1
|
Kovalenko V, Tereshkina K, Moiseenko A, Ryzhykau YL, Kuklin AI, Tereshkin E, Zaytsev P, Generalova A, Persiyantseva N, Sokolova OS, Krupyanskii Y, Loiko N. The Dps Protein Protects Escherichia coli DNA in the Form of the Trimer. Int J Mol Sci 2025; 26:619. [PMID: 39859335 PMCID: PMC11766142 DOI: 10.3390/ijms26020619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/29/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
The Dps protein is the major DNA-binding protein of prokaryotes, which protects DNA during starvation by forming a crystalline complex. The structure of such an intracellular DNA-Dps complex is still unknown. However, the phenomenon of a decrease in the size of the Dps protein from 90 Å to 69-75 Å during the formation of a complex with DNA has been repeatedly observed, and no explanation has been given. In this work, we show that during the formation of intracellular DNA-Dps crystals, the protein transitions to another oligomeric form: from a dodecameric (of 12 monomers), which has an almost spherical shape with a diameter of 90 Å, to a trimeric (of three monomers), which has a shape close to a torus-like structure with a diameter of 70 Å and a height of 40 Å. The trimer model was obtained through the molecular dynamic modeling of the interaction of the three monomers of the Dps protein. Placement of the obtained trimer in the electron density of in vitro DNA-Dps crystal allowed for the determination of the lattice parameters of the studied crystal. This crystal model was in good agreement with the SAXS data obtained from intracellular crystals of 2-day-old Escherichia coli cells. The final crystal structure contains a DNA molecule in the through channel of the crystal structure between the Dps trimers. It was discussed that the mechanism of protein transition from one oligomeric form to another in the cell cytoplasm could be regulated by intracellular metabolites and is a simple and flexible mechanism of prokaryotic cell transition from one metabolic state to another.
Collapse
Affiliation(s)
- Vladislav Kovalenko
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia; (K.T.); (E.T.); (A.G.); (Y.K.)
| | - Ksenia Tereshkina
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia; (K.T.); (E.T.); (A.G.); (Y.K.)
| | - Andrey Moiseenko
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (A.M.); (P.Z.); (O.S.S.)
| | - Yury L. Ryzhykau
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (Y.L.R.); (A.I.K.)
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia
| | - Alexander I. Kuklin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (Y.L.R.); (A.I.K.)
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia
| | - Eduard Tereshkin
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia; (K.T.); (E.T.); (A.G.); (Y.K.)
| | - Petr Zaytsev
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (A.M.); (P.Z.); (O.S.S.)
| | - Anastasiya Generalova
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia; (K.T.); (E.T.); (A.G.); (Y.K.)
| | - Nadezhda Persiyantseva
- “N. N. Blokhin National Medical Research Centre of Oncology” of the Health Ministry of Russia, 115478 Moscow, Russia;
| | - Olga S. Sokolova
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (A.M.); (P.Z.); (O.S.S.)
| | - Yurii Krupyanskii
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia; (K.T.); (E.T.); (A.G.); (Y.K.)
| | - Nataliya Loiko
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
2
|
Zhang J, Cui B, He T, Hei R, Yang L, Liu C, Wu X, Wang X, Gao Z, Lin F, Zhang H, Dong K. Enhancing Neuroprotection in Mouse Model of Parkinson's Disease through Protein Nanosystem Conjugation with ApoE Peptide for miR-124 Delivery. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8199-8212. [PMID: 38345297 DOI: 10.1021/acsami.3c13849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Parkinson's disease (PD) affects millions of people's lives worldwide. The main pathogenesis of PD is dopaminergic neuron necrosis and neuroinflammation mediated by activated microglia cells. In recent years, the anti-inflammatory ability and neuroprotective effects of miR-124 in PD models were well proved, but the in vivo delivery of miR-124 remains challenging. Herein, we report a protein nanosystem modified with a brain-targeting peptide ApoE that could efficiently deliver miR-124 across the blood-brain barrier (BBB). This nanosystem showed good cell viability on brain endothelial cells and microglia cells, and administration of this nanosystem significantly decreased the neuroinflammation and dopaminergic neuron loss, as well as recovered parts of neurobehavioral deficits. This ApoE peptide-based protein nanosystem holds great promise for the delivery of RNA therapeutics to the brain and for realizing neuron protection in PD treatment.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Clinical Laboratory, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Bozhou Cui
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Ting He
- Department of Clinical Laboratory, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Ruoxuan Hei
- Department of Clinical Laboratory, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Lan Yang
- Department of Clinical Laboratory, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Chong Liu
- Department of Clinical Laboratory, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Xianan Wu
- Department of Clinical Laboratory, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Xi Wang
- Department of Clinical Laboratory, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Zhaowei Gao
- Department of Clinical Laboratory, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Fang Lin
- Department of Clinical Laboratory, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Huizhong Zhang
- Department of Clinical Laboratory, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Ke Dong
- Department of Clinical Laboratory, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| |
Collapse
|