1
|
Vajeethaveesin N, Kanitwithayanun J, Suriyo T, Chujan S, Satayavivad J. Perfluorooctane sulfonic acid: a possible risk factor of endothelial dysfunction based on in silico and in vitro studies. Arch Toxicol 2025:10.1007/s00204-025-04047-7. [PMID: 40244404 DOI: 10.1007/s00204-025-04047-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/27/2025] [Indexed: 04/18/2025]
Abstract
Perfluorooctane sulfonic acid (PFOS) is a fluorinated chemical utilized in a variety of industrial and household products. PFOS has been detected in human serum and is associated with multiple human adverse health effects. Epidemiological evidence has linked PFOS exposure to endothelial dysfunction, which is a key contributor to atherosclerosis. However, the underlying mechanisms of PFOS-induced endothelial dysfunction associated atherosclerosis has not been investigated. In the present study, human microvascular endothelial cells (HMEC-1) exposed to PFOS (15 μM) for 72 h, mimicking long-term exposure. We further employed integrated RNA-sequencing (RNA-seq) and transcriptomic analysis to identify differentially expressed genes (DEGs) for biological alterations: gene ontology (GO), pathway enrichment analysis (KEGG), protein-protein interaction network and modular clustering analysis. Furthermore, the Metascape database was used for disease association, tissue specificity, and transcription factor analysis. Hub genes were verified using atherosclerosis patient data sets from the GEO dataset. Alteration of hub genes in patients was then validated using immunoblotting and ELISA. Our results revealed that PFOS altered amino acid biosynthesis, lipid metabolism and induced the ER-stress response through the HRI/eIF2α/ATF4 pathway, leading to endothelial dysfunction. Interestingly, we found that PFOS induced inflammation by increasing COX-2, ICAM-1 and IL-6 expression through NF-κB and JAK2/STAT3 pathway in endothelial cells. Moreover, up-regulated C/EBPβ and ATF4 were observed in both patients and PFOS-exposed endothelium, which may use as an early biomarker and may have a potential role in PFOS-induced endothelial dysfunction. These findings provide novel insight into the underlying molecular mechanisms of PFOS-induced endothelial dysfunction associated with atherosclerosis.
Collapse
Affiliation(s)
- Nutsira Vajeethaveesin
- Environmental Toxicology Program, Chulabhorn Graduate Institute, Bangkok, 10210, Thailand
| | - Jantamas Kanitwithayanun
- Environmental Toxicology Program, Chulabhorn Graduate Institute, Bangkok, 10210, Thailand
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
- Center of Excellence On Environmental Health and Toxicology, Bangkok, 10400, Thailand
| | - Tawit Suriyo
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
- Center of Excellence On Environmental Health and Toxicology, Bangkok, 10400, Thailand
| | - Suthipong Chujan
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, 10210, Thailand.
- Center of Excellence On Environmental Health and Toxicology, Bangkok, 10400, Thailand.
| | - Jutamaad Satayavivad
- Environmental Toxicology Program, Chulabhorn Graduate Institute, Bangkok, 10210, Thailand.
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, 10210, Thailand.
- Center of Excellence On Environmental Health and Toxicology, Bangkok, 10400, Thailand.
| |
Collapse
|
2
|
Vigo M, Placci M, Muro S. Isoform-specific vs. isoform-universal drug targeting: a new targeting paradigm illustrated by new anti-ICAM-1 antibodies. J Drug Target 2025; 33:562-574. [PMID: 39639798 DOI: 10.1080/1061186x.2024.2438884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/20/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Drug targeting can be achieved by coupling drugs or their carriers to affinity molecules, mostly antibodies (Abs), which recognise specific protein targets. However, most proteins are not expressed in an exclusive configuration but as various isoforms. Hence, selected targeting molecules may fail to target with enough efficiency in clinical trials, which is overlooked. We illustrate this by targeting intercellular adhesion molecule 1 (ICAM-1), a cell-surface protein overexpressed in many pathologies. Most ICAM-1 targeting studies used Ab R6.5, which binds ICAM-1 domain 2 (D2). Yet, literature and our data show that D2 is frequently absent among ICAM-1 isoforms. We thus produced a battery of five new Abs (B4, B6, B11, C12 and G2) and tested their ability to recognise both full-length and -D2 ICAM-1. In solution, all Abs recognised both ICAM-1 forms (from 5.3 × 1011 to 4.2 × 1012 sum intensity/well). Coating them on nanocarriers (NCs) rendered G2 specific against -D2 ICAM-1 (4.2 × 106 NCs/well) while other Abs kept their dual recognition (from 6.4 × 106 to 2.2 × 107 NCs/well). All Abs induced NC intracellular uptake in respective cells (from 42% to 85%) and displayed good cross-species reactivity (from 4.4 × 1011 to 2.6 × 1012 sum intensity/well). These Abs represent valuable tools to target ICAM-1 and illustrate a new targeting paradigm that may improve classical strategies.
Collapse
Affiliation(s)
- Marco Vigo
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Biomedicine Doctorate Program, University of Barcelona, Barcelona, Spain
| | - Marina Placci
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Biotechnology Doctorate Program, University of Barcelona, Barcelona, Spain
| | - Silvia Muro
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Institution of Catalonia for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
3
|
Ferraz-Amaro I, Ibrahim-Achi Z, de Vera-González A, González-Delgado A, Renuncio-García M, Vicente-Rabaneda EF, Ocejo-Vinyals JG, Castañeda S, González-Gay MÁ. Associations Between Soluble Cell Adhesion Molecules and Cardiovascular Comorbidities in Systemic Sclerosis: Implications for Insulin Resistance. J Clin Med 2025; 14:1467. [PMID: 40094867 PMCID: PMC11900250 DOI: 10.3390/jcm14051467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025] Open
Abstract
Background: Soluble cell adhesion molecules such as sICAM-1 (soluble intercellular adhesion molecule-1), sVCAM-1 (soluble vascular cell adhesion molecule-1), and P-selectin have been implicated in cardiovascular disease pathogenesis in the general population. Cardiovascular disease is prevalent among patients with systemic sclerosis (SSc). This study aims to investigate potential associations between the serum levels of these adhesion molecules and specific cardiovascular comorbidities in SSc patients. Methods: This cross-sectional study encompassed 81 individuals with SSc. All SSc patients underwent a complete clinical evaluation. Serum sICAM-1, sVCAM-1, and P-selectin levels, lipid profiles and insulin resistance indices, and carotid ultrasound were assessed. Multivariable linear regression analyses were employed to investigate potential associations between adhesion molecule levels (sICAM, sVCAM, and P-selectin) and both SSc-specific manifestations and cardiometabolic parameters. Results: The associations of disease-related parameters with sICAM-1, sVCAM-1, and P-selectin levels were limited. Notably, only the modified Rodnan skin score exhibited a significant positive association with sVCAM-1 levels, while no such associations were observed for sICAM-1 and P-selectin. Regarding cardiovascular disease-related data, sVCAM-1 significantly correlated with higher values of insulin resistance and beta-cell function indices. In the case of P-selectin, although a trend was observed, statistical significance was not reached. Conclusions: In patients with SSc, serum values of sVCAM-1 independently correlate with insulin resistance. The assessment of CAMs in patients with SSc could serve as a valuable clinical tool for identifying individuals with increased insulin resistance and a higher risk of cardiovascular disease.
Collapse
Affiliation(s)
- Iván Ferraz-Amaro
- Division of Rheumatology, Hospital Universitario de Canarias, 38320 Tenerife, Spain
- Department of Internal Medicine, University of La Laguna (ULL), 38200 Tenerife, Spain
| | - Zeina Ibrahim-Achi
- Division of Angiology and Vascular Surgery, Hospital Universitario de Canarias, 38320 Tenerife, Spain;
| | - Antonia de Vera-González
- Division of Central Laboratory, Hospital Universitario de Canarias, 38200 Tenerife, Spain; (A.d.V.-G.); (A.G.-D.)
| | - Alejandra González-Delgado
- Division of Central Laboratory, Hospital Universitario de Canarias, 38200 Tenerife, Spain; (A.d.V.-G.); (A.G.-D.)
| | | | - Esther F. Vicente-Rabaneda
- Division of Rheumatology, Hospital Universitario de La Princesa, IIS-Princesa, 28006 Madrid, Spain; (E.F.V.-R.); (S.C.)
| | - J. Gonzalo Ocejo-Vinyals
- Division of Immunology, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Valdecilla (IDIVAL), 39008 Santander, Spain;
| | - Santos Castañeda
- Division of Rheumatology, Hospital Universitario de La Princesa, IIS-Princesa, 28006 Madrid, Spain; (E.F.V.-R.); (S.C.)
| | - Miguel Á. González-Gay
- Division of Rheumatology, IIS-Fundación Jiménez Díaz, 28006 Madrid, Spain
- Medicine and Psychiatry Department, University of Cantabria, 39005 Santander, Spain
| |
Collapse
|
4
|
Li L, Peng R, Wang C, Chen X, Gheyret D, Guan S, Chen B, Liu Y, Liu X, Cao Y, Han C, Xiong J, Li F, Lu T, Jia H, Li K, Wang J, Zhang X, Xu J, Wang Y, Xu X, Li T, Zhang J, Zhang S. β2 integrin regulates neutrophil trans endothelial migration following traumatic brain injury. Cell Commun Signal 2025; 23:70. [PMID: 39923080 PMCID: PMC11806581 DOI: 10.1186/s12964-025-02071-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/29/2025] [Indexed: 02/10/2025] Open
Abstract
Neutrophils are the first responders among peripheral immune cells to infiltrate the central nervous system following a traumatic brain injury (TBI), triggering neuroinflammation that can exacerbate secondary tissue damage. The precise molecular controls that dictate the inflammatory behavior of neutrophils post-TBI, however, remain largely elusive. Our comprehensive analysis of the molecular landscape surrounding the trauma in TBI mice has revealed a significant alteration in the abundance of β2 integrin (ITGB2), predominantly expressed by neutrophils and closely associated with immune responses. Using the fluid percussion injury (FPI) mouse model, we investigated the therapeutic efficacy of Rovelizumab, an agent that blocks ITGB2. The treatment has demonstrated significant improvements in neurologic function in TBI mice, attenuating blood-brain barrier permeability, mitigating oxidative stress and inflammatory mediator release, and enhancing cerebral perfusion. Moreover, ITGB2 blockade has effectively limited the adherence, migration, and infiltration of neutrophils, and has impeded the formation of neutrophil extracellular traps (NETs) upon their activation. Finally, it was demonstrated that ITGB2 mediates these effects mainly through its interaction with intercellular adhesion molecule-1 (ICAM 1) of endotheliocyte. These findings collectively illuminate ITGB2 as a crucial molecular switch that governs the adverse effects of neutrophils post-TBI and could be targeted to improve clinical outcome in patients.
Collapse
Affiliation(s)
- Lei Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin State Key Laboratory of Experimental Hematology, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, China
| | - Ruilong Peng
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, 300200, China
| | - Cong Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin State Key Laboratory of Experimental Hematology, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, China
| | - Xin Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin State Key Laboratory of Experimental Hematology, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, China
| | - Dilmurat Gheyret
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin State Key Laboratory of Experimental Hematology, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, China
| | - Siyu Guan
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin State Key Laboratory of Experimental Hematology, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, China
| | - Bo Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin State Key Laboratory of Experimental Hematology, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, China
| | - Yafan Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin State Key Laboratory of Experimental Hematology, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, China
| | - Xilei Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yiyao Cao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Cha Han
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jianhua Xiong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin State Key Laboratory of Experimental Hematology, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, China
| | - Fanjian Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin State Key Laboratory of Experimental Hematology, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, China
| | - Taoyuan Lu
- Xuanwu Jinan Hospital, 5106 Jingshi Road, Jinan, 250000, Shandong, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Haoran Jia
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin State Key Laboratory of Experimental Hematology, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, China
| | - Kaiji Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin State Key Laboratory of Experimental Hematology, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, China
| | - Jinchao Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin State Key Laboratory of Experimental Hematology, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, China
| | - Xu Zhang
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin State Key Laboratory of Experimental Hematology, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jianye Xu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin State Key Laboratory of Experimental Hematology, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, China
| | - Yajuan Wang
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin State Key Laboratory of Experimental Hematology, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, China
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xin Xu
- Xuanwu Jinan Hospital, 5106 Jingshi Road, Jinan, 250000, Shandong, China.
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China.
| | - Tuo Li
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, 300200, China.
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin State Key Laboratory of Experimental Hematology, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, China.
| | - Shu Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin State Key Laboratory of Experimental Hematology, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, China.
| |
Collapse
|
5
|
Li X, Wang B, Li X, He J, Shi Y, Wang R, Li D, Haitao D. Analysis and validation of serum biomarkers in brucellosis patients through proteomics and bioinformatics. Front Cell Infect Microbiol 2025; 14:1446339. [PMID: 39872944 PMCID: PMC11769985 DOI: 10.3389/fcimb.2024.1446339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 12/24/2024] [Indexed: 01/30/2025] Open
Abstract
Introduction This study aims to utilize proteomics, bioinformatics, and machine learning algorithms to identify diagnostic biomarkers in the serum of patients with acute and chronic brucellosis. Methods Proteomic analysis was conducted on serum samples from patients with acute and chronic brucellosis, as well as from healthy controls. Differential expression analysis was performed to identify proteins with altered expression, while Weighted Gene Co-expression Network Analysis (WGCNA) was applied to detect co-expression modules associated with clinical features of brucellosis. Machine learning algorithms were subsequently used to identify the optimal combination of diagnostic biomarkers. Finally, ELISA was employed to validate the identified proteins. Results A total of 1,494 differentially expressed proteins were identified, revealing two co-expression modules significantly associated with the clinical characteristics of brucellosis. The Gaussian Mixture Model (GMM) algorithm identified six proteins that were concurrently present in both the differentially expressed and co-expression modules, demonstrating promising diagnostic potential. After ELISA validation, five proteins were ultimately selected. Discussion These five proteins are implicated in the innate immune processes of brucellosis, potentially associated with its pathogenic mechanisms and chronicity. Furthermore, we highlighted their potential as diagnostic biomarkers for brucellosis. This study further enhances our understanding of brucellosis at the protein level, paving the way for future research endeavors.
Collapse
Affiliation(s)
- Xiao Li
- Department of Inner Mongolia Clinical Medicine College, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Bo Wang
- Department of Clinical Laboratory Medicine Center, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, Inner Mongolia, China
| | - Xiaocong Li
- Department of Clinical Laboratory Medicine Center, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, Inner Mongolia, China
| | - Juan He
- Department of Clinical Laboratory Medicine Center, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, Inner Mongolia, China
| | - Yue Shi
- Department of Clinical Laboratory Medicine Center, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, Inner Mongolia, China
| | - Rui Wang
- Department of Clinical Laboratory Medicine Center, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, Inner Mongolia, China
| | - Dongwei Li
- Department of Inner Mongolia Clinical Medicine College, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Ding Haitao
- Department of Clinical Laboratory Medicine Center, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Academy of Medical Sciences, Hohhot, Inner Mongolia, China
| |
Collapse
|
6
|
Balaji PG, Bhimrao LS, Yadav AK. Revolutionizing Stroke Care: Nanotechnology-Based Brain Delivery as a Novel Paradigm for Treatment and Diagnosis. Mol Neurobiol 2025; 62:184-220. [PMID: 38829514 DOI: 10.1007/s12035-024-04215-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/03/2024] [Indexed: 06/05/2024]
Abstract
Stroke, a severe medical condition arising from abnormalities in the coagulation-fibrinolysis cycle and metabolic processes, results in brain cell impairment and injury due to blood flow obstruction within the brain. Prompt and efficient therapeutic approaches are imperative to control and preserve brain functions. Conventional stroke medications, including fibrinolytic agents, play a crucial role in facilitating reperfusion to the ischemic brain. However, their clinical efficacy is hampered by short plasma half-lives, limited brain tissue distribution attributed to the blood-brain barrier (BBB), and lack of targeted drug delivery to the ischemic region. To address these challenges, diverse nanomedicine strategies, such as vesicular systems, polymeric nanoparticles, dendrimers, exosomes, inorganic nanoparticles, and biomimetic nanoparticles, have emerged. These platforms enhance drug pharmacokinetics by facilitating targeted drug accumulation at the ischemic site. By leveraging nanocarriers, engineered drug delivery systems hold the potential to overcome challenges associated with conventional stroke medications. This comprehensive review explores the pathophysiological mechanism underlying stroke and BBB disruption in stroke. Additionally, this review investigates the utilization of nanocarriers for current therapeutic and diagnostic interventions in stroke management. By addressing these aspects, the review aims to provide insight into potential strategies for improving stroke treatment and diagnosis through a nanomedicine approach.
Collapse
Affiliation(s)
- Paul Gajanan Balaji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli (An Institute of National Importance under Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, GOI), A Transit Campus at Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow, 226002, Uttar Pradesh, India
| | - Londhe Sachin Bhimrao
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli (An Institute of National Importance under Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, GOI), A Transit Campus at Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow, 226002, Uttar Pradesh, India
| | - Awesh K Yadav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli (An Institute of National Importance under Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, GOI), A Transit Campus at Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow, 226002, Uttar Pradesh, India.
| |
Collapse
|
7
|
Perrone P, Ortega-Luna R, Manna C, Álvarez-Ribelles Á, Collado-Diaz V. Increased Adhesiveness of Blood Cells Induced by Mercury Chloride: Protective Effect of Hydroxytyrosol. Antioxidants (Basel) 2024; 13:1576. [PMID: 39765902 PMCID: PMC11673208 DOI: 10.3390/antiox13121576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Mercury (Hg) is a highly toxic environmental contaminant that can harm human health, ultimately leading to endothelial dysfunction. Hg toxicity is partially mediated by the exposure of the cell membrane's surface of erythrocytes (RBCs) to phosphatidylserine (PS). In the context of these challenges, hydroxytyrosol, a phenolic compound of olive oil, has the ability to mitigate the toxic effects of Hg. This study aims to analyze the effect of Hg on the adhesion of RBCs and polymorphonuclear cells (PMNs) to the vascular endothelium and the potential protective effect of hydroxytyrosol, as these interactions are crucial in the development of cardiovascular diseases (CVDs). RBCs, PMNs, and human vein endothelial cells (HUVECs) were treated with increasing concentrations of HgCl2 and, in some cases, with hydroxytyrosol, and their adhesion to HUVECs and the expression of adhesion molecules were subsequently analyzed. Our results demonstrate that HgCl2 significantly increases the adhesion of both RBCs (2.72 ± 0.48 S.E.M., p-value < 0.02) and PMNs (11.19 ± 1.96 S.E.M., p-value < 0.05) to HUVECs and that their adhesiveness is significantly reduced following treatment with hydroxytyrosol (RBCs, 1.2 ± 1.18 S.E.M., p-value < 0.02 and PMNs, 4.04 ± 1.35 S.E.M., p-value < 0.06). Interestingly, HgCl2 does not alter the expression of adhesion molecules on either HUVECs or RBCs, suggesting that reduced exposure to PS is a key factor in hydroxytyrosol protection against HgCl2-induced RBC adhesion to the endothelium. On the other hand, HgCl2 induces increased expression of several PMN adhesion molecules (CD11b 215.4 ± 30.83 S.E.M. p-value < 0.01), while hydroxytyrosol inhibits their expression (e.g., CD11b 149 ± 14.35 S.E.M., p-value < 0.03), which would seem to be the mechanism by which hydroxytyrosol restricts PMN-endothelium interactions. These results provide new insights into the molecular mechanisms through which hydroxytyrosol mitigates the harmful effects of Hg on cardiovascular health, highlighting its potential as a therapeutic agent that can reduce the cardiovascular risk related to heavy metal exposure.
Collapse
Affiliation(s)
- Pasquale Perrone
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Raquel Ortega-Luna
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (R.O.-L.); (V.C.-D.)
| | - Caterina Manna
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Ángeles Álvarez-Ribelles
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (R.O.-L.); (V.C.-D.)
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Victor Collado-Diaz
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (R.O.-L.); (V.C.-D.)
| |
Collapse
|
8
|
Sgromo C, Cucci A, Venturin G, Follenzi A, Olgasi C. Bridging the Gap: Endothelial Dysfunction and the Role of iPSC-Derived Endothelial Cells in Disease Modeling. Int J Mol Sci 2024; 25:13275. [PMID: 39769040 PMCID: PMC11678083 DOI: 10.3390/ijms252413275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Endothelial cells (ECs) are crucial for vascular health, regulating blood flow, nutrient exchange, and modulating immune responses and inflammation. The impairment of these processes causes the endothelial dysfunction (ED) characterized by oxidative stress, inflammation, vascular permeability, and extracellular matrix remodeling. While primary ECs have been widely used to study ED in vitro, their limitations-such as short lifespan and donor variability-pose challenges. In this context, induced iECs derived from induced pluripotent stem cells offer an innovative solution, providing an unlimited source of ECs to explore disease-specific features of ED. Recent advancements in 3D models and microfluidic systems have enhanced the physiological relevance of iEC-based models by better mimicking the vascular microenvironment. These innovations bridge the gap between understanding ED mechanisms and drug developing and screening to prevent or treat ED. This review highlights the current state of iEC technology as a model to study ED in vascular and non-vascular disorders, including diabetes, cardiovascular, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Chiara Sgromo
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (C.S.); (A.C.); (G.V.)
| | - Alessia Cucci
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (C.S.); (A.C.); (G.V.)
| | - Giorgia Venturin
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (C.S.); (A.C.); (G.V.)
| | - Antonia Follenzi
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (C.S.); (A.C.); (G.V.)
| | - Cristina Olgasi
- Department of Translational Medicine, School of Medicine, University of Piemonte Orientale, 28100 Novara, Italy;
| |
Collapse
|
9
|
Fu Z, Geng X, Liu C, Shen W, Dong Z, Sun G, Cai G, Chen X, Hong Q. Identification of common and specific fibrosis-related genes in three common chronic kidney diseases. Ren Fail 2024; 46:2295431. [PMID: 38174742 PMCID: PMC10769532 DOI: 10.1080/0886022x.2023.2295431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Kidney fibrosis is the common final pathway of virtually all advanced forms of chronic kidney disease (CKD) including diabetic nephropathy (DN), IgA nephropathy (IgAN) and membranous nephropathy (MN), with complex mechanism. Comparative gene expression analysis among these types of CKD may shed light on its pathogenesis. Therefore, we conducted this study aiming at exploring the common and specific fibrosis-related genes involved in different types of CKD. METHODS Kidney biopsy specimens from patients with different types of CKD and normal control subjects were analyzed using the NanoString nCounter® Human Fibrosis V2 Panel. Genes differentially expressed in all fibrotic DN, IgAN and MN tissues compared to the normal controls were regarded as the common fibrosis-related genes in CKD, whereas genes exclusively differentially expressed in fibrotic DN, IgAN or MN samples were considered to be the specific genes related to fibrosis in DN, IgAN and MN respectively. Quantitative real-time PCR (qRT-PCR) was performed to validate the expression of the selected genes. RESULTS Protein tyrosine phosphatase receptor type C (PTPRC), intercellular cell adhesion molecule-1 (ICAM1), vascular cell adhesion molecule-1 (VCAM1), interleukin 10 receptor alpha (IL10RA) and CC chemokine receptor 2 (CCR2) were identified as the potential common genes for kidney fibrosis in different types of CKD, while peroxisome proliferator-activated receptor alpha (PPARA), lactate oxidase (LOX), secreted phosphoprotein 1 (SPP1) were identified as the specific fibrosis-associated genes for DN, IgAN and MN respectively. qRT-PCR demonstrated that the expression levels of these selected genes were consistent with the NanoString analysis. CONCLUSIONS There were both commonalities and differences in the mechanisms of fibrosis in different types of CKD, the commonalities might be used as the common therapeutic targets for kidney fibrosis in CKD, while the differences might be used as the diagnostic markers for DN, IgAN and MN respectively. Inflammation was highly relevant to the pathogenesis of fibrosis. This study provides further insight into the pathophysiology and treatment of fibrotic kidney disease.
Collapse
Affiliation(s)
- Zhangning Fu
- Medical School of Chinese PLA, Beijing, China
- Department of Nephrology, First Medical Center of Chinese, PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiaodong Geng
- Department of Nephrology, First Medical Center of Chinese, PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Chao Liu
- Department of Critical Care Medicine, First Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Wanjun Shen
- Department of Nephrology, First Medical Center of Chinese, PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Zheyi Dong
- Department of Nephrology, First Medical Center of Chinese, PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Guannan Sun
- Medical School of Chinese PLA, Beijing, China
- Department of Nephrology, First Medical Center of Chinese, PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese, PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese, PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Quan Hong
- Department of Nephrology, First Medical Center of Chinese, PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| |
Collapse
|
10
|
Magnusen AF, Pandey MK. Complement System and Adhesion Molecule Skirmishes in Fabry Disease: Insights into Pathogenesis and Disease Mechanisms. Int J Mol Sci 2024; 25:12252. [PMID: 39596318 PMCID: PMC11594573 DOI: 10.3390/ijms252212252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Fabry disease is a rare X-linked lysosomal storage disorder caused by mutations in the galactosidase alpha (GLA) gene, resulting in the accumulation of globotriaosylceramide (Gb3) and its deacetylated form, globotriaosylsphingosine (Lyso-Gb3) in various tissues and fluids throughout the body. This pathological accumulation triggers a cascade of processes involving immune dysregulation and complement system activation. Elevated levels of complement 3a (C3a), C5a, and their precursor C3 are observed in the plasma, serum, and tissues of patients with Fabry disease, correlating with significant endothelial cell abnormalities and vascular dysfunction. This review elucidates how the complement system, particularly through the activation of C3a and C5a, exacerbates disease pathology. The activation of these pathways leads to the upregulation of adhesion molecules, including vascular cell adhesion molecule 1 (VCAM1), intercellular adhesion molecule 1 (ICAM1), platelet and endothelial cell adhesion molecule 1 (PECAM1), and complement receptor 3 (CR3) on leukocytes and endothelial cells. This upregulation promotes the excessive recruitment of leukocytes, which in turn exacerbates disease pathology. Targeting complement components C3a, C5a, or their respective receptors, C3aR (C3a receptor) and C5aR1 (C5a receptor 1), could potentially reduce inflammation, mitigate tissue damage, and improve clinical outcomes for individuals with Fabry disease.
Collapse
Affiliation(s)
- Albert Frank Magnusen
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Manoj Kumar Pandey
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
11
|
Vigo M, Haro-Martínez E, Ruiz E, Fumadó-Navarro J, Placci M, Muro S. New Cellular Models to Support Preclinical Studies on ICAM-1-Targeted Drug Delivery. J Drug Deliv Sci Technol 2024; 101:106170. [PMID: 39669707 PMCID: PMC11633371 DOI: 10.1016/j.jddst.2024.106170] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Intercellular adhesion molecule 1 (ICAM-1) is a cell-surface protein actively explored for targeted drug delivery. Anti-ICAM-1 nanocarriers (NCs) target ICAM-1-positive sites after intravenous injection in animal models, but quantitative mechanistic examination of cellular-level transport in vivo is not possible. Prior studies in human cell cultures indicated efficient uptake of these formulations via cell adhesion molecule-(CAM)-mediated endocytosis. However, ICAM-1 sequence differs among species; thus, whether anti-ICAM-1 NCs induce similar behavior in animal cells, key for intracellular drug delivery, is unknown. To begin bridging this gap, we first qualitatively verified intracellular transport of anti-ICAM-1 NCs in vivo and then developed new cellular models expressing ICAM-1 from mouse, dog, pig, and monkey, species relevant to pharmaceutical translation and veterinary medicine. ICAM-1 expression was verified by flow cytometry and confocal microscopy. These cells showed specific targeting compared to IgG NCs or cells treated with anti-ICAM-1 blocker. Anti-ICAM-1 NCs entered cells in a time- and temperature-dependent manner, with kinetics and pathway compatible with CAM-mediated endocytosis. All parameters tested were strikingly similar to those from human cells expressing ICAM-1 endogenously. Therefore, this new cellular platform represents a valuable tool that can be used in parallel to support in vivo studies on ICAM-1-targeted NCs during pharmaceutical translation.
Collapse
Affiliation(s)
- Marco Vigo
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona, 08028, Spain
- Biomedicine Doctorate Program, University of Barcelona, 08007, Spain
| | - Elena Haro-Martínez
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona, 08028, Spain
| | - Eloy Ruiz
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona, 08028, Spain
| | - Josep Fumadó-Navarro
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona, 08028, Spain
| | - Marina Placci
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona, 08028, Spain
- Biotechnology Doctorate Program, University of Barcelona, 080007, Spain
| | - Silvia Muro
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona, 08028, Spain
- Institution of Catalonia for Research and Advanced Studies (ICREA), Barcelona, 08010, Spain
- Institute for Bioscience and Biotechnology Research and Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, USA
| |
Collapse
|
12
|
Li H, Niu X, Cheng R. The pan-cancer landscape of crosstalk between leukocyte transendothelial migration-related genes and tumor microenvironment relevant to prognosis and immunotherapy response. Transl Cancer Res 2024; 13:5247-5264. [PMID: 39525018 PMCID: PMC11543035 DOI: 10.21037/tcr-24-556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/29/2024] [Indexed: 11/16/2024]
Abstract
Background Leukocyte transendothelial migration-related genes (LTEMGs) play a crucial role in the immune response and have been extensively studied in various pathological conditions, including inflammation, infection, and cancer. In recent years, increasing attention has been given to understanding the biological mechanisms of LTEMGs in the context of tumor progression and metastasis. The potential function of LTEMGs in cancer progression remains unclear. The aim of this study is to systematically delineate the relationship between LTEMGs and tumor prognosis and immune microenvironment at the pan-cancer level, providing new biomarkers for personalized immunotherapy. Methods The gene alteration, messenger RNA (mRNA) expression, and prognostic value of LTEMGs in pan-cancer were evaluated using Bulk and single-cell RNA (scRNA) sequence data. The LTEMGs score was calculated by R package "GSVA". The association of LTEMGs score with tumor microenvironment and immunotherapy response were deeply explored. Results We assessed the mRNA expression of 114 LTEMGs across various cancers, finding significant upregulation in acute myeloid leukemia (LAML) and pancreatic adenocarcinoma (PAAD). Prognostic analysis indicated most LTEMGs were risk factors in low-grade glioma (LGG), PAAD, uveal melanoma (UVM), and LAML. The LTEMGs score, highest in kidney renal clear cell carcinoma (KIRC) and lowest in UVM, was higher in tumor tissues compared to normal tissues in several cancers. The score was a risk factor for overall survival (OS) in LGG, UVM, and others, but protective in KIRC and some others. LTEMGs score correlated positively with Kirsten rat sarcoma viral oncogene homolog (KRAS) signaling, apoptosis, and immune responses. It also correlated with immune and stromal scores, and immune-related pathways. Higher LTEMGs score was linked to greater immune cell infiltration and poorer immunotherapy outcomes. Single-cell analysis revealed higher LTEMGs score in endothelial and monocyte cells, consistent with reduced immunotherapy responsiveness. Conclusions Our results reveal that LTEMGs are closely associated with tumor microenvironment. Patients with high LTEMGs score might be resistant to immunotherapy.
Collapse
Affiliation(s)
- Hao Li
- School of Health Sciences, The University of Manchester, Manchester, UK
| | - Xiaochen Niu
- Shanxi Provincial Key Laboratory of Intelligent, Big Data and Digital Neurosurgery, Taiyuan, China
- Shanxi Provincial Key Laboratory of Intelligent Brain Tumor, Taiyuan, China
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Rui Cheng
- Shanxi Provincial Key Laboratory of Intelligent, Big Data and Digital Neurosurgery, Taiyuan, China
- Shanxi Provincial Key Laboratory of Intelligent Brain Tumor, Taiyuan, China
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Department of Neurosurgery, Shanxi Provincial People’s Hospital, Taiyuan, China
| |
Collapse
|
13
|
Miller MR, Landis HE, Miller RE, Tizabi Y. Intercellular Adhesion Molecule 1 (ICAM-1): An Inflammatory Regulator with Potential Implications in Ferroptosis and Parkinson's Disease. Cells 2024; 13:1554. [PMID: 39329738 PMCID: PMC11430830 DOI: 10.3390/cells13181554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Intercellular adhesion molecule 1 (ICAM-1/CD54), a transmembrane glycoprotein, has been considered as one of the most important adhesion molecules during leukocyte recruitment. It is encoded by the ICAM1 gene and plays a central role in inflammation. Its crucial role in many inflammatory diseases such as ulcerative colitis and rheumatoid arthritis are well established. Given that neuroinflammation, underscored by microglial activation, is a key element in neurodegenerative diseases such as Parkinson's disease (PD), we investigated whether ICAM-1 has a role in this progressive neurological condition and, if so, to elucidate the underpinning mechanisms. Specifically, we were interested in the potential interaction between ICAM-1, glial cells, and ferroptosis, an iron-dependent form of cell death that has recently been implicated in PD. We conclude that there exist direct and indirect (via glial cells and T cells) influences of ICAM-1 on ferroptosis and that further elucidation of these interactions can suggest novel intervention for this devastating disease.
Collapse
Affiliation(s)
| | - Harold E. Landis
- Integrative Medicine Fellow, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | | | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| |
Collapse
|
14
|
Zhang X, Wang Y, Li H, Wang DW, Chen C. Insights into the post-translational modifications in heart failure. Ageing Res Rev 2024; 100:102467. [PMID: 39187021 DOI: 10.1016/j.arr.2024.102467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
Heart failure (HF), as the terminal manifestation of multiple cardiovascular diseases, causes a huge socioeconomic burden worldwide. Despite the advances in drugs and medical-assisted devices, the prognosis of HF remains poor. HF is well-accepted as a myriad of subcellular dys-synchrony related to detrimental structural and functional remodelling of cardiac components, including cardiomyocytes, fibroblasts, endothelial cells and macrophages. Through the covalent chemical process, post-translational modifications (PTMs) can coordinate protein functions, such as re-localizing cellular proteins, marking proteins for degradation, inducing interactions with other proteins and tuning enzyme activities, to participate in the progress of HF. Phosphorylation, acetylation, and ubiquitination predominate in the currently reported PTMs. In addition, advanced HF is commonly accompanied by metabolic remodelling including enhanced glycolysis. Thus, glycosylation induced by disturbed energy supply is also important. In this review, firstly, we addressed the main types of HF. Then, considering that PTMs are associated with subcellular locations, we summarized the leading regulation mechanisms in organelles of distinctive cell types of different types of HF, respectively. Subsequently, we outlined the aforementioned four PTMs of key proteins and signaling sites in HF. Finally, we discussed the perspectives of PTMs for potential therapeutic targets in HF.
Collapse
Affiliation(s)
- Xudong Zhang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Yan Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Huaping Li
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Dao Wen Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| |
Collapse
|
15
|
Nishimura A, Nelke C, Huber M, Mensch A, Roth A, Oberwittler C, Zimmerlein B, Krämer HH, Neuen-Jacob E, Stenzel W, Müller-Ladner U, Ruck T, Schänzer A. Differentiating idiopathic inflammatory myopathies by automated morphometric analysis of MHC-1, MHC-2 and ICAM-1 in muscle tissue. Neuropathol Appl Neurobiol 2024; 50:e12998. [PMID: 39030945 DOI: 10.1111/nan.12998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/22/2024]
Abstract
AIMS Diagnosis of idiopathic inflammatory myopathies (IIM) is based on morphological characteristics and the evaluation of disease-related proteins. However, although broadly applied, substantial bias is imposed by the respective methods, observers and individual staining approaches. We aimed to quantify the protein levels of major histocompatibility complex (MHC)-1, (MHC)-2 and intercellular adhesion molecule (ICAM)-1 using an automated morphometric method to mitigate bias. METHODS Double immunofluorescence staining was performed on whole muscle sections to study differences in protein expression in myofibre and endomysial vessels. We analysed all IIM subtypes including dermatomyositis (DM), anti-synthetase syndrome (ASyS), inclusion body myositis (IBM), immune-mediated-necrotising myopathy (IMNM), dysferlinopathy (DYSF), SARS-CoV-2 infection and vaccination-associated myopathy. Biopsies with neurogenic atrophy (NA) and normal morphology served as controls. Bulk RNA-Sequencing (RNA-Seq) was performed on a subset of samples. RESULTS Our study highlights the significance of MHC-1, MHC-2 and ICAM-1 in diagnosing IIM subtypes and reveals distinct immunological profiles. RNASeq confirmed the precision of our method and identified specific gene pathways in the disease subtypes. Notably, ASyS, DM and SARS-CoV-2-associated myopathy showed increased ICAM-1 expression in the endomysial capillaries, indicating ICAM-1-associated vascular activation in these conditions. In addition, ICAM-1 showed high discrimination between different subgroups with high sensitivity and specificity. CONCLUSIONS Automated morphometric analysis provides precise quantitative data on immune-associated proteins that can be integrated into our pathophysiological understanding of IIM. Further, ICAM-1 holds diagnostic value for the detection of IIM pathology.
Collapse
Affiliation(s)
- Anna Nishimura
- Institute of Neuropathology, Justus-Liebig University Giessen, Germany
| | - Christopher Nelke
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Melanie Huber
- Department of Rheumatology and Clinical Immunology, Campus Kerckhoff, Justus-Liebig-University, Giessen, Germany
| | - Alexander Mensch
- Department of Neurology, University Medicine Halle, Halle (Saale), Germany
| | - Angela Roth
- Institute of Neuropathology, Justus-Liebig University Giessen, Germany
| | | | | | - Heidrun H Krämer
- Department of Neurology, Justus-Liebig-University, Giessen, Germany
- Translational Neuroscience Network Giessen (TNNG), Justus Liebig University Giessen, Giessen, Germany
| | - Eva Neuen-Jacob
- Institute of Neuropathology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ulf Müller-Ladner
- Department of Rheumatology and Clinical Immunology, Campus Kerckhoff, Justus-Liebig-University, Giessen, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Anne Schänzer
- Institute of Neuropathology, Justus-Liebig University Giessen, Germany
- Translational Neuroscience Network Giessen (TNNG), Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
16
|
Kusch N, Storm J, Macioszek A, Kisselmann E, Knabbe C, Kaltschmidt B, Kaltschmidt C. A Critical Role of Culture Medium Selection in Maximizing the Purity and Expansion of Natural Killer Cells. Cells 2024; 13:1148. [PMID: 38994999 PMCID: PMC11240826 DOI: 10.3390/cells13131148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024] Open
Abstract
Natural killer (NK) cells hold promise in cancer treatment due to their ability to spontaneously lyse cancer cells. For clinical use, high quantities of pure, functional NK cells are necessary. Combining adherence-based isolation with specialized media showed the unreliability of the isolation method, but demonstrated the superiority of the NK MACS® medium, particularly in suboptimal conditions. Neither human pooled serum, fetal calf serum (FCS), human platelet lysate, nor chemically defined serum replacement could substitute human AB serum. Interleukin (IL-)2, IL-15, IL-21, and combined CD2/NKp46 stimulation were assessed. IL-21 and CD2/NKp46 stimulation increased cytotoxicity, but reduced NK cell proliferation. IL-15 stimulation alone achieved the highest proliferation, but the more affordable IL-2 performed similarly. The RosetteSep™ human NK cell enrichment kit was effective for isolation, but the presence of peripheral blood mononuclear cells (PBMCs) in the culture enhanced NK cell proliferation, despite similar expression levels of CD16, NKp46, NKG2D, and ICAM-1. In line with this, purified NK cells cultured in NK MACS® medium with human AB serum and IL-2 demonstrated high cytotoxicity against primary glioblastoma stem cells.
Collapse
Affiliation(s)
- Neele Kusch
- Department of Cell Biology, Bielefeld University, 33615 Bielefeld, Germany; (J.S.); (A.M.); (E.K.); (B.K.); (C.K.)
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e.V., 33617 Bielefeld, Germany;
| | - Jonathan Storm
- Department of Cell Biology, Bielefeld University, 33615 Bielefeld, Germany; (J.S.); (A.M.); (E.K.); (B.K.); (C.K.)
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e.V., 33617 Bielefeld, Germany;
| | - Antonia Macioszek
- Department of Cell Biology, Bielefeld University, 33615 Bielefeld, Germany; (J.S.); (A.M.); (E.K.); (B.K.); (C.K.)
| | - Ella Kisselmann
- Department of Cell Biology, Bielefeld University, 33615 Bielefeld, Germany; (J.S.); (A.M.); (E.K.); (B.K.); (C.K.)
| | - Cornelius Knabbe
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e.V., 33617 Bielefeld, Germany;
- Institute for Laboratory and Transfusion Medicine, Heart and Diabetes Centre NRW, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
- Medical Faculty Ostwestfalen-Lippe, University of Bielefeld, 33615 Bielefeld, Germany
| | - Barbara Kaltschmidt
- Department of Cell Biology, Bielefeld University, 33615 Bielefeld, Germany; (J.S.); (A.M.); (E.K.); (B.K.); (C.K.)
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e.V., 33617 Bielefeld, Germany;
- Molecular Neurobiology, Bielefeld University, 33615 Bielefeld, Germany
| | - Christian Kaltschmidt
- Department of Cell Biology, Bielefeld University, 33615 Bielefeld, Germany; (J.S.); (A.M.); (E.K.); (B.K.); (C.K.)
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e.V., 33617 Bielefeld, Germany;
| |
Collapse
|
17
|
Nururrozi A, Miyanishi K, Igase M, Sakurai M, Sakai Y, Tanabe M, Mizuno T. The Density of CD8 + Tumor-infiltrating Lymphocytes Correlated With Akt Activation and Ki-67 Index in Canine Soft Tissue Sarcoma. In Vivo 2024; 38:1698-1711. [PMID: 38936907 PMCID: PMC11215572 DOI: 10.21873/invivo.13620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND/AIM The activation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway has been implicated in canine soft tissue sarcoma (STS) and may serve as a prognostic marker. This study investigated the correlation between PI3K/Akt activation in tumor cells and tumor-infiltrating lymphocytes (TILs). MATERIALS AND METHODS A total of 59 STS samples were labeled via immunohistochemistry to calculate the density of TILs, including CD3+ T cells, CD8+ T cells, CD20+ B cells, and FOXP3+ regulatory T cells. RESULTS Forty-eight samples (81.3%) had intra-tumoral TILs with a high density of CD3+ T cells (mean: 283.3 cells/mm2) and CD8+ T cells (mean: 134.8 cells/mm2). Conversely, CD20+ B cells (mean: 73.6 cells/mm2) and FOXP3+ regulatory T cells (mean: 9.2 cells/mm2) were scarce. The abundance of CD3+/CD8+, CD3+/CD20+, and CD8+/CD20+ TILs were highly correlated in multivariate analyses (r=0.895, 0.946, and 0.856, respectively). Nonetheless, TIL density was unrelated to clinicopathological parameters (sex, age, tumor location, breed) and tumor grade. The abundance of CD8+ T cells was positively correlated with the activation of PI3K/Akt, indicating that samples with high levels of phospho-Akt and phospho-S6 tend to have a higher CD8+ T cell density (p=0.0032 and 0.0218, respectively). Furthermore, TIL density was correlated with the Ki-67 index, a tumor proliferation and growth marker. Samples with a high Ki-67 index had a significantly higher abundance of CD3+ T cells, CD8+ T cells, and CD20+ B cells (p=0.0392, 0.0254, 0.0380, respectively). CONCLUSION PI3K/Akt pathway activation may influence the infiltration of CD8+ T cells within the tumor microenvironment in canine STS. Prospective studies involving a higher number of cases are warranted to confirm these findings.
Collapse
Affiliation(s)
- Alfarisa Nururrozi
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Department of Internal Medicine, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Kyohei Miyanishi
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Masaya Igase
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Masashi Sakurai
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Yusuke Sakai
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Mika Tanabe
- Veterinary Pathology Diagnostic Center, Fukuoka, Japan
| | - Takuya Mizuno
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan;
| |
Collapse
|
18
|
Gong H, Li Z, Huang G, Mo X. Effects of peripheral blood cells on ischemic stroke: Greater immune response or systemic inflammation? Heliyon 2024; 10:e32171. [PMID: 38868036 PMCID: PMC11168442 DOI: 10.1016/j.heliyon.2024.e32171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024] Open
Abstract
Ischemic stroke is still one of the most serious medical conditions endangering human health worldwide. Current research on the mechanism of ischemic stroke focuses on the primary etiology as well as the subsequent inflammatory response and immune modulation. Recent research has revealed that peripheral blood cells and their components are crucial to the ensuing progression of ischemic stroke. However, it remains unclear whether blood cell elements are principally in charge of systemic inflammation or immunological regulation, or if their participation is beneficial or harmful to the development of ischemic stroke. In this review, we aim to describe the changes in peripheral blood cells and their corresponding parameters in ischemic stroke. Specifically, we elaborate on the role of each peripheral component in the inflammatory response or immunological modulation as well as their interactions. It has been suggested that more specific therapies aimed at targeting peripheral blood cell components and their role in inflammation or immunity are more favorable to the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Huanhuan Gong
- Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zheng Li
- Department of General Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Guoqing Huang
- Department of Emergency, Xiangya Hospital, Central South University, PR China
| | - Xiaoye Mo
- Department of Emergency, Xiangya Hospital, Central South University, PR China
| |
Collapse
|
19
|
Costescu S, Bratosin F, Popa ZL, Hrubaru I, Citu C. Does Magnesium Provide a Protective Effect in Crohn's Disease Remission? A Systematic Review of the Literature. Nutrients 2024; 16:1662. [PMID: 38892595 PMCID: PMC11174356 DOI: 10.3390/nu16111662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
This systematic review evaluates the hypothesis that optimal serum magnesium levels may enhance remission rates in Crohn's disease (CD) and considers whether magnesium supplementation could be beneficial in CD management. This review aims to synthesize available evidence concerning the impact of serum magnesium on disease remission in CD, and to analyze the effectiveness and mechanistic roles of magnesium supplementation. Adhering to the PRISMA guidelines, we searched PubMed, Web of Science, and Scopus up to January 2024 using MeSH terms and free-text queries related to CD and magnesium. The inclusion criteria were studies that investigated serum magnesium levels, effects of supplementation, and the inflammatory mechanisms in CD remission. From the 525 records identified, eight studies met the inclusion criteria after the removal of duplicates and irrelevant records. These studies, conducted between 1998 and 2023, involved a cumulative sample of 453 patients and 292 controls. Key findings include significantly lower serum magnesium levels in CD patients (0.79 ± 0.09 mmol/L) compared to controls (0.82 ± 0.06 mmol/L), with up to 50% prevalence of hypomagnesemia in CD patients observed in one study. Notably, CD patients, particularly men, exhibited lower magnesium intake (men: 276.4 mg/day; women: 198.2 mg/day). Additionally, low magnesium levels correlated with increased sleep latency (95% CI -0.65 to -0.102; p = 0.011) and decreased sleep duration (95% CI -0.613 to -0.041; p = 0.028). Another key finding was the significant association between low serum magnesium levels and elevated CRP levels as an indicator of CD disease activity. The findings support the hypothesis that serum magnesium levels are significantly lower in CD patients compared to healthy controls and suggest that magnesium supplementation could improve CD management by enhancing remission rates and sleep quality. However, more rigorous, evidence-based research is necessary to define specific supplementation protocols and to fully elucidate the role of magnesium in CD pathophysiology.
Collapse
Affiliation(s)
- Sergiu Costescu
- Doctoral School Department, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania;
- Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania; (I.H.); (C.C.)
| | - Felix Bratosin
- Department of Infectious Diseases, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania;
| | - Zoran Laurentiu Popa
- Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania; (I.H.); (C.C.)
| | - Ingrid Hrubaru
- Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania; (I.H.); (C.C.)
| | - Cosmin Citu
- Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania; (I.H.); (C.C.)
| |
Collapse
|
20
|
Tan ACR, Ma Y, Appukuttan B, Lower K, Lumsden AL, Michael MZ, Smith JR, Ashander LM. Brief research report: ETS-1 blockade increases ICAM-1 expression in activated human retinal endothelial cells. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1384428. [PMID: 38984117 PMCID: PMC11182200 DOI: 10.3389/fopht.2024.1384428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/25/2024] [Indexed: 07/11/2024]
Abstract
Intercellular adhesion molecule 1 (ICAM-1) is a central cell adhesion molecule for retinal transendothelial migration of the leukocytes in non-infectious posterior uveitis. Inhibiting ICAM1 gene transcription reduces induction of ICAM-1 in inflamed retinal endothelium. Based on published literature implicating transcription factor ETS-1 as an activator of ICAM1 gene transcription, we investigated the effect of ETS-1 blockade on ICAM-1 levels in cytokine-stimulated human retinal endothelial cells. We first examined ICAM1 and ETS1 transcript expression in human retinal endothelial cells exposed to tumor necrosis factor-alpha (TNF-α) or interleukin-1beta (IL-1β). ICAM1 and ETS1 transcripts were increased in parallel in primary human retinal endothelial cell isolates (n = 5) after a 4-hour stimulation with TNF-α or IL-1β (p ≤ 0.012 and ≤ 0.032, respectively). We then assessed the effect of ETS-1 blockade by small interfering (si)RNA on cellular ICAM1 transcript and membrane-bound ICAM-1 protein. ETS1 transcript was reduced by greater than 90% in cytokine-stimulated and non-stimulated human retinal endothelial cell monolayers following a 48-hour treatment with two ETS-1-targeted siRNA, in comparison to negative control non-targeted siRNA (p ≤ 0.0002). The ETS-1 blockade did not reduce ICAM1 transcript expression nor levels of membrane-bound ICAM-1 protein, rather it increased both for a majority of siRNA-treatment and cytokine-stimulation conditions (p ≤ 0.018 and ≤ 0.004, respectively). These unexpected findings indicate that ETS-1 blockade increases ICAM-1 transcript and protein levels in human retinal endothelial cells. Thus ETS-1-targeting would be expected to promote rather than inhibit retinal transendothelial migration of leukocytes in non-infectious posterior uveitis.
Collapse
Affiliation(s)
- Alwin Chun Rong Tan
- Flinders University College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Yuefang Ma
- Flinders University College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Binoy Appukuttan
- Flinders University College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Karen Lower
- Flinders University College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Amanda L Lumsden
- Flinders University College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Michael Z Michael
- Flinders University College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Justine R Smith
- Flinders University College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Liam M Ashander
- Flinders University College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
21
|
Guerra-Espinosa C, Jiménez-Fernández M, Sánchez-Madrid F, Serrador JM. ICAMs in Immunity, Intercellular Adhesion and Communication. Cells 2024; 13:339. [PMID: 38391953 PMCID: PMC10886500 DOI: 10.3390/cells13040339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
Interactions among leukocytes and leukocytes with immune-associated auxiliary cells represent an essential feature of the immune response that requires the involvement of cell adhesion molecules (CAMs). In the immune system, CAMs include a wide range of members pertaining to different structural and functional families involved in cell development, activation, differentiation and migration. Among them, β2 integrins (LFA-1, Mac-1, p150,95 and αDβ2) are predominantly involved in homotypic and heterotypic leukocyte adhesion. β2 integrins bind to intercellular (I)CAMs, actin cytoskeleton-linked receptors belonging to immunoglobulin superfamily (IgSF)-CAMs expressed by leukocytes and vascular endothelial cells, enabling leukocyte activation and transendothelial migration. β2 integrins have long been viewed as the most important ICAMs partners, propagating intracellular signalling from β2 integrin-ICAM adhesion receptor interaction. In this review, we present previous evidence from pioneering studies and more recent findings supporting an important role for ICAMs in signal transduction. We also discuss the contribution of immune ICAMs (ICAM-1, -2, and -3) to reciprocal cell signalling and function in processes in which β2 integrins supposedly take the lead, paying particular attention to T cell activation, differentiation and migration.
Collapse
Affiliation(s)
- Claudia Guerra-Espinosa
- Immune System Development and Function Unit, Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - María Jiménez-Fernández
- Immunology Department, Instituto de Investigación Sanitaria Hospital Universitario La Princesa, Universidad Autónoma de Madrid, 28006 Madrid, Spain; (M.J.-F.); (F.S.-M.)
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 29029 Madrid, Spain
| | - Francisco Sánchez-Madrid
- Immunology Department, Instituto de Investigación Sanitaria Hospital Universitario La Princesa, Universidad Autónoma de Madrid, 28006 Madrid, Spain; (M.J.-F.); (F.S.-M.)
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 29029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Juan M. Serrador
- Immune System Development and Function Unit, Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
22
|
Kot K, Kot Y, Kurbanov R, Andriiash H, Tigunova O, Blume Y, Shulga S. The effect of human PBMCs immobilization on their Аβ42 aggregates-dependent proinflammatory state on a cellular model of Alzheimer's disease. Front Neurosci 2024; 18:1325287. [PMID: 38406587 PMCID: PMC10884286 DOI: 10.3389/fnins.2024.1325287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/26/2024] [Indexed: 02/27/2024] Open
Abstract
The leading pathological mechanisms of Alzheimer's disease are amyloidosis and inflammation. The presented work was aimed to study the effect of human peripheral blood mononuclear cells (hPBMcs) cells-matrix adhesion on their pro-inflammatory state in vitro. Although direct interaction of Аβ42 to PBMC is not a cellular model of Alzheimer's disease, PBMCs may serve as test cells to detect Аβ42-dependent molecular effects in monitoring disease progression. Peripheral blood mononuclear cells (PBMCs) are used to assess changes in cytokines released in response to diseases or Alzheimer's disease-specific cytotoxic molecules such as Aβ42. The effect of recombinant amyloid β-peptide rАβ42 on the concentration of endogenous amyloid β-peptide Aβ40 and pro-inflammatory cytokines TNFα and IL-1β in human peripheral blood mononuclear cells that were cultured in suspension and immobilized in alginate microcarriers for 24 h were investigated. The localization and accumulation of Aβ40 and rAβ42 peptides in cells, as well as quantitative determination of the concentration of Aβ40 peptide, TNFα and IL-1β cytokines, was performed by intravital fluorescence imaging. The results were qualitatively similar for both cell models. It was determined that the content of TNFα and Aβ40 in the absence of rAβ42 in the incubation medium did not change for 24 h after incubation, and the content of IL-1β was lower compared to the cells that were not incubated. Incubation of cells in vitro with exogenous rAβ42 led to an increase in the intracellular content of TNFα and Aβ40, and no accumulation of IL-1β in cells was observed. The accumulation of Aβ40 in the cytoplasm was accompanied by the aggregation of rAβ42 on the outer surface of the cell plasma membrane. It was shown that the basic levels of indicators and the intensity of the response of immobilized cells to an exogenous stimulus were significantly greater than those of cells in suspension. To explore whether non-neuronal cells effects in alginate microcarriers were cell-matrix adhesion mediated, we tested the effect of blocking β1 integrins on proamyloidogenic and proinflammation cellular state. Immobilization within alginate hydrogels after incubation with the β1 integrins blocking antibodies showed a remarkable inhibition of TNFα and Aβ40 accumulation in rAβ42-treated cells. It can be concluded that activation of signal transduction and synthesizing activity of a portion of mononuclear cells of human peripheral blood is possible (can significantly increase) in the presence of cell-matrix adhesion.
Collapse
Affiliation(s)
- Kateryna Kot
- Biochemistry Department, V. N. Karazin Kharkiv National University of Ministry of Education and Science of Ukraine, Kharkiv, Ukraine
| | - Yurii Kot
- Biochemistry Department, V. N. Karazin Kharkiv National University of Ministry of Education and Science of Ukraine, Kharkiv, Ukraine
| | - Rustam Kurbanov
- Biochemistry Department, V. N. Karazin Kharkiv National University of Ministry of Education and Science of Ukraine, Kharkiv, Ukraine
| | - Hanna Andriiash
- Department of Genomics and Molecular Biotechnology, Institute of Food Biotechnology and Genomics National Academy of Science of Ukraine, Kyiv, Ukraine
| | - Olena Tigunova
- Department of Genomics and Molecular Biotechnology, Institute of Food Biotechnology and Genomics National Academy of Science of Ukraine, Kyiv, Ukraine
| | - Yaroslav Blume
- Department of Genomics and Molecular Biotechnology, Institute of Food Biotechnology and Genomics National Academy of Science of Ukraine, Kyiv, Ukraine
| | - Sergiy Shulga
- Department of Genomics and Molecular Biotechnology, Institute of Food Biotechnology and Genomics National Academy of Science of Ukraine, Kyiv, Ukraine
| |
Collapse
|
23
|
Sasazaki S, Kondo H, Moriishi Y, Kawaguchi F, Oyama K, Mannen H. Comprehensive genotyping analysis of single nucleotide polymorphisms responsible for beef marbling in Japanese Black cattle. BMC Genom Data 2024; 25:17. [PMID: 38336623 PMCID: PMC10854043 DOI: 10.1186/s12863-024-01199-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Beef marbling is considered a desirable trait in the meat industry. Therefore, understanding the genetic factors that cause marbling is important. Previously, we performed a genome-wide association study to examine genetic factors associated with beef marbling in Japanese Black cattle and identified a candidate region between 10-30 Mbp on chromosome 7. We verified the effect of the SNPs in this region on beef marbling using linkage disequilibrium block analysis. We narrowed down the candidate region to a range of 15.8-16.1 Mbp. In this study, we comprehensively detected all of the SNPs in this region and verified their effects on beef marbling. RESULTS Genome resequencing using four animals exhibiting high beef marbling standard (BMS) and four with low BMS revealed a total of 1,846 polymorphisms within the candidate region. Based on the annotation, we selected 13 SNPs exhibiting a moderate impact, as no high-impact SNPs were detected. All of the SNPs represented missense polymorphisms and were located in the following seven genes: RDH8, ANGPTL6, DNMT1, MRPL4, ICAM1, ICAM3, and ICAM5. Finally, we determined the effects of these SNPs on the BMS of a Japanese Black cattle population (n = 529). Analysis of variance revealed that the five SNPs were located in genes encoding the intercellular adhesion molecules (ICAM1, ICAM3, and ICAM5), and showed a highly significant association compared with the remainder (p < 0.01). The lowest p-value was observed for ICAM3_c.739G > A (p = 1.18E-04). Previous studies have suggested that intercellular adhesion molecules (ICAM) may be an upstream factor that regulates adipocyte differentiation. Therefore, considering the polymorphism and putative gene function, we suggest that ICAM1 is potentially responsible for beef marbling. c.470C > G and/or c.994G > A on ICAM1 may be responsible for this quantitative trait locus. CONCLUSIONS Promising SNP candidates responsible for beef marbling were identified using extensive polymorphism verification in a previously reported QTL region. We aim to elucidate the mechanism of beef marbling in future studies by investigating how these polymorphisms alter protein structure and function.
Collapse
Affiliation(s)
- Shinji Sasazaki
- Laboratory of Animal Breeding and Genetics, Graduate School of Agricultural Science, Kobe University, Kobe, Japan.
| | - Hina Kondo
- Laboratory of Animal Breeding and Genetics, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Yurika Moriishi
- Laboratory of Animal Breeding and Genetics, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Fuki Kawaguchi
- Laboratory of Animal Breeding and Genetics, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Kenji Oyama
- Food Resources Education & Research Center, Kobe University, Kasai, Japan
| | - Hideyuki Mannen
- Laboratory of Animal Breeding and Genetics, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| |
Collapse
|
24
|
Singh V, Kaur R, Kumari P, Pasricha C, Singh R. ICAM-1 and VCAM-1: Gatekeepers in various inflammatory and cardiovascular disorders. Clin Chim Acta 2023; 548:117487. [PMID: 37442359 DOI: 10.1016/j.cca.2023.117487] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Leukocyte migration from the vascular compartment is critical fornormal lymphocyte recirculation in specific tissues and immune response in inflammatory locations. Leukocyte recruitment, migration to inflammatory areas, and targeting in the extravascular space are caused by cellular stimulation and local expression of adhesion molecules. Intercellular adhesion molecule 1 (ICAM-1) and Vascular cell adhesion molecule 1 (VCAM-1) belong to the immunoglobulin superfamily of cell adhesion molecules (CAM) with a crucial role in mediating the strong adherence of leukocytes to endothelial cells in numerous acute as well as chronic diseases. ICAM-1 and VCAM-1 mediate inflammation and promote leukocyte migration during inflammation. ICAM-1 and VCAM-1 have a large role in regulating homeostasis and in pathologic states such as cancer, atherosclerosis, atrial fibrillation, myocardial infarction, stroke, asthma, obesity, kidney diseases, and much more. In inflammatory conditions and infectious disorders, leukocytes move and cling to the endothelium via multiple intracellular adhesive interactions. It is suggested that combining membrane-bound and soluble ICAM-1 and VCAM-1 into a single unit functional system will further our understanding of their immunoregulatory role as well as their pathophysiological effects on disease. This review focuses on the pathophysiological roles of ICAM-1 and VCAM-1 in various inflammatory and other diseases as well as their emerging cardiovascular role during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Varinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rupinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Pratima Kumari
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Chirag Pasricha
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Ravinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|