15 characterized by an alpha helix and CXE20 by an alpha/beta fold. These structural differences play pivotal roles in regulating variable SL hydrolysis rates. Our findings, both in vitro and in planta, indicate that a transition of the N-terminal helix domain of CXE15 between open and closed forms facilitates robust SL hydrolysis. The results not only illuminate the distinctive process of phytohormone breakdown but also uncover a molecular architecture and mode of plasticity within a specific class of carboxylesterases.
Collapse
Affiliation(s)
- Malathy Palayam
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA, USA
| | - Linyi Yan
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA, USA
| | - Ugrappa Nagalakshmi
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA, USA
| | - Amelia K Gilio
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA, USA
| | - David Cornu
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - François-Didier Boyer
- Institut de Chimie des Substances Naturelles, Université Paris-Saclay, CNRS UPR 2301, Gif-sur-Yvette, France
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA, USA
- The Genome Center, University of California-Davis, Davis, CA, USA
| | - Nitzan Shabek
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA, USA.
| |
Collapse
|
5
|
Tang Z, Huang X, Huang K. Strigolactones affect the yield of Tartary buckwheat by regulating endogenous hormone levels. BMC PLANT BIOLOGY 2024; 24:320. [PMID: 38654155 DOI: 10.1186/s12870-024-05029-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND As a newly class of endogenous phytohormones, strigolactones (SLs) regulate crop growth and yield formation by interacting with other hormones. However, the physiological mechanism of SLs affect the yield by regulating the balance of endogenous hormones of Tartary buckwheat is still unclear. RESULTS In this study, a 2-year field experiment was conducted on Tartary buckwheat (Jinqiao 2) to study the effects of different concentrations (0, 10, and 20 µmol/L) of artificial synthetic analogs of SLs (rac-GR24) and inhibitor of SL synthesis (Tis-108) on the growth, endogenous-hormone content, and yield of Tartary buckwheat. The main-stem branch number, grain number per plant, grain weight per plant, and yield of Tartary buckwheat continuously decreased with increased rac-GR24 concentration, whereas the main-stem diameter and plant height initially increased and then decreased. Rac-GR24 treatment significantly increased the content of SLs and abscisic acid (ABA) in grains, and it decreased the content of Zeatin (Z) + Zeatin nucleoside (ZR). Conversely, Tis-108 treatment decreased the content of SLs and ABA but increased the content of Z + ZR. Results of correlation analysis showed that the content of ABA and SLs, the ratio of SLs/(Z + ZR), SLs/ABA, and ABA/(Z + ZR) were significantly negatively correlated with the yield of Tartary buckwheat, and that Z + ZR content was significantly positively correlated with the yield. Regression analysis further showed that ABA/ (Z + ZR) can explain 58.4% of the variation in yield. CONCLUSIONS In summary, by adjusting the level of endogenous SLs in Tartary buckwheat, the balance of endogenous hormones in grains can be changed, thereby exerting the effect on yield. The results can provide a new agronomic method for the high-yield cultivation of Tartary buckwheat.
Collapse
Affiliation(s)
- Zhuolei Tang
- School of Life Science, Guizhou Normal University, Guiyang, 550001, China
| | - Xiaoyan Huang
- School of Life Science, Guizhou Normal University, Guiyang, 550001, China
| | - Kaifeng Huang
- School of Life Science, Guizhou Normal University, Guiyang, 550001, China.
| |
Collapse
|
6
|
Zhang C, Wang F, Jiao P, Liu J, Zhang H, Liu S, Guan S, Ma Y. The Overexpression of Zea mays Strigolactone Receptor Gene D14 Enhances Drought Resistance in Arabidopsis thaliana L. Int J Mol Sci 2024; 25:1327. [PMID: 38279328 PMCID: PMC10816222 DOI: 10.3390/ijms25021327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
Strigolactones (SLs) represent a recently identified class of plant hormones that are crucial for plant tillering and mycorrhizal symbiosis. The D14 gene, an essential receptor within the SLs signaling pathway, has been well-examined in crops, like rice (Oryza sativa L.) and Arabidopsis (Arabidopsis thaliana L.), yet the research on its influence in maize (Zea mays L.) remains scarce. This study successfully clones and establishes Arabidopsis D14 gene overexpression lines (OE lines). When compared with the wild type (WT), the OE lines exhibited significantly longer primary roots during germination. By seven weeks of age, these lines showed reductions in plant height and tillering, alongside slight decreases in rosette and leaf sizes, coupled with early aging symptoms. Fluorescence-based quantitative assays indicated notable hormonal fluctuations in OE lines versus the WT, implying that D14 overexpression disrupts plant hormonal homeostasis. The OE lines, exposed to cold, drought, and sodium chloride stressors during germination, displayed an especially pronounced resistance to drought. The drought resistance of OE lines, as evident from dehydration-rehydration assays, outmatched that of the WT lines. Additionally, under drought conditions, the OE lines accumulated less reactive oxygen species (ROS) as revealed by the assessment of the related physiological and biochemical parameters. Upon confronting the pathogens Pseudomonas syringae pv. tomato DC3000 (Pst DC3000), post-infection, fluorescence quantitative investigations showed a significant boost in the salicylic acid (SA)-related gene expression in OE lines compared to their WT counterparts. Overall, our findings designate the SL receptor D14 as a key upregulator of drought tolerance and a regulator in the biotic stress response, thereby advancing our understanding of the maize SL signaling pathway by elucidating the function of the pivotal D14 gene.
Collapse
Affiliation(s)
- Chen Zhang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (C.Z.); (F.W.)
| | - Fanhao Wang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (C.Z.); (F.W.)
| | - Peng Jiao
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China; (P.J.); (J.L.); (H.Z.); (S.L.)
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Jiaqi Liu
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China; (P.J.); (J.L.); (H.Z.); (S.L.)
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Honglin Zhang
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China; (P.J.); (J.L.); (H.Z.); (S.L.)
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Siyan Liu
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China; (P.J.); (J.L.); (H.Z.); (S.L.)
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Shuyan Guan
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China; (P.J.); (J.L.); (H.Z.); (S.L.)
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Yiyong Ma
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China; (P.J.); (J.L.); (H.Z.); (S.L.)
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
7
|
Ochatt SJ. Less Frequently Used Growth Regulators in Plant Tissue Culture. Methods Mol Biol 2024; 2827:109-143. [PMID: 38985266 DOI: 10.1007/978-1-0716-3954-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Plant growth regulators are routinely added to in vitro culture media to foster the growth and differentiation of the cells, tissues, and organs. However, while the literature on usage of the more common auxins, cytokinins, gibberellins, abscisic acid, and ethylene is vast, other compounds that also have shown a growth-regulating activity have not been studied as frequently. Such substances are also capable of modulating the responses of plant cells and tissues in vitro by regulating their growth, differentiation, and regeneration competence, but also by enhancing their responses toward biotic and abiotic stress agents and improving the production of secondary metabolites of interest. This chapter will discuss the in vitro effects of several of such less frequently added plant growth regulators, including brassinosteroids (BRS), strigolactones (SLs), phytosulfokines (PSKs), methyl jasmonate, salicylic acid (SA), sodium nitroprusside (SNP), hydrogen sulfite, various plant growth retardants and inhibitors (e.g., ancymidol, uniconazole, flurprimidol, paclobutrazol), and polyamines.
Collapse
Affiliation(s)
- Sergio J Ochatt
- Agroécologie, InstitutAgro Dijon, INRAE, Université de Bourgogne, Université de Bourgogne Franche-Comté, Dijon, France.
| |
Collapse
|
8
|
Kelly JH, Brewer PB. How do brassinosteroids fit in bud outgrowth models? JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:13-16. [PMID: 37846132 PMCID: PMC10735685 DOI: 10.1093/jxb/erad394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
A network of plant hormonal signals coordinates plant branching. Brassinosteroids are important in this network, acting as repressors of the strigolactone pathway and TEOSINTE BRANCHED1 .
Collapse
Affiliation(s)
- Jack H Kelly
- Waite Research Institute, School of Agriculture Food & Wine, The University of Adelaide, Adelaide, SA 5064, Australia
| | - Philip B Brewer
- Waite Research Institute, School of Agriculture Food & Wine, The University of Adelaide, Adelaide, SA 5064, Australia
- Australian Research Council Training Centre for Future Crops Development, The University of Adelaide, Adelaide, SA 5064, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
9
|
Russo G, Capitanio S, Trasoletti M, Morabito C, Korwin Krukowski P, Visentin I, Genre A, Schubert A, Cardinale F. Strigolactones promote the localization of the ABA exporter ABCG25 at the plasma membrane in root epidermal cells of Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5881-5895. [PMID: 37519212 DOI: 10.1093/jxb/erad298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/29/2023] [Indexed: 08/01/2023]
Abstract
The phytohormones strigolactones crosstalk with abscisic acid (ABA) in acclimation to osmotic stress, as ascertained in leaves. However, our knowledge about underground tissues is limited, and lacking in Arabidopsis: whether strigolactones affect ABA transport across plasma membranes has never been addressed. We evaluated the effect of strigolactones on the localization of ATP BINDING CASSETTE G25 (ABCG25), an ABA exporter in Arabidopsis thaliana. Wild-type, strigolactone-insensitive, and strigolactone-depleted seedlings expressing a green fluorescent protein:ABCG25 construct were treated with ABA or strigolactones, and green fluorescent protein was quantified by confocal microscopy in different subcellular compartments of epidermal root cells. We show that strigolactones promote the localization of an ABA transporter at the plasma membrane by enhancing its endosomal recycling. Genotypes altered in strigolactone synthesis or perception are not impaired in ABCG25 recycling promotion by ABA, which acts downstream or independent of strigolactones in this respect. Additionally, we confirm that osmotic stress decreases strigolactone synthesis in A. thaliana root cells, and that this decrease may support local ABA retention under low water availability by allowing ABCG25 internalization. Thus, we propose a new mechanism for ABA homeostasis regulation in the context of osmotic stress acclimation: the fine-tuning by strigolactones of ABCG25 localization in root cells.
Collapse
Affiliation(s)
- Giulia Russo
- PlantStressLab, DISAFA, University of Turin, Largo Braccini 2, I-10095 Grugliasco (TO), Italy
| | - Serena Capitanio
- PlantStressLab, DISAFA, University of Turin, Largo Braccini 2, I-10095 Grugliasco (TO), Italy
- DBIOS, University of Turin, Viale Mattioli 25, I-10125 Torino, Italy
| | - Marta Trasoletti
- PlantStressLab, DISAFA, University of Turin, Largo Braccini 2, I-10095 Grugliasco (TO), Italy
| | - Cristina Morabito
- PlantStressLab, DISAFA, University of Turin, Largo Braccini 2, I-10095 Grugliasco (TO), Italy
| | - Paolo Korwin Krukowski
- PlantStressLab, DISAFA, University of Turin, Largo Braccini 2, I-10095 Grugliasco (TO), Italy
| | - Ivan Visentin
- PlantStressLab, DISAFA, University of Turin, Largo Braccini 2, I-10095 Grugliasco (TO), Italy
| | - Andrea Genre
- DBIOS, University of Turin, Viale Mattioli 25, I-10125 Torino, Italy
| | - Andrea Schubert
- PlantStressLab, DISAFA, University of Turin, Largo Braccini 2, I-10095 Grugliasco (TO), Italy
| | - Francesca Cardinale
- PlantStressLab, DISAFA, University of Turin, Largo Braccini 2, I-10095 Grugliasco (TO), Italy
| |
Collapse
|
10
|
Dun EA, Brewer PB, Gillam EMJ, Beveridge CA. Strigolactones and Shoot Branching: What Is the Real Hormone and How Does It Work? PLANT & CELL PHYSIOLOGY 2023; 64:967-983. [PMID: 37526426 PMCID: PMC10504579 DOI: 10.1093/pcp/pcad088] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/02/2023]
Abstract
There have been substantial advances in our understanding of many aspects of strigolactone regulation of branching since the discovery of strigolactones as phytohormones. These include further insights into the network of phytohormones and other signals that regulate branching, as well as deep insights into strigolactone biosynthesis, metabolism, transport, perception and downstream signaling. In this review, we provide an update on recent advances in our understanding of how the strigolactone pathway co-ordinately and dynamically regulates bud outgrowth and pose some important outstanding questions that are yet to be resolved.
Collapse
Affiliation(s)
- Elizabeth A Dun
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD 4072, Australia
- School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Philip B Brewer
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD 4072, Australia
- Waite Research Institute, School of Agriculture Food & Wine, The University of Adelaide, Adelaide, SA 5064, Australia
| | - Elizabeth M J Gillam
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Christine A Beveridge
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD 4072, Australia
- School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
11
|
Kurepa J, Smalle JA. Plant Hormone Modularity and the Survival-Reproduction Trade-Off. BIOLOGY 2023; 12:1143. [PMID: 37627027 PMCID: PMC10452219 DOI: 10.3390/biology12081143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
Biological modularity refers to the organization of living systems into separate functional units that interact in different combinations to promote individual well-being and species survival. Modularity provides a framework for generating and selecting variations that can lead to adaptive evolution. While the exact mechanisms underlying the evolution of modularity are still being explored, it is believed that the pressure of conflicting demands on limited resources is a primary selection force. One prominent example of conflicting demands is the trade-off between survival and reproduction. In this review, we explore the available evidence regarding the modularity of plant hormones within the context of the survival-reproduction trade-off. Our findings reveal that the cytokinin module is dedicated to maximizing reproduction, while the remaining hormone modules function to ensure reproduction. The signaling mechanisms of these hormone modules reflect their roles in this survival-reproduction trade-off. While the cytokinin response pathway exhibits a sequence of activation events that aligns with the developmental robustness expected from a hormone focused on reproduction, the remaining hormone modules employ double-negative signaling mechanisms, which reflects the necessity to prevent the excessive allocation of resources to survival.
Collapse
Affiliation(s)
| | - Jan A. Smalle
- Plant Physiology, Biochemistry, Molecular Biology Program, Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA;
| |
Collapse
|
12
|
Barbier F, Fichtner F, Beveridge C. The strigolactone pathway plays a crucial role in integrating metabolic and nutritional signals in plants. NATURE PLANTS 2023; 9:1191-1200. [PMID: 37488268 DOI: 10.1038/s41477-023-01453-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/24/2023] [Indexed: 07/26/2023]
Abstract
Strigolactones are rhizosphere signals and phytohormones that play crucial roles in plant development. They are also well known for their role in integrating nitrate and phosphate signals to regulate shoot and root development. More recently, sugars and citrate (an intermediate of the tricarboxylic acid cycle) were reported to inhibit the strigolactone response, with dramatic effects on shoot architecture. This Review summarizes the discoveries recently made concerning the mechanisms through which the strigolactone pathway integrates sugar, metabolite and nutrient signals. We highlight here that strigolactones and MAX2-dependent signalling play crucial roles in mediating the impacts of nutritional and metabolic cues on plant development and metabolism. We also discuss and speculate concerning the role of these interactions in plant evolution and adaptation to their environment.
Collapse
Affiliation(s)
- Francois Barbier
- School of Biological Sciences, University of Queensland, St Lucia, Queensland, Australia.
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, St Lucia, Queensland, Australia.
| | - Franziska Fichtner
- Institute of Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christine Beveridge
- School of Biological Sciences, University of Queensland, St Lucia, Queensland, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
13
|
Korek M, Marzec M. Strigolactones and abscisic acid interactions affect plant development and response to abiotic stresses. BMC PLANT BIOLOGY 2023; 23:314. [PMID: 37308831 DOI: 10.1186/s12870-023-04332-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
Strigolactones (SL) are the youngest group of plant hormones responsible for shaping plant architecture, especially the branching of shoots. However, recent studies provided new insights into the functioning of SL, confirming their participation in regulating the plant response to various types of abiotic stresses, including water deficit, soil salinity and osmotic stress. On the other hand, abscisic acid (ABA), commonly referred as a stress hormone, is the molecule that crucially controls the plant response to adverse environmental conditions. Since the SL and ABA share a common precursor in their biosynthetic pathways, the interaction between both phytohormones has been largely studied in the literature. Under optimal growth conditions, the balance between ABA and SL content is maintained to ensure proper plant development. At the same time, the water deficit tends to inhibit SL accumulation in the roots, which serves as a sensing mechanism for drought, and empowers the ABA production, which is necessary for plant defense responses. The SL-ABA cross-talk at the signaling level, especially regarding the closing of the stomata under drought conditions, still remains poorly understood. Enhanced SL content in shoots is likely to stimulate the plant sensitivity to ABA, thus reducing the stomatal conductance and improving the plant survival rate. Besides, it was proposed that SL might promote the closing of stomata in an ABA-independent way. Here, we summarize the current knowledge regarding the SL and ABA interactions by providing new insights into the function, perception and regulation of both phytohormones during abiotic stress response of plants, as well as revealing the gaps in the current knowledge of SL-ABA cross-talk.
Collapse
Affiliation(s)
- Magdalena Korek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, Katowice, 40-032, Poland.
| | - Marek Marzec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, Katowice, 40-032, Poland
| |
Collapse
|
14
|
Arellano-Saab A, Skarina T, Xu Z, McErlean CSP, Savchenko A, Lumba S, Stogios PJ, McCourt P. Structural analysis of a hormone-bound Striga strigolactone receptor. NATURE PLANTS 2023; 9:883-888. [PMID: 37264151 DOI: 10.1038/s41477-023-01423-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 04/25/2023] [Indexed: 06/03/2023]
Abstract
Strigolactones (SLs) regulate many aspects of plant development, but ambiguities remain about how this hormone is perceived because SL-complexed receptor structures do not exist. We find that when SL binds the Striga receptor, ShHTL5, a series of conformational changes relative to the unbound state occur, but these events are not sufficient for signalling. Ligand-complexed receptors, however, form internal tunnels that posit an explanation for how SL exits its receptor after hydrolysis.
Collapse
Affiliation(s)
- Amir Arellano-Saab
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Tatiana Skarina
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Zhenhua Xu
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | | | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Shelley Lumba
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Peter J Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada.
| | - Peter McCourt
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.
| |
Collapse
|
15
|
Hellens AM, Chabikwa TG, Fichtner F, Brewer PB, Beveridge CA. Identification of new potential downstream transcriptional targets of the strigolactone pathway including glucosinolate biosynthesis. PLANT DIRECT 2023; 7:e486. [PMID: 36945724 PMCID: PMC10024969 DOI: 10.1002/pld3.486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/19/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Strigolactones regulate shoot branching and many aspects of plant growth, development, and allelopathy. Strigolactones are often discussed alongside auxin because they work together to inhibit shoot branching. However, the roles and mechanisms of strigolactones and how they act independently of auxin are still elusive. Additionally, there is still much in general to be discovered about the network of molecular regulators and their interactions in response to strigolactones. Here, we conducted an experiment in Arabidopsis with physiological treatments and strigolactone mutants to determine transcriptional pathways associated with strigolactones. The three physiological treatments included shoot tip removal with and without auxin treatment and treatment of intact plants with the auxin transport inhibitor, N-1-naphthylphthalamic acid (NPA). We identified the glucosinolate biosynthesis pathway as being upregulated across strigolactone mutants indicating strigolactone-glucosinolate crosstalk. Additionally, strigolactone application cannot restore the highly branched phenotype observed in glucosinolate biosynthesis mutants, placing glucosinolate biosynthesis downstream of strigolactone biosynthesis. Oxidative stress genes were enriched across the experiment suggesting that this process is mediated through multiple hormones. Here, we also provide evidence supporting non-auxin-mediated, negative feedback on strigolactone biosynthesis. Increases in strigolactone biosynthesis gene expression seen in strigolactone mutants could not be fully restored by auxin. By contrast, auxin could fully restore auxin-responsive gene expression increases, but not sugar signaling-related gene expression. Our data also point to alternative roles of the strigolactone biosynthesis genes and potential new signaling functions of strigolactone precursors. In this study, we identify a strigolactone-specific regulation of glucosinolate biosynthesis genes indicating that the two are linked and may work together in regulating stress and shoot ranching responses in Arabidopsis. Additionally, we provide evidence for non-auxinmediated feedback on strigolactone biosynthesis and discuss this in the context of sugar signaling.
Collapse
Affiliation(s)
- Alicia M. Hellens
- School of Biological SciencesUniversity of QueenslandSt. LuciaQueenslandAustralia
- ARC Centre for Plant Success in Nature and AgricultureThe University of QueenslandSt LuciaQueenslandAustralia
| | - Tinashe G. Chabikwa
- School of Biological SciencesUniversity of QueenslandSt. LuciaQueenslandAustralia
- QIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Franziska Fichtner
- School of Biological SciencesUniversity of QueenslandSt. LuciaQueenslandAustralia
- ARC Centre for Plant Success in Nature and AgricultureThe University of QueenslandSt LuciaQueenslandAustralia
- Institute for Plant BiochemistryHeinrich Heine UniversityDüsseldorfGermany
| | - Philip B. Brewer
- School of Biological SciencesUniversity of QueenslandSt. LuciaQueenslandAustralia
- ARC Centre for Plant Success in Nature and AgricultureThe University of QueenslandSt LuciaQueenslandAustralia
- School of Agriculture, Food and WineThe University of AdelaideGlen OsmondSouth AustraliaAustralia
| | - Christine A. Beveridge
- School of Biological SciencesUniversity of QueenslandSt. LuciaQueenslandAustralia
- ARC Centre for Plant Success in Nature and AgricultureThe University of QueenslandSt LuciaQueenslandAustralia
| |
Collapse
|