1
|
Zhang C, Gerzanich V, Cruz-Cosme R, Zhang J, Tsymbalyuk O, Tosun C, Sallapalli BT, Liu D, Keledjian K, Papadimitriou JC, Drachenberg CB, Nasr M, Zhang Y, Tang Q, Simard JM, Zhao RY. SARS-CoV-2 ORF3a induces COVID-19-associated kidney injury through HMGB1-mediated cytokine production. mBio 2024; 15:e0230824. [PMID: 39345136 PMCID: PMC11559048 DOI: 10.1128/mbio.02308-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/12/2024] [Indexed: 10/01/2024] Open
Abstract
The primary challenge posed by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is COVID-19-related mortality, often exacerbated by additional medical complications, such as COVID-19-associated kidney injuries (CAKIs). Up to half of COVID-19 patients experience kidney complications, with those facing acute respiratory failure and kidney injury having the worst overall prognosis. Despite the significant impact of CAKI on COVID-19-related mortality and its enduring effects in long COVID, the underlying causes and molecular mechanisms of CAKI remain elusive. In this study, we identified a functional relationship between the expression of the SARS-CoV-2 ORF3a protein and inflammation-driven apoptotic death of renal tubular epithelial cells in patients with CAKI. We demonstrate in vitro that ORF3a independently induces renal cell-specific apoptotic cell death, as evidenced by the elevation of kidney injury molecule-1 (KIM-1) and the activation of NF-kB-mediated proinflammatory cytokine (TNFα and IL-6) production. By examining kidney tissues of SARS-CoV-2-infected K18-ACE2 transgenic mice, we observed a similar correlation between ORF3a-induced cytopathic changes and kidney injury. This correlation was further validated through reconstitution of the ORF3a effects via direct adenoviral injection into mouse kidneys. Through medicinal analysis, we identified a natural compound, glycyrrhizin (GL4419), which not only blocks viral replication in renal cells, but also mitigates ORF3a-induced renal cell death by inhibiting activation of a high mobility group box 1 (HMGB1) protein, leading to a reduction of KIM-1. Moreover, ORF3a interacts with HMGB1. Overproduction or downregulation of hmgb1 expression results in correlative changes in renal cellular KIM-1 response and respective cytokine production, implicating a crucial role of HMGB1 in ORF3a-inflicted kidney injuries. Our data suggest a direct functional link between ORF3a and kidney injury, highlighting ORF3a as a unique therapeutic target contributing to CAKI. IMPORTANCE The major challenge of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection during the pandemic is COVID-19-related mortality, which has tragically claimed millions of lives. COVID-19-associated morbidity and mortality are often exacerbated by pre-existing medical conditions, such as chronic kidney diseases (CKDs), or the development of acute kidney injury (AKI) due to COVID-19, collectively known as COVID-19-associated kidney injuries (CAKIs). Patients who experience acute respiratory failure with CAKI have the poorest clinical outcomes, including increased mortality. Despite these alarming clinical findings, there is a critical gap in our understanding of the underlying causes of CAKI. Our study establishes a direct correlation between the expression of the SARS-CoV-2 viral ORF3a protein and kidney injury induced by ORF3a linking to CAKI. This functional relationship was initially observed in our clinical studies of COVID-19 patients with AKI and was further validated through animal and in vitro cellular studies, either by expressing ORF3a alone or in the context of viral infection. By elucidating this functional relationship and its underlying mechanistic pathways, our research deepens the understanding of COVID-19-associated kidney diseases and presents potential therapeutic avenues to address the healthcare challenges faced by individuals with underlying conditions.
Collapse
Affiliation(s)
- Chenyu Zhang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ruth Cruz-Cosme
- Department of Microbiology, Howard University College of Medicine, Washington, DC, USA
| | - Jiantao Zhang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Orest Tsymbalyuk
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Cigdem Tosun
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Dongxiao Liu
- Department of Microbiology, Howard University College of Medicine, Washington, DC, USA
| | - Kaspar Keledjian
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - John C. Papadimitriou
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Cinthia B. Drachenberg
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mohamed Nasr
- Division of AIDS, NIAID, NIH, Drug Development and Clinical Sciences Branch, Bethesda, Maryland, USA
| | - Yanjin Zhang
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, DC, USA
| | - J. Marc Simard
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Research and Development Service, VA Maryland Health Care System, Baltimore, Maryland, USA
| | - Richard Y. Zhao
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Research and Development Service, VA Maryland Health Care System, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Institute of Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Schäfer A, Leist SR, Powers JM, Baric RS. Animal models of Long Covid: A hit-and-run disease. Sci Transl Med 2024; 16:eado2104. [PMID: 39536118 DOI: 10.1126/scitranslmed.ado2104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV 2) pandemic has caused more than 7 million deaths globally. Despite the presence of infection- and vaccine-induced immunity, SARS-CoV-2 infections remain a major global health concern because of the emergence of SARS-CoV-2 variants that can cause severe acute coronavirus disease 2019 (COVID-19) or enhance Long Covid disease phenotypes. About 5 to 10% of SARS-CoV-2-infected individuals develop Long Covid, which, similar to acute COVID 19, often affects the lung. However, Long Covid can also affect other peripheral organs, especially the brain. The causal relationships between acute disease phenotypes, long-term symptoms, and involvement of multiple organ systems remain elusive, and animal model systems mimicking both acute and post-acute phases are imperative. Here, we review the current state of Long Covid animal models, including current and possible future applications.
Collapse
Affiliation(s)
- Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - John M Powers
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
3
|
Antar AAR, Cox AL. Translating insights into therapies for Long Covid. Sci Transl Med 2024; 16:eado2106. [PMID: 39536116 DOI: 10.1126/scitranslmed.ado2106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Long Covid is defined by a wide range of symptoms that persist after the acute phase of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Commonly reported symptoms include fatigue, weakness, postexertional malaise, and cognitive dysfunction, with many other symptoms reported. Symptom range, duration, and severity are highly variable and partially overlap with symptoms of myalgic encephalomyelitis/chronic fatigue syndrome and other post-acute infectious syndromes, highlighting opportunities to define shared mechanisms of pathogenesis. Potential mechanisms of Long Covid are diverse, including persistence of viral reservoirs, dysregulated immune responses, direct viral damage of tissues targeted by SARS-CoV-2, inflammation driven by reactivation of latent viral infections, vascular endothelium activation or dysfunction, and subsequent thromboinflammation, autoimmunity, metabolic derangements, microglial activation, and microbiota dysbiosis. The heterogeneity of symptoms and baseline characteristics of people with Long Covid, as well as the varying states of immunity and therapies given at the time of acute infection, have made etiologies of Long Covid difficult to determine. Here, we examine progress on preclinical models for Long Covid and review progress being made in clinical trials, highlighting the need for large human studies and further development of models to better understand Long Covid. Such studies will inform clinical trials that will define treatments to benefit those living with this condition.
Collapse
Affiliation(s)
- Annukka A R Antar
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrea L Cox
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
4
|
Ahmed NJ, Amin ZA, Kheder RK, Pirot RQ, Mutalib GA, Jabbar SN. Immuno-inflammatory and organ dysfunction markers in severe COVID-19 patients. Cytokine 2024; 182:156715. [PMID: 39067395 DOI: 10.1016/j.cyto.2024.156715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Infection with the SARS-CoV-2 virus may induce some complications among people who experience mild to moderate respiratory illness and some of them recover without requiring special treatment. Albeit, some individuals become seriously reached risk points and require special medical attention especially older people and people who suffer from chronic diseases. Serum and whole blood samples were collected from confirmed infected persons with SARS CoV-2 by real-time PCR and the control group. All lab. Investigations were performed using Cobas 6000. Significant differences were noted between patients compared to the control group in the Mean ± SD of IL-6 (76.06 ± 7.60 vs 3.61 ± 0.296 pg/ml), Procalcitonin (0.947 ± 0.117 vs 0.061 ± 0.007 ng/ml), CRP (125.3 ± 7.560 vs 4.027 ± 0.251 mg/dl), ALT (154.8 ± 30.47 vs 49.75 ± 2.977 IU/L) and AST (70.83 ± 9.215 vs 27.23 ± 1.767) respectively. While other parameters were also showed significant differences were noted between patients compared to the control group for D-Dimmer, PT, PTT, LDH, Ferritin, WBC, Lymphocyte and Creatinine. The results reached that the effect of SARS CoV-2 and cytokine storm was clear on the body's organs through vital biomarker investigations that were performed in this study.
Collapse
Affiliation(s)
- Najat Jabbar Ahmed
- Department of Medical Laboratory Technology, Erbil Technical Health and Medical College, Erbil Polytechnic University, Erbil 44001, Iraq
| | - Zahra A Amin
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University Erbil 44001, Iraq
| | - Ramiar Kamal Kheder
- Medical Laboratory Science Department, College of Science, University of Raparin, Rania 46012, Sulaymaniyah, Iraq; Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq.
| | - Rzgar Qadir Pirot
- Biology Department, College of Science, University of Raparin, Rania 46012, Sulaymaniyah, Iraq
| | - Gulstan A Mutalib
- Department of Medical Laboratory Technology, Erbil Technical Health and Medical College, Erbil Polytechnic University, Erbil 44001, Iraq
| | - Sana Najat Jabbar
- Department of Medical Laboratory Technology, Erbil Technical Health and Medical College, Erbil Polytechnic University, Erbil 44001, Iraq
| |
Collapse
|
5
|
Hamlin RE, Blish CA. Challenges and opportunities in long COVID research. Immunity 2024; 57:1195-1214. [PMID: 38865966 PMCID: PMC11210969 DOI: 10.1016/j.immuni.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/19/2024] [Accepted: 05/10/2024] [Indexed: 06/14/2024]
Abstract
Long COVID (LC) is a condition in which patients do not fully recover from the initial SARS-CoV-2 infection but rather have persistent or new symptoms for months to years following the infection. Ongoing research efforts are investigating the pathophysiologic mechanisms of LC and exploring preventative and therapeutic treatment approaches for patients. As a burgeoning area of investigation, LC research can be structured to be more inclusive, innovative, and effective. In this perspective, we highlight opportunities for patient engagement and diverse research expertise, as well as the challenges of developing definitions and reproducible studies. Our intention is to provide a foundation for collaboration and progress in understanding the biomarkers and mechanisms driving LC.
Collapse
Affiliation(s)
| | - Catherine A Blish
- Department of Medicine, Stanford University, Stanford, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
6
|
Hussain H, Elumalai N, Sampath N, Shamaladevi N, Hajjar R, Druyan BZ, Rashed AB, Ramamoorthy R, Kenyon NS, Jayakumar AR, Paidas MJ. Acute and Long COVID Intestinal Changes in an Experimental Model of Coronavirus in Mice. Viruses 2024; 16:832. [PMID: 38932125 PMCID: PMC11209276 DOI: 10.3390/v16060832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
The COVID-19 pandemic, which emerged in early 2020, has had a profound and lasting impact on global health, resulting in over 7.0 million deaths and persistent challenges. In addition to acute concerns, there is growing attention being given to the long COVID health consequences for survivors of COVID-19 with documented cases of cardiovascular abnormalities, liver disturbances, lung complications, kidney issues, and noticeable cognitive deficits. Recent studies have investigated the physiological changes in various organs following prolonged exposure to murine hepatitis virus-1 (MHV-1), a coronavirus, in mouse models. One significant finding relates to the effects on the gastrointestinal tract, an area previously understudied regarding the long-lasting effects of COVID-19. This research sheds light on important observations in the intestines during both the acute and the prolonged phases following MHV-1 infection, which parallel specific changes seen in humans after exposure to SARS-CoV-2. Our study investigates the histopathological alterations in the small intestine following MHV-1 infection in murine models, revealing significant changes reminiscent of inflammatory bowel disease (IBD), celiac disease. Notable findings include mucosal inflammation, lymphoid hyperplasia, goblet cell hyperplasia, and immune cell infiltration, mirroring pathological features observed in IBD. Additionally, MHV-1 infection induces villous atrophy, altered epithelial integrity, and inflammatory responses akin to celiac disease and IBD. SPIKENET (SPK) treatment effectively mitigates intestinal damage caused by MHV-1 infection, restoring tissue architecture and ameliorating inflammatory responses. Furthermore, investigation into long COVID reveals intricate inflammatory profiles, highlighting the potential of SPK to modulate intestinal responses and restore tissue homeostasis. Understanding these histopathological alterations provides valuable insights into the pathogenesis of COVID-induced gastrointestinal complications and informs the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Hussain Hussain
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (H.H.); (N.E.); (R.H.); (B.Z.D.); (A.B.R.); (R.R.)
- Department of Internal Medicine, HCA Florida Kendall Hospital, Miami, FL 33175, USA
| | - Nila Elumalai
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (H.H.); (N.E.); (R.H.); (B.Z.D.); (A.B.R.); (R.R.)
| | - Natarajan Sampath
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, India;
| | | | - Rima Hajjar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (H.H.); (N.E.); (R.H.); (B.Z.D.); (A.B.R.); (R.R.)
| | - Brian Zachary Druyan
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (H.H.); (N.E.); (R.H.); (B.Z.D.); (A.B.R.); (R.R.)
| | - Amirah B. Rashed
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (H.H.); (N.E.); (R.H.); (B.Z.D.); (A.B.R.); (R.R.)
| | - Rajalakshmi Ramamoorthy
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (H.H.); (N.E.); (R.H.); (B.Z.D.); (A.B.R.); (R.R.)
| | - Norma S. Kenyon
- Microbiology & Immunology and Biomedical Engineering, Diabetes Research Institute, University of Miami, Miami, FL 33136, USA;
| | - Arumugam R. Jayakumar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (H.H.); (N.E.); (R.H.); (B.Z.D.); (A.B.R.); (R.R.)
| | - Michael J. Paidas
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (H.H.); (N.E.); (R.H.); (B.Z.D.); (A.B.R.); (R.R.)
- Department of Biochemistry and Molecular Biology, The University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
7
|
Elumalai N, Hussain H, Sampath N, Shamaladevi N, Hajjar R, Druyan BZ, Rashed AB, Ramamoorthy R, Kenyon NS, Jayakumar AR, Paidas MJ. SPIKENET: An Evidence-Based Therapy for Long COVID. Viruses 2024; 16:838. [PMID: 38932130 PMCID: PMC11209161 DOI: 10.3390/v16060838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 06/28/2024] Open
Abstract
The COVID-19 pandemic has been one of the most impactful events in our lifetime, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Multiple SARS-CoV-2 variants were reported globally, and a wide range of symptoms existed. Individuals who contract COVID-19 continue to suffer for a long time, known as long COVID or post-acute sequelae of COVID-19 (PASC). While COVID-19 vaccines were widely deployed, both unvaccinated and vaccinated individuals experienced long-term complications. To date, there are no treatments to eradicate long COVID. We recently conceived a new approach to treat COVID in which a 15-amino-acid synthetic peptide (SPIKENET, SPK) is targeted to the ACE2 receptor binding domain of SARS-CoV-2, which prevents the virus from attaching to the host. We also found that SPK precludes the binding of spike glycoproteins with the receptor carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) of a coronavirus, murine hepatitis virus-1 (MHV-1), and with all SARS-CoV-2 variants. Further, SPK reversed the development of severe inflammation, oxidative stress, tissue edema, and animal death post-MHV-1 infection in mice. SPK also protects against multiple organ damage in acute and long-term post-MHV-1 infection. Our findings collectively suggest a potential therapeutic benefit of SPK for treating COVID-19.
Collapse
Affiliation(s)
- Nila Elumalai
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (N.E.); (H.H.); (R.H.); (B.Z.D.); (A.B.R.); (R.R.)
| | - Hussain Hussain
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (N.E.); (H.H.); (R.H.); (B.Z.D.); (A.B.R.); (R.R.)
- Department of Internal Medicine, HCA Florida Kendall Hospital, Miami, FL 33175, USA
| | - Natarajan Sampath
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India;
| | | | - Rima Hajjar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (N.E.); (H.H.); (R.H.); (B.Z.D.); (A.B.R.); (R.R.)
| | - Brian Zachary Druyan
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (N.E.); (H.H.); (R.H.); (B.Z.D.); (A.B.R.); (R.R.)
| | - Amirah B. Rashed
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (N.E.); (H.H.); (R.H.); (B.Z.D.); (A.B.R.); (R.R.)
| | - Rajalakshmi Ramamoorthy
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (N.E.); (H.H.); (R.H.); (B.Z.D.); (A.B.R.); (R.R.)
| | - Norma S. Kenyon
- Microbiology & Immunology and Biomedical Engineering, Diabetes Research Institute, University of Miami, Miami, FL 33136, USA;
| | - Arumugam R. Jayakumar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (N.E.); (H.H.); (R.H.); (B.Z.D.); (A.B.R.); (R.R.)
| | - Michael J. Paidas
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (N.E.); (H.H.); (R.H.); (B.Z.D.); (A.B.R.); (R.R.)
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
8
|
Golzardi M, Hromić-Jahjefendić A, Šutković J, Aydin O, Ünal-Aydın P, Bećirević T, Redwan EM, Rubio-Casillas A, Uversky VN. The Aftermath of COVID-19: Exploring the Long-Term Effects on Organ Systems. Biomedicines 2024; 12:913. [PMID: 38672267 PMCID: PMC11048001 DOI: 10.3390/biomedicines12040913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Post-acute sequelae of SARS-CoV-2 infection (PASC) is a complicated disease that affects millions of people all over the world. Previous studies have shown that PASC impacts 10% of SARS-CoV-2 infected patients of which 50-70% are hospitalised. It has also been shown that 10-12% of those vaccinated against COVID-19 were affected by PASC and its complications. The severity and the later development of PASC symptoms are positively associated with the early intensity of the infection. RESULTS The generated health complications caused by PASC involve a vast variety of organ systems. Patients affected by PASC have been diagnosed with neuropsychiatric and neurological symptoms. The cardiovascular system also has been involved and several diseases such as myocarditis, pericarditis, and coronary artery diseases were reported. Chronic hematological problems such as thrombotic endothelialitis and hypercoagulability were described as conditions that could increase the risk of clotting disorders and coagulopathy in PASC patients. Chest pain, breathlessness, and cough in PASC patients were associated with the respiratory system in long-COVID causing respiratory distress syndrome. The observed immune complications were notable, involving several diseases. The renal system also was impacted, which resulted in raising the risk of diseases such as thrombotic issues, fibrosis, and sepsis. Endocrine gland malfunction can lead to diabetes, thyroiditis, and male infertility. Symptoms such as diarrhea, nausea, loss of appetite, and taste were also among reported observations due to several gastrointestinal disorders. Skin abnormalities might be an indication of infection and long-term implications such as persistent cutaneous complaints linked to PASC. CONCLUSIONS Long-COVID is a multidimensional syndrome with considerable public health implications, affecting several physiological systems and demanding thorough medical therapy, and more study to address its underlying causes and long-term effects is needed.
Collapse
Affiliation(s)
- Maryam Golzardi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka Cesta 15, 71000 Sarajevo, Bosnia and Herzegovina; (M.G.); (J.Š.)
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka Cesta 15, 71000 Sarajevo, Bosnia and Herzegovina; (M.G.); (J.Š.)
| | - Jasmin Šutković
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka Cesta 15, 71000 Sarajevo, Bosnia and Herzegovina; (M.G.); (J.Š.)
| | - Orkun Aydin
- Department of Psychology, Faculty of Arts and Social Sciences, International University of Sarajevo, Hrasnicka Cesta 15, 71000 Sarajevo, Bosnia and Herzegovina; (O.A.); (P.Ü.-A.)
| | - Pinar Ünal-Aydın
- Department of Psychology, Faculty of Arts and Social Sciences, International University of Sarajevo, Hrasnicka Cesta 15, 71000 Sarajevo, Bosnia and Herzegovina; (O.A.); (P.Ü.-A.)
| | - Tea Bećirević
- Atrijum Polyclinic, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Elrashdy M. Redwan
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria 21934, Egypt
| | - Alberto Rubio-Casillas
- Autlan Regional Hospital, Health Secretariat, Autlan 48900, Jalisco, Mexico;
- Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan 48900, Jalisco, Mexico
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
9
|
El-Mansoury B, Smimih K, El Khiat A, Draoui A, Aimrane A, Chatoui R, Ferssiwi A, Bitar A, Gamrani H, Jayakumar AR, El Hiba O. Short Working Memory Impairment Associated with Hippocampal Microglia Activation in Chronic Hepatic Encephalopathy. Metabolites 2024; 14:193. [PMID: 38668321 PMCID: PMC11052478 DOI: 10.3390/metabo14040193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/03/2024] [Accepted: 01/06/2024] [Indexed: 04/28/2024] Open
Abstract
Hepatic encephalopathy (HE) is a major neuropsychological condition that occursas a result of impaired liver function. It is frequently observed in patients with advanced liver disease or cirrhosis. Memory impairment is among the symptoms of HE; the pathophysiologic mechanism for this enervating condition remains unclear. However, it is possible that neuroinflammation may be involved, as recent studies have emphasized such phenomena. Therefore, the aim of the present study is to assess short working memory (SWM) and examine the involvement of microglia in a chronic model of HE. The study was carried out with male Wistar rats that were induced by repeated thioacetamide (TAA) administration (100 mg/kg i.p injection for 10 days). SWM function was assessed through Y-maze, T-Maze, and novel object recognition (NOR) tests, together with an immunofluorescence study of microglia activation within the hippocampal areas. Our data showed impaired SWM in TAA-treated rats that was associated with microglial activation in the three hippocampal regions, and which contributed to cognitive impairment.
Collapse
Affiliation(s)
- Bilal El-Mansoury
- Laboratory of Anthropogenic, Biotechnology and Health, Nutritional Physiopathologies, Neurosciences and Toxicology Team, Faculty of Sciences, Chouaib Doukkali University, Av. Des Facultés, El Jadida 24000, Morocco; (B.E.-M.); (A.E.K.); (A.A.); (A.F.); (A.B.)
| | - Kamal Smimih
- Laboratory of Genie-Biology, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco; (K.S.); (R.C.)
| | - Abdelaati El Khiat
- Laboratory of Anthropogenic, Biotechnology and Health, Nutritional Physiopathologies, Neurosciences and Toxicology Team, Faculty of Sciences, Chouaib Doukkali University, Av. Des Facultés, El Jadida 24000, Morocco; (B.E.-M.); (A.E.K.); (A.A.); (A.F.); (A.B.)
- Higher Institute of Nursing Professions and Health Techniques, Ministry of Health, Ouarzazate 45000, Morocco
- Laboratory of Clinical and Experimental Neurosciences and Environment, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech 40000, Morocco
| | - Ahmed Draoui
- Laboratory of Clinical and Experimental Neurosciences and Environment, Faculty of Science Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco; (A.D.); (H.G.)
| | - Abdelmohcine Aimrane
- Laboratory of Anthropogenic, Biotechnology and Health, Nutritional Physiopathologies, Neurosciences and Toxicology Team, Faculty of Sciences, Chouaib Doukkali University, Av. Des Facultés, El Jadida 24000, Morocco; (B.E.-M.); (A.E.K.); (A.A.); (A.F.); (A.B.)
| | - Redouane Chatoui
- Laboratory of Genie-Biology, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco; (K.S.); (R.C.)
| | - Abdesslam Ferssiwi
- Laboratory of Anthropogenic, Biotechnology and Health, Nutritional Physiopathologies, Neurosciences and Toxicology Team, Faculty of Sciences, Chouaib Doukkali University, Av. Des Facultés, El Jadida 24000, Morocco; (B.E.-M.); (A.E.K.); (A.A.); (A.F.); (A.B.)
| | - Abdelali Bitar
- Laboratory of Anthropogenic, Biotechnology and Health, Nutritional Physiopathologies, Neurosciences and Toxicology Team, Faculty of Sciences, Chouaib Doukkali University, Av. Des Facultés, El Jadida 24000, Morocco; (B.E.-M.); (A.E.K.); (A.A.); (A.F.); (A.B.)
| | - Halima Gamrani
- Laboratory of Clinical and Experimental Neurosciences and Environment, Faculty of Science Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco; (A.D.); (H.G.)
| | | | - Omar El Hiba
- Laboratory of Anthropogenic, Biotechnology and Health, Nutritional Physiopathologies, Neurosciences and Toxicology Team, Faculty of Sciences, Chouaib Doukkali University, Av. Des Facultés, El Jadida 24000, Morocco; (B.E.-M.); (A.E.K.); (A.A.); (A.F.); (A.B.)
| |
Collapse
|
10
|
Anandakrishnan N, Yi Z, Sun Z, Liu T, Haydak J, Eddy S, Jayaraman P, DeFronzo S, Saha A, Sun Q, Yang D, Mendoza A, Mosoyan G, Wen HH, Schaub JA, Fu J, Kehrer T, Menon R, Otto EA, Godfrey B, Suarez-Farinas M, Leffters S, Twumasi A, Meliambro K, Charney AW, García-Sastre A, Campbell KN, Gusella GL, He JC, Miorin L, Nadkarni GN, Wisnivesky J, Li H, Kretzler M, Coca SG, Chan L, Zhang W, Azeloglu EU. Integrated multiomics implicates dysregulation of ECM and cell adhesion pathways as drivers of severe COVID-associated kidney injury. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.18.24304401. [PMID: 38562892 PMCID: PMC10984064 DOI: 10.1101/2024.03.18.24304401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
COVID-19 has been a significant public health concern for the last four years; however, little is known about the mechanisms that lead to severe COVID-associated kidney injury. In this multicenter study, we combined quantitative deep urinary proteomics and machine learning to predict severe acute outcomes in hospitalized COVID-19 patients. Using a 10-fold cross-validated random forest algorithm, we identified a set of urinary proteins that demonstrated predictive power for both discovery and validation set with 87% and 79% accuracy, respectively. These predictive urinary biomarkers were recapitulated in non-COVID acute kidney injury revealing overlapping injury mechanisms. We further combined orthogonal multiomics datasets to understand the mechanisms that drive severe COVID-associated kidney injury. Functional overlap and network analysis of urinary proteomics, plasma proteomics and urine sediment single-cell RNA sequencing showed that extracellular matrix and autophagy-associated pathways were uniquely impacted in severe COVID-19. Differentially abundant proteins associated with these pathways exhibited high expression in cells in the juxtamedullary nephron, endothelial cells, and podocytes, indicating that these kidney cell types could be potential targets. Further, single-cell transcriptomic analysis of kidney organoids infected with SARS-CoV-2 revealed dysregulation of extracellular matrix organization in multiple nephron segments, recapitulating the clinically observed fibrotic response across multiomics datasets. Ligand-receptor interaction analysis of the podocyte and tubule organoid clusters showed significant reduction and loss of interaction between integrins and basement membrane receptors in the infected kidney organoids. Collectively, these data suggest that extracellular matrix degradation and adhesion-associated mechanisms could be a main driver of COVID-associated kidney injury and severe outcomes.
Collapse
|
11
|
Hussain H, Paidas MJ, Rajalakshmi R, Fadel A, Ali M, Chen P, Jayakumar AR. Dermatologic Changes in Experimental Model of Long COVID. Microorganisms 2024; 12:272. [PMID: 38399677 PMCID: PMC10892887 DOI: 10.3390/microorganisms12020272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
The coronavirus disease-19 (COVID-19) pandemic, declared in early 2020, has left an indelible mark on global health, with over 7.0 million deaths and persistent challenges. While the pharmaceutical industry raced to develop vaccines, the emergence of mutant severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) strains continues to pose a significant threat. Beyond the immediate concerns, the long-term health repercussions of COVID-19 survivors are garnering attention, particularly due to documented cases of cardiovascular issues, liver dysfunction, pulmonary complications, kidney impairments, and notable neurocognitive deficits. Recent studies have delved into the pathophysiological changes in various organs following post-acute infection with murine hepatitis virus-1 (MHV-1), a coronavirus, in mice. One aspect that stands out is the impact on the skin, a previously underexplored facet of long-term COVID-19 effects. The research reveals significant cutaneous findings during both the acute and long-term phases post-MHV-1 infection, mirroring certain alterations observed in humans post-SARS-CoV-2 infection. In the acute stages, mice exhibited destruction of the epidermal layer, increased hair follicles, extensive collagen deposition in the dermal layer, and hyperplasticity of sebaceous glands. Moreover, the thinning of the panniculus carnosus and adventitial layer was noted, consistent with human studies. A long-term investigation revealed the absence of hair follicles, destruction of adipose tissues, and further damage to the epidermal layer. Remarkably, treatment with a synthetic peptide, SPIKENET (SPK), designed to prevent Spike glycoprotein-1 binding with host receptors and elicit a potent anti-inflammatory response, showed protection against MHV-1 infection. Precisely, SPK treatment restored hair follicle loss in MHV-1 infection, re-architected the epidermal and dermal layers, and successfully overhauled fatty tissue destruction. These promising findings underscore the potential of SPK as a therapeutic intervention to prevent long-term skin alterations initiated by SARS-CoV-2, providing a glimmer of hope in the battle against the lingering effects of the pandemic.
Collapse
Affiliation(s)
- Hussain Hussain
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (H.H.); (R.R.)
- Department of Internal Medicine and Infectious Disease, Larkin Community Hospital, Miami, FL 33143, USA
| | - Michael J. Paidas
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (H.H.); (R.R.)
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ramamoorthy Rajalakshmi
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (H.H.); (R.R.)
| | - Aya Fadel
- Department of Internal Medicine, Ocean University Medical Center—Hackensack Meridian Health, Brick Township, NJ 08724, USA;
| | - Misha Ali
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Pingping Chen
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Arumugam R. Jayakumar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (H.H.); (R.R.)
| |
Collapse
|
12
|
Rai V. COVID-19 and Kidney: The Importance of Follow-Up and Long-Term Screening. Life (Basel) 2023; 13:2137. [PMID: 38004277 PMCID: PMC10672056 DOI: 10.3390/life13112137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/21/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
Renal involvement and kidney injury are common in COVID-19 patients, and the symptoms are more severe if the patient already has renal impairment. Renal involvement in COVID-19 is multifactorial, and the renal tubule is mainly affected, along with podocyte injury during SARS-CoV-2 infection. Inflammation, complement activation, hypercoagulation, and crosstalk between the kidney and lungs, brain, and heart are contributory factors. Kidney injury during the acute phase, termed acute kidney injury (AKI), may proceed to chronic kidney disease if the patient is discharged with renal impairment. Both AKI and chronic kidney disease (CKD) increase mortality in COVID-19 patients. Further, COVID-19 infection in patients suffering from CKD is more severe and increases the mortality rate. Thus, it is important to address both categories of patients, either developing AKI or CKD after COVID-19 or previously having CKD, with proper management and treatment. This review discusses the pathophysiology involved in AKI and CKD in COVID-19 infection, followed by management and treatment of AKI and CKD. This is followed by a discussion of the importance of screening and treatment of CKD patients infected with COVID-19 and future perspectives to improve treatment in such patients.
Collapse
Affiliation(s)
- Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|