1
|
Wang M, Zhao R, Su Y, Zhai D, Liang H, Zhang L, Wang W, Wang Z, Qi M, Jiang X, Ling S, Di G. 4,4'-Dimethoxychalcone Mitigates Neuroinflammation Following Traumatic Brain Injury Through Modulation of the TREM2/PI3K/AKT/NF-κB Signaling Pathway. Inflammation 2025:10.1007/s10753-025-02279-4. [PMID: 40261458 DOI: 10.1007/s10753-025-02279-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 04/24/2025]
Abstract
Research on 4,4'-dimethoxychalcone (DMC) in the context of traumatic brain injury (TBI) is extremely limited, and no effective clinical treatments are available to improve outcomes for individuals with TBI. Our study aims to investigate the underlying mechanisms by which DMC may alleviate neuroinflammation and neuronal damage following TBI. This study seeks to provide a theoretical foundation for the development of future pharmacological therapies for TBI. A moderate TBI model was established using the fluid percussion injury (FPI) method. The recovery of neuromotor function following TBI was evaluated using the modified neurological severity score (mNSS), the Morris water maze test, and analysis of cerebral edema. Gene and protein expression levels were quantified using cell viability assays, quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting, enzyme-linked immunosorbent assay (ELISA), immunohistochemistry, and immunofluorescence. Network pharmacology was employed to predict potential targets of DMC, and gene ontology (GO) analysis along with KEGG pathway enrichment was conducted to predict signaling pathways affected by DMC.DMC treatment significantly improved neuromotor deficits in mice after TBI. In both in vivo and in vitro experiments, DMC suppressed microglial activation and decreased the production and release of inflammatory factors. Additionally, DMC reduced neuronal lesions after TBI. DMC notably decreased the elevated expression of triggering receptor expressed on myeloid cells 2 (TREM2) following TBI. Network pharmacological analysis indicated that DMC's therapeutic effects may be mediated through the PI3K/AKT signaling cascade. These findings indicate that DMC has therapeutic potential for TBI, with significant anti-inflammatory and neuroprotective properties likely mediated by the TREM2/PI3K/AKT/NF-κB signaling cascade.
Collapse
Affiliation(s)
- Mengran Wang
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China
- The Institutes of Brain Science, Wannan Medical College, No. 22 Wenchang West Road, Higher Education Park, Wuhu, 241002, Anhui, China
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders of Wannan Medical College, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China
| | - Rui Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China
- The Institutes of Brain Science, Wannan Medical College, No. 22 Wenchang West Road, Higher Education Park, Wuhu, 241002, Anhui, China
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders of Wannan Medical College, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China
| | - Yue Su
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China
- The Institutes of Brain Science, Wannan Medical College, No. 22 Wenchang West Road, Higher Education Park, Wuhu, 241002, Anhui, China
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders of Wannan Medical College, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China
| | - Duhuan Zhai
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China
- The Institutes of Brain Science, Wannan Medical College, No. 22 Wenchang West Road, Higher Education Park, Wuhu, 241002, Anhui, China
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders of Wannan Medical College, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China
| | - Hengyan Liang
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China
- The Institutes of Brain Science, Wannan Medical College, No. 22 Wenchang West Road, Higher Education Park, Wuhu, 241002, Anhui, China
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders of Wannan Medical College, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China
| | - Lingkun Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China
- The Institutes of Brain Science, Wannan Medical College, No. 22 Wenchang West Road, Higher Education Park, Wuhu, 241002, Anhui, China
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders of Wannan Medical College, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China
| | - Weicheng Wang
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China
- The Institutes of Brain Science, Wannan Medical College, No. 22 Wenchang West Road, Higher Education Park, Wuhu, 241002, Anhui, China
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders of Wannan Medical College, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China
| | - Zhichun Wang
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China
- The Institutes of Brain Science, Wannan Medical College, No. 22 Wenchang West Road, Higher Education Park, Wuhu, 241002, Anhui, China
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders of Wannan Medical College, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China
| | - Min Qi
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China
- The Institutes of Brain Science, Wannan Medical College, No. 22 Wenchang West Road, Higher Education Park, Wuhu, 241002, Anhui, China
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders of Wannan Medical College, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China
| | - Xiaochun Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China.
- The Institutes of Brain Science, Wannan Medical College, No. 22 Wenchang West Road, Higher Education Park, Wuhu, 241002, Anhui, China.
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders of Wannan Medical College, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China.
| | - Shizhang Ling
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China.
- The Institutes of Brain Science, Wannan Medical College, No. 22 Wenchang West Road, Higher Education Park, Wuhu, 241002, Anhui, China.
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders of Wannan Medical College, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China.
| | - Guangfu Di
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China.
- The Institutes of Brain Science, Wannan Medical College, No. 22 Wenchang West Road, Higher Education Park, Wuhu, 241002, Anhui, China.
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders of Wannan Medical College, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China.
| |
Collapse
|
2
|
Lakshmi Priya VP, Devi M. Potential of integrating phytochemicals with standard treatments for enhanced outcomes in TBI. Brain Inj 2025:1-17. [PMID: 40259453 DOI: 10.1080/02699052.2025.2493352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/06/2025] [Accepted: 04/08/2025] [Indexed: 04/23/2025]
Abstract
OBJECTIVE TBI's intricate pathophysiology, which includes oxidative stress, neuroinflammation, apoptosis, and mechanical injury, makes it a serious public health concern. Although stabilization and secondary damage management are the main goals of current treatments, their efficacy is still restricted. The potential for improving patient outcomes by combining phytochemicals with traditional medicines is examined in this review. METHODS The study examined the neuroprotective qualities of ginsenosides, ginkgolides, resveratrol, and curcumin as well as their antioxidant and anti-inflammatory activities. Analysis was done on molecular pathways and medication delivery techniques to improve translational outcomes and drug availability for clinical practice. RESULTS Phytochemical substances directly influence TBI-related neurogenic pathways and functional restoration while also affecting subsequent neural damage processes. Particle-based medicine delivery platforms enhance therapeutic drug efficacy, emerging as innovative solutions for targeted drug delivery. When traditional medical therapies integrate with phytochemicals, it becomes possible to achieve better patient results through enhanced synergy. CONCLUSION This review uniquely integrates phytochemicals with standard TBI treatments, emphasizing advanced drug delivery strategies and their translational potential to enhance neuroprotection and clinical outcomes. Unlike previous studies, it explores novel drug delivery platforms, such as nanoparticle-based systems, and highlights the synergy between phytochemicals and conventional therapies to improve patient recovery.
Collapse
Affiliation(s)
- V P Lakshmi Priya
- Department of Pharmacology, Faculty of Pharmacy, Dr. M.G.R Educational and Research Institute, Chennai, India
| | - M Devi
- Department of Pharmacology, Faculty of Pharmacy, Dr. M.G.R Educational and Research Institute, Chennai, India
| |
Collapse
|
3
|
Moswatsi B, Mahumane GD, Kumar P, Choonara YE. A review of bigels for neurotrauma therapeutics: Structural insights for tissue microenvironment alignment. BIOMATERIALS ADVANCES 2025; 174:214315. [PMID: 40245812 DOI: 10.1016/j.bioadv.2025.214315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/22/2025] [Accepted: 04/07/2025] [Indexed: 04/19/2025]
Abstract
Neural injuries pose a significant clinical challenge due to the brain's limited regenerative capacity and the complexity of developing biomaterials that can provide mechanical support and localized therapeutic delivery. Conventional biomaterials such as hydrogels and electrospun scaffolds exhibit limitations, including suboptimal mechanical integrity and uncontrolled drug diffusion. Bigels, biphasic systems composed of interpenetrating hydrophilic and hydrophobic phases, offer tunable viscoelasticity, enhanced drug loading capacity, and structural adaptability, making them promising candidates for addressing the multifaceted requirements of neurotherapeutics applications. Despite their established applications in the transdermal application, the potential of bigels in neurotherapeutics remains underexplored. This review critically examines bigel formulation strategies, physicochemical characteristics, and neuroregenerative potential. Key analytical techniques, including oscillatory rheology, scanning electron microscopy, and Fourier-transform infrared spectroscopy, are explored to assess pore morphology, viscoelastic behavior, and molecular interactions. The role of bigels in neuronal survival, axonal regeneration, and neuroinflammation modulation is highlighted, alongside considerations for scalability, batch-to-batch reproducibility, and regulatory compliance under Good Manufacturing Practices (GMP). Future research should focus on optimizing biodegradation kinetics, neurotrophic factor release profiles, and preclinical validation in traumatic brain injury and spinal cord injury models. Advancing bigel technology could facilitate their clinical translation as neuroprotective scaffolds in regenerative medicine.
Collapse
Affiliation(s)
- Botle Moswatsi
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Gillian Dumsile Mahumane
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Yahya Essop Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa.
| |
Collapse
|
4
|
Cieri MB, Ramos AJ. Astrocytes, reactive astrogliosis, and glial scar formation in traumatic brain injury. Neural Regen Res 2025; 20:973-989. [PMID: 38989932 PMCID: PMC11438322 DOI: 10.4103/nrr.nrr-d-23-02091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/14/2024] [Indexed: 07/12/2024] Open
Abstract
Traumatic brain injury is a global health crisis, causing significant death and disability worldwide. Neuroinflammation that follows traumatic brain injury has serious consequences for neuronal survival and cognitive impairments, with astrocytes involved in this response. Following traumatic brain injury, astrocytes rapidly become reactive, and astrogliosis propagates from the injury core to distant brain regions. Homeostatic astroglial proteins are downregulated near the traumatic brain injury core, while pro-inflammatory astroglial genes are overexpressed. This altered gene expression is considered a pathological remodeling of astrocytes that produces serious consequences for neuronal survival and cognitive recovery. In addition, glial scar formed by reactive astrocytes is initially necessary to limit immune cell infiltration, but in the long term impedes axonal reconnection and functional recovery. Current therapeutic strategies for traumatic brain injury are focused on preventing acute complications. Statins, cannabinoids, progesterone, beta-blockers, and cerebrolysin demonstrate neuroprotective benefits but most of them have not been studied in the context of astrocytes. In this review, we discuss the cell signaling pathways activated in reactive astrocytes following traumatic brain injury and we discuss some of the potential new strategies aimed to modulate astroglial responses in traumatic brain injury, especially using cell-targeted strategies with miRNAs or lncRNA, viral vectors, and repurposed drugs.
Collapse
Affiliation(s)
- María Belén Cieri
- Laboratorio de Neuropatología Molecular, IBCN UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | |
Collapse
|
5
|
Olczak M, Poniatowski ŁA, Siwińska A, Kwiatkowska M, Acewicz A. Elevated serum and cerebrospinal fluid levels of the synaptophysin and neurogranin with its altered brain expression in the early phase of traumatic brain injury as a potential marker of synaptic injury. Int J Legal Med 2025:10.1007/s00414-025-03481-7. [PMID: 40146393 DOI: 10.1007/s00414-025-03481-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/19/2025] [Indexed: 03/28/2025]
Abstract
Traumatic brain injury (TBI) is a significant contributor to mortality and is frequently linked to forensic and criminological inquiries. In the context of scientific and clinical progress, there is a continual need to explore new bioassays and data analysis methods for use in TBI diagnostics in both ante- and post-mortem individuals. Predominantly intra- and extra-synaptic proteins, such as synaptophysin (SYP) and neurogranin (NRGN) were to date potentially investigated as markers for TBI regarding their usefulness as a set of reliable biomarkers. This study aimed to elucidate and identify if elevated SYP and NRGN concentration levels in biofluids such as serum and CSF are seen in cases of TBI in a population-based autopsy screening. An additional comparative examination of the SYP and NRGN protein expression in the obtained brain tissue by performing immunohistochemical staining was done. The study was carried out using cases (n = 20) of severe head injury suspected as the cause of death and control cases (n = 20) of sudden death in the mechanism of cardiopulmonary failure. The biofluids, such as serum and cerebrospinal fluid (CSF) were collected within ∼24 h after death and compared using ELISA test. Brain specimens were similarly collected during forensic autopsies. In our study, we observed the elevated concentration levels of SYP and NRGN in serum and CSF. In anti-SYP staining of the frontal cortex, a significant, generalized reduction in the reaction was observed, within neurons and neuropil in the head injury group. In anti-NRGN staining of the frontal cortex, a significant, generalized homogenization of the reaction was observed both within the neuronal bodies and their axons. The possible implementation of synaptic biomarker assays offers an interesting and novel tool for investigation and research regarding TBI diagnosis and pathogenesis. This surrogate synatpic assay could be useful in clinical prognosis and risk calculation of non-fatal cases of TBI, regarding the development of neurodegenerative conditions of TBI individuals.
Collapse
Affiliation(s)
- Mieszko Olczak
- Department of Forensic Medicine, Institute of Medical Sciences, Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszyński University, Kazimierza Wóycickiego 1/3, 01-938, Warsaw, Poland.
| | - Łukasz A Poniatowski
- Department of Neurosurgery, Dietrich-Bonhoeffer-Klinikum, Salvador-Allende-Straße 30, 17036, Neubrandenburg, Germany
| | - Agnieszka Siwińska
- Department of Forensic Medicine, Center for Biostructure Research, Medical University of Warsaw, Oczki 1, 02-007, Warsaw, Poland
| | - Magdalena Kwiatkowska
- Department of Forensic Medicine, Center for Biostructure Research, Medical University of Warsaw, Oczki 1, 02-007, Warsaw, Poland
| | - Albert Acewicz
- Department of Neuropathology, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957, Warsaw, Poland
| |
Collapse
|
6
|
Sağlam-Çifci E, Güleç İ, Şengelen A, Karagöz-Güzey F, Eren B, Paşaoğlu HE, Önay-Uçar E. The H 4R antagonist, JNJ-7777120 treatments ameliorate mild traumatic brain injury by reducing oxidative damage, inflammatory and apoptotic responses through blockage of the ERK1/2/NF-κB pathway in a rat model. Exp Neurol 2025; 385:115133. [PMID: 39732275 DOI: 10.1016/j.expneurol.2024.115133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/15/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Growing evidence reveals that microglia activation and neuroinflammatory responses trigger cell loss in the brain. Histamine is a critical neurotransmitter and promotes inflammatory responses; thus, the histaminergic system is a potential target for treating neurodegenerative processes. JNJ-7777120, a histamine H4 receptor (H4R) antagonist, has been shown to alleviate inflammation, brain damage, and behavioral deficits effectively, but there is no report on its role in brain trauma. Herein, we investigated the neuroprotective effects of JNJ-7777120 (shortly JNJ) in a mild traumatic brain injury (mTBI). mTBI setup was performed using a weight-drop model in adult male Sprague-Dawley rats. JNJ (1 mg/kg, twice/day for 7 days) was intraperitoneally administered following mTBI. Modified neurological severity score and beam-walking test used to assess motor, sensory, reflex, and balance functions (post-TBI days-1/3/7) showed that JNJ had significantly improved these functions. HE-staining revealed reduced neurodegenerative cells after JNJ-treatments compared to vehicle (2.85 % DMSO) treated group. JNJ also decreased the injury-induced apoptosis (Bax/Bcl-2, cleaved-Cas-3, cleaved-PARP1), oxidative (4HNE, MDA), and inflammatory (IBA1, TNF-α, IL-1β, IL-6, and IL-10) responses. Furthermore, blocking the activation of the ERK1/2/NF-κB pathway was determined to be involved in its therapeutic mechanism. The network pharmacology analyses for JNJ-7777120 and TBI confirmed the importance of targeting neurotransmitter receptor activity, signaling receptor activity, and kinase activation. Our results provide the first proof of the efficacy of an H4R antagonist in a mild TBI rat model and suggest that H4R targeting by JNJ-treatment might be a promising therapeutic approach to clinically halt the progression of brain injury.
Collapse
Affiliation(s)
- Ece Sağlam-Çifci
- Neurosurgery Clinic, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkiye.
| | - İlker Güleç
- Neurosurgery Clinic, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkiye.
| | - Aslıhan Şengelen
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkiye.
| | - Feyza Karagöz-Güzey
- Neurosurgery Clinic, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkiye.
| | - Burak Eren
- Neurosurgery Clinic, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkiye.
| | - Hüsniye Esra Paşaoğlu
- Department of Pathology, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkiye.
| | - Evren Önay-Uçar
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkiye.
| |
Collapse
|
7
|
Khazaal AQ, Ismaeel HM, Cheah PS, Nordin N. Cellular Stem Cell Therapy for Treating Traumatic Brain Injury: Strategies for Enhancement of Therapeutic Efficacy. Mol Neurobiol 2025:10.1007/s12035-025-04778-9. [PMID: 40000574 DOI: 10.1007/s12035-025-04778-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 02/13/2025] [Indexed: 02/27/2025]
Abstract
Traumatic brain injury (TBI) influences a considerable population globally. TBI notably impacts both fatalities and disabilities worldwide. The mortality related to TBI is a significant concern in public health, affecting persons across various age groups and demographic profiles. More research and preventative interventions are required to alleviate TBIs' effects and optimize patient outcomes. Stem cell (SC) treatment exhibits promise as a viable strategy for addressing TBI due to its capacity to possibly restore or regenerate the compromised cells within the central nervous system. Additionally, it can influence the inflammatory response and increase neurogenesis and neuroplasticity. Increasing evidence has shown that SC transplantation has the potential to enhance functional recovery and decrease the extent of lesions in animal models of TBI. Nevertheless, several hurdles and ambiguities persist in determining the most effective source, dosage, administration method, timing, and mechanism of action for SC treatment for TBI. Further investigation is required to prove the safety and effectiveness of SC treatment for TBI in human subjects. This review brings insight into the strategies for utilizing SCs as cellular therapy for TBI, mainly based on preclinical investigations and TBI-induced animal models. In addition, this study also addresses many elements related to cell transfusion in the context of TBI, including considerations of cell amount, method, and timing. Integrating biomaterials and genetically altering SCs as potential strategies to enhance therapeutic efficacy are also presented. We also describe the potential of SCs in treating TBI and evaluate the effectiveness of cellular therapy and its corresponding outcomes.
Collapse
Affiliation(s)
- Ali Q Khazaal
- Department of Biotechnology, College of Science, University of Baghdad, Al-Jadriya, Baghdad, Iraq
| | - Haneen M Ismaeel
- Department of Biotechnology, College of Science, University of Baghdad, Al-Jadriya, Baghdad, Iraq
| | - Pike See Cheah
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Malaysian Research Institute of Ageing (Myageing®), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine (Regen) Research Group, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Brain and Mental Health Research Advancement and Innovation Networks (PUTRA® BRAIN), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Norshariza Nordin
- Medical Genetics Unit, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Malaysian Research Institute of Ageing (Myageing®), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Genetics and Regenerative Medicine (Regen) Research Group, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Brain and Mental Health Research Advancement and Innovation Networks (PUTRA® BRAIN), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
8
|
Bayat Tork MA, Saberifar M, Joneidi Yekta H, Hajinejad M, Hosseini Ravandi H, Gorji A, Sahab Negah S. Nano-scaffold containing functional motif of stromal cell-derived factor 1 enhances neural stem cell behavior and synaptogenesis in traumatic brain injury. Sci Rep 2025; 15:5811. [PMID: 39962142 PMCID: PMC11832925 DOI: 10.1038/s41598-025-85698-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 01/06/2025] [Indexed: 02/20/2025] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of mortality and morbidity worldwide, presenting a significant challenge due to the lack of effective therapies. Neural stem cells (NSCs) have shown promising potential in preclinical studies as a therapy for TBI. However, their application is limited by challenges related to poor survival and integration within the injured brain. This study investigated the effect of a novel nano-scaffold containing stromal cell-derived factor 1 (SDF-1) on NSC behavior and synaptogenesis after TBI. Using an innovative design, we successfully fabricated a nano-scaffold with Young's modulus of approximately 3.21 kPa, which aligns closely with the mechanical properties exhibited by neural tissue. This achievement marks the first time such a scaffold has been created and has promising implications for its potential use in neural tissue engineering applications. Our findings demonstrate that the nano-scaffold enhances NSC proliferation, migration, and differentiation capacity in vitro. Moreover, when transplanted into the injured brain, the nano-scaffold promotes the survival and integration of NSCs, leading to increased synaptogenesis and functional recovery. These findings suggest that using the novel nano-scaffold containing SDF-1 could provide a promising approach to treating TBI by improving NSC behavior and promoting synaptogenesis.
Collapse
Affiliation(s)
- Mohammad Amin Bayat Tork
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Saberifar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Joneidi Yekta
- New Technologies Research Center, Amirkabir University of Technology, Tehran, Iran
| | - Mehrdad Hajinejad
- Qaen Faculty of Medical Science, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Department of Neurosurgery, Westfälische Wilhelms-Universität, 48149, Munster, Germany.
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, 48149, Munster, Germany.
| | - Sajad Sahab Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Chemelo VDS, Freire MAM, Bittencourt LO, Frazão DR, Souza-Monteiro D, Cartagenes SC, Gomes-Leal W, Maia CDSF, Rocha GS, Falcao D, Lima RR. Potential effects of induced focal ischemia in the motor cortex of rats undergoing experimental periodontitis. Heliyon 2025; 11:e42158. [PMID: 39991216 PMCID: PMC11847058 DOI: 10.1016/j.heliyon.2025.e42158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 02/25/2025] Open
Abstract
Stroke is a severe medical condition resulting from an interruption in the blood supply to the brain, ultimately compromising tissue homeostasis. Currently, stroke stands as the second leading cause of death worldwide and the third leading cause when considering both mortality and disability together. Periodontitis is characterized by persistent inflammation in hard and soft tissues which support the teeth, primarily caused by bacterial biofilms, and is one of the most common causes of tooth loss in adults and can contribute to a systemic inflammatory burden. In the light of this, the present study investigated the effects of inducing focal ischemia in the motor cortex in rats undergoing experimental periodontitis. Adult Wistar rats were divided into four groups (control, ischemia, periodontitis, and periodontitis + ischemia) and were evaluated for motor performance, basic histology, and the volume and microarchitecture of alveolar bone. The results showed that the comorbidity between ischemia and periodontitis aggravates the spontaneous locomotion of rats, although the motor performance of adult rats had not been altered. Nonetheless, they revealed significant tissue impairment in the motor cortex. Additionally, there was a meaningful alteration in both the volume and microarchitecture of alveolar bone in this group. Our results indicate that the model of comorbidity between ligature-induced experimental periodontitis and focal ischemia was capable of inducing greater neurological impairment and alveolar bone loss in rats, attributable to diminished bone quality, when compared to each condition individually.
Collapse
Affiliation(s)
- Victória dos Santos Chemelo
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belem, 66075-110, PA, Brazil
| | - Marco Aurelio M. Freire
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belem, 66075-110, PA, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belem, 66075-110, PA, Brazil
| | - Deborah Ribeiro Frazão
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belem, 66075-110, PA, Brazil
| | - Deiweson Souza-Monteiro
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belem, 66075-110, PA, Brazil
| | - Sabrina C. Cartagenes
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém, 66075-110, PA, Brazil
| | - Walace Gomes-Leal
- Laboratory of Experimental Neuroprotection and Neuroregeneration, Institute of Collective Health, Federal University of Western Pará, Santarém, 68040-470, Brazil
| | - Cristiane do Socorro Ferraz Maia
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém, 66075-110, PA, Brazil
| | - Gabriel S. Rocha
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Federal University of Sergipe, Itabaiana, 49506-036, SE, Brazil
| | - Daniel Falcao
- VCU Health Systems, Virginia Commonwealth University, Richmond, 23284, VA, USA
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belem, 66075-110, PA, Brazil
| |
Collapse
|
10
|
Razavi SM, Hosseini Y, Niknejad A, Esmaealzadeh N, Najafi Arab Z, Mavaddat H, Shahrahmani F, Mortazavi A, Momtaz S, Abdolghaffari AH. A comprehensive literature review on the effects of saffron and its bioactive components on traumatic brain injury (TBI). NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03868-8. [PMID: 39928149 DOI: 10.1007/s00210-025-03868-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/30/2025] [Indexed: 02/11/2025]
Abstract
Traumatic brain injury (TBI) is a leading cause of death in accidents, sports, and warfare. Additionally, TBI imposes a significant financial burden on individuals and governments, necessitating substantial financial support. It also severely diminishes the quality of life for patients and their caregivers. TBI is consisted of two distinct phases: the primary and secondary phases. The primary phase consists of numerous events that occur immediately after the injury or concussion but the second phase takes times and include several of responsive cascades that human body express against TBI. After TBI incidence, several cellular and molecular pathways (inflammatory, apoptotic, anti-oxidant) will be dysregulated. Over the years, numerous therapeutic approaches have been implemented to treat this debilitating condition, aiming to alleviate its symptoms and complications, while enhancing patients' quality of life. Consequently, the search for more efficient with less adverse effects therapeutic methods remains a priority. One herbal medication that has recently garnered considerable attention is saffron. Data were collected from Scopus, Google Scholar, PubMed, and Cochrane Library for clinical, in vivo and in vitro studies published in English between 1992 and Jan 2025. Search terms included "TBI" OR "Traumatic brain injury" AND "Saffron" AND "Safranal" AND "Crocin" AND "Crocetin" AND "Kaempferol". The initial search yielded approximately 3,000 manuscripts. After screening and full-text evaluation, as detailed in the search methodology, ten experiments (in-vitro & in-vivo) were ultimately included. Saffron showed to modulate various signaling pathways and cytokines such as NF-kB, NLRP3, Nrf2, HO-1, Bcl2, and Bax, which will lead to the improvement of TBI sign and symptoms and increase the quality of life. It has been demonstrated that this compound could play a multifactorial role in TBI treatment such as reduction in inflammation, apoptosis, and oxidative stress, while modulating microglia activation. The findings suggest that saffron may play a pivotal role in treating TBI and mitigating its complications by regulating various pathophysiological pathways. However, more clinical trials are necessary to evaluate saffron's effectiveness in individuals diagnosed with TBI. Clinical trials should focus on various areas such as saffrons' safety profile, adverse effects, the exact mechanism of action, its' impact on acute and chronic TBI, rehabilitation, and long-term neuroprotection.
Collapse
Affiliation(s)
- Seyed Mehrad Razavi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., P. O. Box, Tehran, 19419-33111, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Yasamin Hosseini
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., P. O. Box, Tehran, 19419-33111, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amirhossein Niknejad
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., P. O. Box, Tehran, 19419-33111, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Niusha Esmaealzadeh
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Traditional Persian Medicine and Complementary Medicine (PerCoMed) Student Association, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Najafi Arab
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., P. O. Box, Tehran, 19419-33111, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Helia Mavaddat
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., P. O. Box, Tehran, 19419-33111, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Fatemeh Shahrahmani
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolghasem Mortazavi
- Department of Neurosurgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeideh Momtaz
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, P.O. Box 31375-369, Karaj, Iran.
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., P. O. Box, Tehran, 19419-33111, Iran.
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
11
|
Liu S, Li H, Xi S, Zhang Y, Sun T. Advancing CNS Therapeutics: Enhancing Neurological Disorders with Nanoparticle-Based Gene and Enzyme Replacement Therapies. Int J Nanomedicine 2025; 20:1443-1490. [PMID: 39925682 PMCID: PMC11806685 DOI: 10.2147/ijn.s457393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 12/12/2024] [Indexed: 02/11/2025] Open
Abstract
Given the complexity of the central nervous system (CNS) and the diversity of neurological conditions, the increasing prevalence of neurological disorders poses a significant challenge to modern medicine. These disorders, ranging from neurodegenerative diseases to psychiatric conditions, not only impact individuals but also place a substantial burden on healthcare systems and society. A major obstacle in treating these conditions is the blood-brain barrier (BBB), which restricts the passage of therapeutic agents to the brain. Nanotechnology, particularly the use of nanoparticles (NPs), offers a promising solution to this challenge. NPs possess unique properties such as small size, large surface area, and modifiable surface characteristics, enabling them to cross the BBB and deliver drugs directly to the affected brain regions. This review focuses on the application of NPs in gene therapy and enzyme replacement therapy (ERT) for neurological disorders. Gene therapy involves altering or manipulating gene expression and can be enhanced by NPs designed to carry various genetic materials. Similarly, NPs can improve the efficacy of ERT for lysosomal storage disorders (LSDs) by facilitating enzyme delivery to the brain, overcoming issues like immunogenicity and instability. Taken together, this review explores the potential of NPs in revolutionizing treatment options for neurological disorders, highlighting their advantages and the future directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Shuhan Liu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, People’s Republic of China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, People’s Republic of China
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, People’s Republic of China
| | - Haisong Li
- Department of Neurosurgery, The First Hospital, Jilin University, Changchun, Jilin, People’s Republic of China
| | - Shiwen Xi
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, People’s Republic of China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, People’s Republic of China
| | - Yuning Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, People’s Republic of China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, People’s Republic of China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, People’s Republic of China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, People’s Republic of China
- International Center of Future Science, Jilin University, Changchun, People’s Republic of China
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
12
|
Guo Y, Wang Y, Xu B, Li Y. The prospective therapeutic benefits of sesamol: neuroprotection in neurological diseases. Nutr Neurosci 2025:1-14. [PMID: 39881218 DOI: 10.1080/1028415x.2025.2457051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Oxidative stress is recognized as a critical contributor to the advancement of neurological diseases, thereby rendering the alleviation of oxidative stress a pivotal strategy in the therapeutic management of such conditions. Sesamol, the principal constituent of sesame oil, has been the subject of extensive research due to its significant antioxidant properties, especially its ability to effectively counteract oxidative stress within the central nervous system and confer neuroprotection. While sesamol demonstrates potential in the treatment and prevention of neurological diseases, its modulation of oxidative stress is complex and not yet fully understood. This review delves into the neuroprotective effects arising from sesamol's antioxidant properties, analyzing how its antioxidative capabilities impact neurological diseases. It provides a theoretical foundation and unveils potential novel therapeutic applications of sesamol in the treatment of neurological disorders through the modulation of oxidative stress.
Collapse
Affiliation(s)
- Yuchao Guo
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Yaqing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People's Republic of China
| | - Boyang Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People's Republic of China
| | - Yue Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People's Republic of China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, People's Republic of China
| |
Collapse
|
13
|
Özden ES, Özcan MS, Savran M, Ilhan I, Tepebası MY, Sevuk MA, Özmen Ö. Effects of Tasimelteon Treatment on Traumatic Brain Injury Through NRF-2/HO-1 and RIPK1/RIPK3/MLKL Pathways in Rats. Mol Neurobiol 2025:10.1007/s12035-025-04711-0. [PMID: 39878865 DOI: 10.1007/s12035-025-04711-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/15/2025] [Indexed: 01/31/2025]
Abstract
Secondary brain damageafter traumatic brain injury (TBI) involves oxidative stress, neuroinflammation, apoptosis, and necroptosis and can be reversed by understanding these molecular pathways. The objective of this study was to examine the impact of tasimelteon (Tasi) administration on brain injury through the nuclear factor erythroid 2-related factor 2 (NRF-2)/heme oxygenase-1 (HO-1) and receptor-interacting protein kinase 1 (RIPK1)/receptor-interacting protein kinase 3 (RIPK3)/mixed lineage kinase domain-like (MLKL) pathways in rats with TBI. Thirty-two male Wistar albino rats weighing 300-350 g were randomly divided into four groups: the control group, trauma group, Tasi-1 group (trauma + 1 mg/kg Tasi intraperitoneally), and Tasi-10 group (trauma + 10 mg/kg Tasi intraperitoneally). At the end of the experimental phase, after sacrifice, blood samples and brain tissue were collected for biochemical, histopathological, immunohistochemical, and genetic analyses. Tasi increased the total antioxidant status and decreased the total oxidant status and oxidative stress index. In addition, Tasi caused histopathological changes characterized by a markedly reduced hemorrhage area in the Tasi-1 group. Normal brain and meningeal structure was observed in rats in the Tasi-10 group. Immunohistochemical analysis indicated that Tasi also decreased the expression of interferon-gamma, caspase-3, and tumor necrosis factor-alpha in the brain tissue. Although NRF-2 and HO-1 expression decreased, RIPK1/RIPK3/MLKL gene expression increased due to trauma. However, Tasi treatment reversed all these findings. Tasi protected against brain injury through the NRF-2/HO-1 and RIPK1/RIPK3/MLKL pathways in rats with TBI.
Collapse
Affiliation(s)
- Eyyüp Sabri Özden
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Suleyman Demirel University, Cunur, 32260, Isparta, Turkey.
| | - Mustafa Soner Özcan
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Suleyman Demirel University, Cunur, 32260, Isparta, Turkey
| | - Mehtap Savran
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Ilter Ilhan
- Department of Biochemistry, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | | | - Mehmet Abdulkadir Sevuk
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Özlem Özmen
- Department of Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| |
Collapse
|
14
|
Mallick R, Basak S, Chowdhury P, Bhowmik P, Das RK, Banerjee A, Paul S, Pathak S, Duttaroy AK. Targeting Cytokine-Mediated Inflammation in Brain Disorders: Developing New Treatment Strategies. Pharmaceuticals (Basel) 2025; 18:104. [PMID: 39861166 PMCID: PMC11769149 DOI: 10.3390/ph18010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/26/2024] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Cytokine-mediated inflammation is increasingly recognized for playing a vital role in the pathophysiology of a wide range of brain disorders, including neurodegenerative, psychiatric, and neurodevelopmental problems. Pro-inflammatory cytokines such as interleukin-1 (IL-1), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6) cause neuroinflammation, alter brain function, and accelerate disease development. Despite progress in understanding these pathways, effective medicines targeting brain inflammation are still limited. Traditional anti-inflammatory and immunomodulatory drugs are effective in peripheral inflammatory illnesses. Still, they face substantial hurdles when applied to the central nervous system (CNS), such as the blood-brain barrier (BBB) and unwanted systemic effects. This review highlights the developing treatment techniques for modifying cytokine-driven neuroinflammation, focusing on advances that selectively target critical cytokines involved in brain pathology. Novel approaches, including cytokine-specific inhibitors, antibody-based therapeutics, gene- and RNA-based interventions, and sophisticated drug delivery systems like nanoparticles, show promise with respect to lowering neuroinflammation with greater specificity and safety. Furthermore, developments in biomarker discoveries and neuroimaging techniques are improving our ability to monitor inflammatory responses, allowing for more accurate and personalized treatment regimens. Preclinical and clinical trial data demonstrate the therapeutic potential of these tailored techniques. However, significant challenges remain, such as improving delivery across the BBB and reducing off-target effects. As research advances, the creation of personalized, cytokine-centered therapeutics has the potential to alter the therapy landscape for brain illnesses, giving patients hope for better results and a higher quality of life.
Collapse
Affiliation(s)
- Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland;
| | - Sanjay Basak
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500007, India;
| | - Premanjali Chowdhury
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland;
| | - Prasenjit Bhowmik
- Department of Chemistry, Uppsala Biomedical Centre, Uppsala University, SE-751 23 Uppsala, Sweden;
- Department of Textile Engineering, Green University of Bangladesh, Narayanganj 1461, Bangladesh
| | - Ranjit K. Das
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA;
| | - Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai 603103, India; (A.B.); (S.P.)
| | - Sujay Paul
- School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro 76130, Mexico;
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai 603103, India; (A.B.); (S.P.)
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| |
Collapse
|
15
|
Sessa F, Pomara C, Schembari F, Esposito M, Capasso E, Pesaresi M, Osuna E, Ulas E, Zammit C, Salerno M. MiRNA Dysregulation in Brain Injury: An In Silico Study to Clarify the Role of a MiRNA Set. Curr Neuropharmacol 2025; 23:209-231. [PMID: 39129166 PMCID: PMC11793054 DOI: 10.2174/1570159x22666240808124427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 08/13/2024] Open
Abstract
BACKGROUND The identification of specific circulating miRNAs has been proposed as a valuable tool for elucidating the pathophysiology of brain damage or injury and predicting patient outcomes. OBJECTIVE This study aims to apply several bioinformatic tools in order to clarify miRNA interactions with potential genes involved in brain injury, emphasizing the need of using a computational approach to determine the most likely correlations between miRNAs and target genes. Specifically, this study centers on elucidating the roles of miR-34b, miR-34c, miR-135a, miR-200c, and miR-451a. METHODS After a careful evaluation of different software available (analyzing the strengths and limitations), we applied three tools, one to perform an analysis of the validated targets (miRTarBase), and two to evaluate functional annotations (miRBase and TAM 2.0). RESULTS Research findings indicate elevated levels of miR-135a and miR-34b in patients with traumatic brain injury (TBI) within the first day post-injury, while miR-200c and miR-34c were found to be upregulated after 7 days. Moreover, miR-451a and miR-135a were found overexpressed in the serum, while miRNAs 34b, 34c, and 200c, had lower serum levels at baseline post brain injury. CONCLUSION This study emphasizes the use of computational methods in determining the most likely relationships between miRNAs and target genes by investigating several bioinformatic techniques to elucidate miRNA interactions with potential genes. Specifically, this study focuses on the functions of miR-34b, miR-34c, miR-135a, miR-200c, and miR-451a, providing an up-to-date overview and suggesting future research directions for identifying theranomiRNAs related to brain injury, both at the tissue and serum levels.
Collapse
Affiliation(s)
- Francesco Sessa
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Catania, Italy
| | - Cristoforo Pomara
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Catania, Italy
| | - Flavia Schembari
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Catania, Italy
| | | | - Emanuele Capasso
- Department of Advanced Biomedical Science-Legal Medicine Section, University of Naples “Federico II”, 80131 Naples, Italy
| | - Mauro Pesaresi
- Section of Legal Medicine, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Via Tronto, Ancona, 60126, Italy
| | - Eduardo Osuna
- Department of Forensic Medicine. University of Murcia. 30120 Murcia, Spain
| | - Efehan Ulas
- Faculty of Medicine, Department of Biostatistics and Medical Informatics, Kirklareli University, Kirklareli, Turkey
| | - Christian Zammit
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, Msida 2080, Malta
| | - Monica Salerno
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Catania, Italy
| |
Collapse
|
16
|
Sieminski M, Reimus M, Kałas M, Stępniewska E. Antioxidant and Anti-Inflammatory Properties of Melatonin in Secondary Traumatic Brain Injury. Antioxidants (Basel) 2024; 14:25. [PMID: 39857359 PMCID: PMC11761219 DOI: 10.3390/antiox14010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/27/2025] Open
Abstract
Traumatic brain injury (TBI) is a disease resulting from external physical forces acting against the head, leading to transient or chronic damage to brain tissue. Primary brain injury is an immediate and, therefore, rather irreversible effect of trauma, while secondary brain injury results from a complex cascade of pathological processes, among which oxidative stress and neuroinflammation are the most prominent. As TBI is a significant cause of mortality and chronic disability, with high social costs all over the world, any form of therapy that may mitigate trauma-evoked brain damage is desirable. Melatonin, a sleep-wake-cycle-regulating neurohormone, exerts strong antioxidant and anti-inflammatory effects and is well tolerated when used as a drug. Due to these properties, it is very reasonable to consider melatonin as a potential therapeutic molecule for TBI treatment. This review summarizes data from in vitro studies, animal models, and clinical trials that focus on the usage of melatonin in TBI.
Collapse
Affiliation(s)
- Mariusz Sieminski
- Department of Emergency Medicine, Medical University of Gdańsk, 80-214 Gdańsk, Poland; (M.K.); (E.S.)
| | - Michalina Reimus
- Emergency Department, University Clinical Center, 80-952 Gdańsk, Poland;
| | - Maria Kałas
- Department of Emergency Medicine, Medical University of Gdańsk, 80-214 Gdańsk, Poland; (M.K.); (E.S.)
| | - Ewelina Stępniewska
- Department of Emergency Medicine, Medical University of Gdańsk, 80-214 Gdańsk, Poland; (M.K.); (E.S.)
| |
Collapse
|
17
|
Kapapa T, Wernheimer V, Hoffmann A, Merz T, Zink F, Wolfschmitt EM, McCook O, Vogt J, Wepler M, Messerer DAC, Hartmann C, Scheuerle A, Mathieu R, Mayer S, Gröger M, Denoix N, Clazia E, Radermacher P, Röhrer S, Datzmann T. Unravelling Secondary Brain Injury: Insights from a Human-Sized Porcine Model of Acute Subdural Haematoma. Cells 2024; 14:17. [PMID: 39791718 PMCID: PMC11720468 DOI: 10.3390/cells14010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025] Open
Abstract
Traumatic brain injury (TBI) remains one of the leading causes of death. Because of the individual nature of the trauma (brain, circumstances and forces), humans experience individual TBIs. This makes it difficult to generalise therapies. Clinical management issues such as whether intracranial pressure (ICP), cerebral perfusion pressure (CPP) or decompressive craniectomy improve patient outcome remain partly unanswered. Experimental drug approaches for the treatment of secondary brain injury (SBI) have not found clinical application. The complex, cellular and molecular pathways of SBI remain incompletely understood, and there are insufficient experimental (animal) models that reflect the pathophysiology of human TBI to develop translational therapeutic approaches. Therefore, we investigated different injury patterns after acute subdural hematoma (ASDH) as TBI in a post-hoc approach to assess the impact on SBI in a long-term, human-sized porcine TBI animal model. Post-mortem brain tissue analysis, after ASDH, bilateral ICP, CPP, cerebral oxygenation and temperature monitoring, and biomarker analysis were performed. Extracerebral, intraparenchymal-extraventricular and intraventricular blood, combined with brainstem and basal ganglia injury, influenced the experiment and its outcome. Basal ganglia injury affects the duration of the experiment. Recognition of these different injury patterns is important for translational interpretation of results in this animal model of SBI after TBI.
Collapse
Affiliation(s)
- Thomas Kapapa
- Department of Neurosurgery, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Vanida Wernheimer
- Department of Neurosurgery, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Andrea Hoffmann
- Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Tamara Merz
- Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Fabia Zink
- Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Eva-Maria Wolfschmitt
- Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Oscar McCook
- Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Josef Vogt
- Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Martin Wepler
- Department of Anaesthesiology, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | | | - Claire Hartmann
- Department of Anaesthesiology, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Angelika Scheuerle
- Section Neuropathology, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - René Mathieu
- Department of Neurosurgery, Military Hospital Ulm, Oberer Eselsberg 40, 89081 Ulm, Germany
| | - Simon Mayer
- Department of Neurosurgery, Military Hospital Ulm, Oberer Eselsberg 40, 89081 Ulm, Germany
| | - Michael Gröger
- Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Nicole Denoix
- Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Enrico Clazia
- Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Peter Radermacher
- Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Stefan Röhrer
- Department of Neurosurgery, Ostalb-Hospital Aalen, Im Kälblesrain 1, 73430 Aalen, Germany
| | - Thomas Datzmann
- Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| |
Collapse
|
18
|
Calderone A, Latella D, Cardile D, Gangemi A, Corallo F, Rifici C, Quartarone A, Calabrò RS. The Role of Neuroinflammation in Shaping Neuroplasticity and Recovery Outcomes Following Traumatic Brain Injury: A Systematic Review. Int J Mol Sci 2024; 25:11708. [PMID: 39519259 PMCID: PMC11546226 DOI: 10.3390/ijms252111708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Neuroplasticity and neuroinflammation are variables seen during recovery from traumatic brain injury (TBI), while biomarkers are useful in monitoring injury and guiding rehabilitation efforts. This systematic review examines how neuroinflammation affects neuroplasticity and recovery following TBI in animal models and humans. Studies were identified from an online search of the PubMed, Web of Science, and Embase databases without any search time range. This review has been registered on Open OSF (n) UDWQM. Recent studies highlight the critical role of biomarkers like serum amyloid A1 (SAA1) and Toll-like receptor 4 (TLR4) in predicting TBI patients' injury severity and recovery outcomes, offering the potential for personalized treatment and improved neurorehabilitation strategies. Additionally, insights from animal studies reveal how neuroinflammation affects recovery, emphasizing targets such as NOD-like receptor family pyrin domain-containing 3 (NLRP3) and microglia for enhancing therapeutic interventions. This review emphasizes the central role of neuroinflammation in TBI, and its adverse impact on neuroplasticity and recovery, and suggests that targeted anti-inflammatory treatments and biomarker-based personalized approaches hold the key to improvement. Such approaches will need further development in future research by integrating neuromodulation and pharmacological interventions, along with biomarker validation, to optimize management in TBI.
Collapse
Affiliation(s)
- Andrea Calderone
- Department of Clinical and Experimental Medicine, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy
| | - Desirèe Latella
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Davide Cardile
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Antonio Gangemi
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Francesco Corallo
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Carmela Rifici
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Angelo Quartarone
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Rocco Salvatore Calabrò
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| |
Collapse
|
19
|
Balakin E, Yurku K, Fomina T, Butkova T, Nakhod V, Izotov A, Kaysheva A, Pustovoyt V. A Systematic Review of Traumatic Brain Injury in Modern Rodent Models: Current Status and Future Prospects. BIOLOGY 2024; 13:813. [PMID: 39452122 PMCID: PMC11504108 DOI: 10.3390/biology13100813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
According to the Centers for Disease Control and Prevention (CDC), the national public health agency of the United States, traumatic brain injury is among the leading causes of mortality and disability worldwide. The consequences of TBI include diffuse brain atrophy, local post-traumatic atrophy, arachnoiditis, pachymeningitis, meningocerebral cicatrices, cranial nerve lesions, and cranial defects. In 2019, the economic cost of injuries in the USA alone was USD 4.2 trillion, which included USD 327 billion for medical care, USD 69 billion for work loss, and USD 3.8 trillion for the value of statistical life and quality of life losses. More than half of this cost (USD 2.4 trillion) was among working-age adults (25-64 years old). Currently, the development of new diagnostic approaches and the improvement of treatment techniques require further experimental studies focused on modeling TBI of varying severity.
Collapse
Affiliation(s)
- Evgenii Balakin
- Federal Medical Biophysical Center of Federal Medical Biological Agency, 123098 Moscow, Russia
| | - Ksenia Yurku
- Federal Medical Biophysical Center of Federal Medical Biological Agency, 123098 Moscow, Russia
| | - Tatiana Fomina
- Federal Medical Biophysical Center of Federal Medical Biological Agency, 123098 Moscow, Russia
| | | | | | | | - Anna Kaysheva
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Vasiliy Pustovoyt
- Federal Medical Biophysical Center of Federal Medical Biological Agency, 123098 Moscow, Russia
| |
Collapse
|
20
|
Willman J, Kurian AL, Lucke-Wold B. Mechanisms of vascular injury in neurotrauma: A critical review of the literature. World J Meta-Anal 2024; 12:95417. [DOI: 10.13105/wjma.v12.i3.95417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/20/2024] [Accepted: 07/29/2024] [Indexed: 09/13/2024] Open
Abstract
One in every two individuals will experience a traumatic brain injury in their lifetime with significant impacts on the global economy and healthcare system each year. Neurovascular injury is a key aspect of neurotrauma to both the brain and the spinal cord and an important avenue of current and future research seeking innovative therapies. In this paper, we discuss primary and secondary neurotrauma, mechanisms of injury, the glymphatic system, repair and recovery. Each of these topics are directly connected to the vasculature of the central nervous system, affecting severity of injury and recovery. Consequently, neurovascular injury in trauma represents a promising target for future therapeutics and innovation.
Collapse
Affiliation(s)
- Jonathan Willman
- College of Medicine, University of Florida, Gainesville, FL 32610, United States
| | - Annu Lisa Kurian
- College of Medicine, Florida State University, Tallahassee, FL 32304, United States
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32611, United States
| |
Collapse
|
21
|
Romano Spica V, Volpini V, Valeriani F, Carotenuto G, Arcieri M, Platania S, Castrignanò T, Clementi ME, Michetti F. In Silico Predicting the Presence of the S100B Motif in Edible Plants and Detecting Its Immunoreactive Materials: Perspectives for Functional Foods, Dietary Supplements and Phytotherapies. Int J Mol Sci 2024; 25:9813. [PMID: 39337302 PMCID: PMC11431829 DOI: 10.3390/ijms25189813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
The protein S100B is a part of the S100 protein family, which consists of at least 25 calcium-binding proteins. S100B is highly conserved across different species, supporting important biological functions. The protein was shown to play a role in gut microbiota eubiosis and is secreted in human breast milk, suggesting a physiological trophic function in newborn development. This study explores the possible presence of the S100B motif in plant genomes, and of S100B-like immunoreactive material in different plant extracts, opening up potential botanical uses for dietary supplementation. To explore the presence of the S100B motif in plants, a bioinformatic workflow was used. In addition, the immunoreactivity of S100B from vegetable and fruit samples was tested using an ELISA assay. The S100B motif was expected in silico in the genome of different edible plants belonging to the Viridiplantae clade, such as Durio zibethinus or Malus domestica and other medicinal species. S100B-like immunoreactive material was also detected in samples from fruits or leaves. The finding of S100B-like molecules in plants sheds new light on their role in phylogenesis and in the food chain. This study lays the foundation to elucidate the possible beneficial effects of plants or derivatives containing the S100B-like principle and their potential use in nutraceuticals.
Collapse
Affiliation(s)
- Vincenzo Romano Spica
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy
| | - Veronica Volpini
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy
| | - Federica Valeriani
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy
| | - Giovanni Carotenuto
- Department of Ecological and Biological Sciences, University of Tuscia, Viale dell'Università s.n.c., 01100 Viterbo, Italy
| | - Manuel Arcieri
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Serena Platania
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy
- Genes, Via Venti Settembre 118, 00187 Roma, Italy
| | - Tiziana Castrignanò
- Department of Ecological and Biological Sciences, University of Tuscia, Viale dell'Università s.n.c., 01100 Viterbo, Italy
| | - Maria Elisabetta Clementi
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" SCITEC-CNR, L.go F. Vito 1, 00168 Rome, Italy
| | - Fabrizio Michetti
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy
- Genes, Via Venti Settembre 118, 00187 Roma, Italy
- Department of Medicine, LUM University, 70010 Casamassima, Italy
| |
Collapse
|
22
|
Consalvo F, Padovano M, Scopetti M, Morena D, Cipolloni L, Fineschi V, Santurro A. Analysis of miRNA Expression Profiles in Traumatic Brain Injury (TBI) and Their Correlation with Survival and Severity of Injury. Int J Mol Sci 2024; 25:9539. [PMID: 39273487 PMCID: PMC11394952 DOI: 10.3390/ijms25179539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Traumatic brain injury (TBI) is the leading cause of traumatic death worldwide and is a public health problem associated with high mortality and morbidity rates, with a significant socioeconomic burden. The diagnosis of brain injury may be difficult in some cases or may leave diagnostic doubts, especially in mild trauma with insignificant pathological brain changes or in cases where instrumental tests are negative. Therefore, in recent years, an important area of research has been directed towards the study of new biomarkers, such as micro-RNAs (miRNAs), which can assist clinicians in the diagnosis, staging, and prognostic evaluation of TBI, as well as forensic pathologists in the assessment of TBI and in the estimation of additional relevant data, such as survival time. The aim of this study is to investigate the expression profiles (down- and upregulation) of a panel of miRNAs in subjects deceased with TBI in order to assess, verify, and define the role played by non-coding RNA molecules in the different pathophysiological mechanisms of brain damage. This study also aims to correlate the detected expression profiles with survival time, defined as the time elapsed between the traumatic event and death, and with the severity of the trauma. This study was conducted on 40 cases of subjects deceased with TBI (study group) and 10 cases of subjects deceased suddenly from non-traumatic causes (control group). The study group was stratified according to the survival time and the severity of the trauma. The selection of miRNAs to be examined was based on a thorough literature review. Analyses were performed on formalin-fixed, paraffin-embedded (FFPE) brain tissue samples, with a first step of total RNA extraction and a second step of quantification of the selected miRNAs of interest. This study showed higher expression levels in cases compared to controls for miR-16, miR-21, miR-130a, and miR-155. In contrast, lower expression levels were found in cases compared to controls for miR-23a-3p. There were no statistically significant differences in the expression levels between cases and controls for miR-19a. In cases with short survival, the expression levels of miR-16-5p and miR-21-5p were significantly higher. In cases with long survival, miR-21-5p was significantly lower. The expression levels of miR-130a were significantly higher in TBI cases with short and middle survival. In relation to TBI severity, miR-16-5p and miR-21-5p expression levels were significantly higher in the critical-fatal TBI subgroup. Conclusions: This study provides evidence for the potential of the investigated miRNAs as predictive biomarkers to discriminate between TBI cases and controls. These miRNAs could improve the postmortem diagnosis of TBI and also offer the possibility to define the survival time and the severity of the trauma. The analysis of miRNAs could become a key tool in forensic investigations, providing more precise and detailed information on the nature and extent of TBI and helping to define the circumstances of death.
Collapse
Affiliation(s)
- Francesca Consalvo
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
| | - Martina Padovano
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Matteo Scopetti
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Donato Morena
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Luigi Cipolloni
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Alessandro Santurro
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
| |
Collapse
|
23
|
Yin J, Peng J, Zhang X, Yang Y, Gu VY, Zhang W, Liu H, Xiao H, Xu Y, Zhao P. A retrospective study of ophthalmologic presentation, management, and outcomes in pediatric patients admitted with abusive head trauma. Front Med (Lausanne) 2024; 11:1416626. [PMID: 39211342 PMCID: PMC11357973 DOI: 10.3389/fmed.2024.1416626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Background Abusive head trauma (AHT) is a severe form of physical abuse leading to significant morbidity and mortality in children, often presenting with complex brain injuries. Among the varied manifestations, ophthalmologic presentations are critical yet underexplored, which may provide essential clues for early diagnosis and management, improving long-term visual and neurological outcomes. Objective This study aims to explore the manifestation, management, and outcomes of AHT cases within a single center in China over a five-year period, with a focus on the importance of ophthalmologic evaluation in enhancing the diagnosis, management, and outcome predictions of AHT. Methods A retrospective case series was conducted at a single institution, involving infants diagnosed with AHT from 2019 to 2023. Data on demographics, medical histories, and clinical management were collected. Ophthalmologic examinations including fundus photography, ocular B-scan ultrasound and fundus fluorescein angiography (FFA), were performed to evaluate retinal vasculature and identify peripheral ischemic retina (PIR). Statistical analyses were performed using SPSS ver. 26.0. Results Eight AHT patients (16 eyes) were included in the study. Bilateral ocular involvement was observed in all patients, with 81.25% exhibiting retinal hemorrhages (RH). Other manifestations included retinal detachment (31.25%) and optic nerve atrophy (18.75%). Clinical interventions varied, with 68.75% of patients undergoing treatments such as laser photocoagulation and anti-vascular endothelial growth factor (VEGF) injections. Among all eyes, 75% showed resolution of RH. Despite treatment, some patients progressed to severe conditions such as retinal detachment (RD) and iris neovascularization (INV). Conclusion This study emphasizes the importance of a multidisciplinary approach in the diagnosis and management of AHT, particularly by integrating ophthalmological perspectives into patient care. These findings contribute to the understanding of ophthalmologic presentations in AHT.
Collapse
Affiliation(s)
- Jiawei Yin
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Peng
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuerui Zhang
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Yang
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Victoria Y. Gu
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Wenting Zhang
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huanyu Liu
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haodong Xiao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Xu
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Darmanto AG, Jan JS, Yen TL, Huang SW, Teng RD, Wang JY, Taliyan R, Sheu JR, Yang CH. Targeting Circadian Protein Rev-erbα to Alleviate Inflammation, Oxidative Stress, and Enhance Functional Recovery Following Brain Trauma. Antioxidants (Basel) 2024; 13:901. [PMID: 39199147 PMCID: PMC11351136 DOI: 10.3390/antiox13080901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
Traumatic brain injury (TBI) is a significant cause of morbidity and mortality worldwide, and its pathophysiology is characterized by oxidative stress and inflammation. Despite extensive research, effective treatments for TBI remain elusive. Recent studies highlighted the critical interplay between TBI and circadian rhythms, but the detailed regulation remains largely unknown. Motivated by the observed sustained decrease in Rev-erbα after TBI, we aimed to understand the critical role of Rev-erbα in the pathophysiology of TBI and determine its feasibility as a therapeutic target. Using a mouse model of TBI, we observed that TBI significantly downregulates Rev-erbα levels, exacerbating inflammatory and oxidative stress pathways. The regulation of Rev-erbα with either the pharmacological activator or inhibitor bidirectionally modulated inflammatory and oxidative events, which in turn influenced neurobehavioral outcomes, highlighting the protein's protective role. Mechanistically, Rev-erbα influences the expression of key oxidative stress and inflammatory regulatory genes. A reduction in Rev-erbα following TBI likely contributes to increased oxidative damage and inflammation, creating a detrimental environment for neuronal survival and recovery which could be reversed via the pharmacological activation of Rev-erbα. Our findings highlight the therapeutic potential of targeting Rev-erbα to mitigate TBI-induced damage and improve outcomes, especially in TBI-susceptible populations with disrupted circadian regulation.
Collapse
Affiliation(s)
- Arief Gunawan Darmanto
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (A.G.D.); (J.-R.S.)
- School of Medicine, Universitas Ciputra, Surabaya 60219, Indonesia
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan; (J.-S.J.); (T.-L.Y.); (S.-W.H.); (R.-D.T.)
| | - Jing-Shiun Jan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan; (J.-S.J.); (T.-L.Y.); (S.-W.H.); (R.-D.T.)
| | - Ting-Lin Yen
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan; (J.-S.J.); (T.-L.Y.); (S.-W.H.); (R.-D.T.)
- Department of Medical Research, Cathay General Hospital, Taipei 22174, Taiwan
| | - Shin-Wei Huang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan; (J.-S.J.); (T.-L.Y.); (S.-W.H.); (R.-D.T.)
| | - Ruei-Dun Teng
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan; (J.-S.J.); (T.-L.Y.); (S.-W.H.); (R.-D.T.)
| | - Jia-Yi Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei 110301, Taiwan
| | - Rajeev Taliyan
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, Pilani 333031, Rajasthan, India;
| | - Joen-Rong Sheu
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (A.G.D.); (J.-R.S.)
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan; (J.-S.J.); (T.-L.Y.); (S.-W.H.); (R.-D.T.)
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Chih-Hao Yang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan; (J.-S.J.); (T.-L.Y.); (S.-W.H.); (R.-D.T.)
| |
Collapse
|
25
|
O’Day DH. Calcium and Non-Penetrating Traumatic Brain Injury: A Proposal for the Implementation of an Early Therapeutic Treatment for Initial Head Insults. Biomolecules 2024; 14:853. [PMID: 39062567 PMCID: PMC11274459 DOI: 10.3390/biom14070853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/04/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Finding an effective treatment for traumatic brain injury is challenging for multiple reasons. There are innumerable different causes and resulting levels of damage for both penetrating and non-penetrating traumatic brain injury each of which shows diverse pathophysiological progressions. More concerning is that disease progression can take decades before neurological symptoms become obvious. Currently, the primary treatment for non-penetrating mild traumatic brain injury, also called concussion, is bed rest despite the fact the majority of emergency room visits for traumatic brain injury are due to this mild form. Furthermore, one-third of mild traumatic brain injury cases progress to long-term serious symptoms. This argues for the earliest therapeutic intervention for all mild traumatic brain injury cases which is the focus of this review. Calcium levels are greatly increased in damaged brain regions as a result of the initial impact due to tissue damage as well as disrupted ion channels. The dysregulated calcium level feedback is a diversity of ways to further augment calcium neurotoxicity. This suggests that targeting calcium levels and function would be a strong therapeutic approach. An effective calcium-based traumatic brain injury therapy could best be developed through therapeutic programs organized in professional team sports where mild traumatic brain injury events are common, large numbers of subjects are involved and professional personnel are available to oversee treatment and documentation. This review concludes with a proposal with that focus.
Collapse
Affiliation(s)
- Danton H. O’Day
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada;
- Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| |
Collapse
|
26
|
Czyżewski W, Korulczyk J, Szymoniuk M, Sakwa L, Litak J, Ziemianek D, Czyżewska E, Mazurek M, Kowalczyk M, Turek G, Pawłowski A, Rola R, Torres K. Aquaporin 2 in Cerebral Edema: Potential Prognostic Marker in Craniocerebral Injuries. Int J Mol Sci 2024; 25:6617. [PMID: 38928322 PMCID: PMC11203564 DOI: 10.3390/ijms25126617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Despite continuous medical advancements, traumatic brain injury (TBI) remains a leading cause of death and disability worldwide. Consequently, there is a pursuit for biomarkers that allow non-invasive monitoring of patients after cranial trauma, potentially improving clinical management and reducing complications and mortality. Aquaporins (AQPs), which are crucial for transmembrane water transport, may be significant in this context. This study included 48 patients, with 27 having acute (aSDH) and 21 having chronic subdural hematoma (cSDH). Blood plasma samples were collected from the participants at three intervals: the first sample before surgery, the second at 15 h, and the third at 30 h post-surgery. Plasma concentrations of AQP1, AQP2, AQP4, and AQP9 were determined using the sandwich ELISA technique. CT scans were performed on all patients pre- and post-surgery. Correlations between variables were examined using Spearman's nonparametric rank correlation coefficient. A strong correlation was found between aquaporin 2 levels and the volume of chronic subdural hematoma and midline shift. However, no significant link was found between aquaporin levels (AQP1, AQP2, AQP4, and AQP9) before and after surgery for acute subdural hematoma, nor for AQP1, AQP4, and AQP9 after surgery for chronic subdural hematoma. In the chronic SDH group, AQP2 plasma concentration negatively correlated with the midline shift measured before surgery (Spearman's ρ -0.54; p = 0.017) and positively with hematoma volume change between baseline and 30 h post-surgery (Spearman's ρ 0.627; p = 0.007). No statistically significant correlation was found between aquaporin plasma levels and hematoma volume for AQP1, AQP2, AQP4, and AQP9 in patients with acute SDH. There is a correlation between chronic subdural hematoma volume, measured radiologically, and serum AQP2 concentration, highlighting aquaporins' potential as clinical biomarkers.
Collapse
Affiliation(s)
- Wojciech Czyżewski
- Department of Neurosurgery, Maria Sklodowska-Curie National Research Institute of Oncology, ul. W.K. 7 Roentgena 5, 02-781 Warsaw, Poland
- Department of Didactics and Medical Simulation, Medical University of Lublin, 20-954 Lublin, Poland
| | - Jan Korulczyk
- Department of Plastic, Reconstructive Surgery with Microsurgery, Medical University of Lublin, 20-954 Lublin, Poland; (J.K.); (K.T.)
| | - Michał Szymoniuk
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.S.); (M.M.); (R.R.)
| | - Leon Sakwa
- Faculty of Medical Sciences and Health Sciences, Kazimierz Pulaski University of Radom, 26-600 Radom, Poland;
| | - Jakub Litak
- Department of Clinical Immunology, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Dominik Ziemianek
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.S.); (M.M.); (R.R.)
| | - Ewa Czyżewska
- Department of Otolaryngology, Mazovian Specialist Hospital, 26-617 Radom, Poland;
| | - Marek Mazurek
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.S.); (M.M.); (R.R.)
| | - Michał Kowalczyk
- 1st Department of Anesthesiology and Intensive Care, Medical University of Lublin, ul. Jaczewskiego 8, 20-954 Lublin, Poland;
| | - Grzegorz Turek
- Department of Neurosurgery, Postgraduate Medical Centre, Brodnowski Masovian Hospital, 8 Kondratowicza Str., 03-242 Warsaw, Poland;
| | - Adrian Pawłowski
- Department of Human, Clinical and Radiological Anatomy, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Radosław Rola
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.S.); (M.M.); (R.R.)
| | - Kamil Torres
- Department of Plastic, Reconstructive Surgery with Microsurgery, Medical University of Lublin, 20-954 Lublin, Poland; (J.K.); (K.T.)
| |
Collapse
|
27
|
Tan H, Wang J, Li F, Peng Y, Lan J, Zhang Y, Zhao D, Bao Y. Prediction Value of Initial Serum Levels of SERPINA3 in Intracranial Pressure and Long-Term Neurological Outcomes in Traumatic Brain Injury. Diagnostics (Basel) 2024; 14:1245. [PMID: 38928660 PMCID: PMC11202773 DOI: 10.3390/diagnostics14121245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Traumatic brain injury (TBI) is a severe neurological condition characterized by inflammation in the central nervous system. SERPINA3 has garnered attention as a potential biomarker for assessing this inflammation. Our study aimed to explore the predictive value of postoperative serum SERPINA3 levels in identifying the risk of cerebral edema and its prognostic implications in TBI. This study is a prospective observational study, including 37 patients with TBI who finally met our criteria. The Glasgow Outcome Scale (GOS), Levels of Cognitive Functioning (LCF), Disability Rating Scale (DRS), and Early Rehabilitation Barthel Index (ERBI) scores at six months after trauma were defined as the main study endpoint. We further calculated the ventricle-to-intracranial-volume ratio (VBR) at 6 months from CT scans. The study included patients with Glasgow Coma Scale (GCS) scores ranging from 3 to 8, who were subsequently categorized into two groups: the critical TBI group (GCS 3-5 points) and the severe TBI group (GCS 6-8 points). Within the critical TBI group, SERPINA3 levels were notably lower. However, among patients with elevated SERPINA3 levels, both the peak intracranial pressure (ICP) and average mannitol consumption were significantly reduced compared with those of patients with lower SERPINA3 levels. In terms of the 6-month outcomes measured via the GOS, LCF, DRS, and ERBI, lower levels of SERPINA3 were indicative of poorer prognosis. Furthermore, we found a negative correlation between serum SERPINA3 levels and the VBR. The receiver operating characteristic (ROC) curve and decision curve analysis (DCA) demonstrated the predictive performance of SERPINA3. In conclusion, incorporating the novel biomarker SERPINA3 alongside traditional assessment tools offers neurosurgeons an effective and easily accessible means, which is readily accessible early on, to predict the risk of intracranial pressure elevation and long-term prognosis in TBI patients.
Collapse
Affiliation(s)
- Haoyuan Tan
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; (H.T.); (J.W.); (J.L.)
| | - Jiamian Wang
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; (H.T.); (J.W.); (J.L.)
| | - Fengshi Li
- Neurologic Surgery Department, Huashan Hospital, Fudan University, Shanghai 200437, China;
| | - Yidong Peng
- Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Head Trauma, Shanghai 200127, China;
| | - Jin Lan
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; (H.T.); (J.W.); (J.L.)
| | - Yuanda Zhang
- Minhang Hospital, Fudan University, Shanghai 200437, China;
| | - Dongxu Zhao
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; (H.T.); (J.W.); (J.L.)
| | - Yinghui Bao
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; (H.T.); (J.W.); (J.L.)
| |
Collapse
|
28
|
Tanhai G, Chahardehi AM, Sohrabi MA, Afshoon M, Saberian P, Pourshams M, Ghasemi D, Motaghi SM, Arefnezhad R, Niknam Z. Ameliorative properties of quercetin in the treatment of traumatic brain injury: a mechanistic review based on underlying mechanisms. Mol Biol Rep 2024; 51:695. [PMID: 38796674 DOI: 10.1007/s11033-024-09641-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/13/2024] [Indexed: 05/28/2024]
Abstract
Traumatic brain injury (TBI) is a leading cause of disability worldwide, with an estimated annual incidence of 27-69 million. TBI is a severe condition that can lead to high mortality rates and long-term cognitive, behavioral, and physical impairments in young adults. It is a significant public health concern due to the lack of effective treatments available. Quercetin, a natural flavonoid found in various fruits and vegetables, has demonstrated therapeutic potential with anti-inflammatory, antioxidant, and neuroprotective properties. Recently, some evidence has accentuated the ameliorating effects of quercetin on TBI. This review discusses quercetin's ability to reduce TBI-related damage by regulating many cellular and molecular pathways. Quercetin in vitro and in vivo studies exhibit promise in reducing inflammation, oxidative stress, apoptosis, and enhancing cognitive function post-TBI. Further clinical investigation into quercetin's therapeutic potential as a readily available adjuvant in the treatment of TBI is warranted in light of these findings. This review adds to our knowledge of quercetin's potential in treating TBI by clarifying its mechanisms of action.
Collapse
Affiliation(s)
- Golale Tanhai
- Department of Psychology and Counseling, Faculty of Humanities, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | | | | | - Maryam Afshoon
- Clinical Research Development Unit, Valiasr Educational Hospital, Abadan University of Medical Sciences, Abadan, Iran
| | - Parsa Saberian
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Maryam Pourshams
- Department of Psychiatry, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Darioush Ghasemi
- Kimia Andisheh Teb Medical and Research Laboratory Co., Tehran, Iran
| | | | | | - Zahra Niknam
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
29
|
Lang J, Sun B, Feng S, Sun G. Impaired autophagic flux in the human brain after traumatic brain injury. Neuroreport 2024; 35:387-398. [PMID: 38526944 PMCID: PMC10965136 DOI: 10.1097/wnr.0000000000002020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/14/2024] [Indexed: 03/27/2024]
Abstract
Emerging evidence indicates that dysfunctional autophagic flux significantly contributes to the pathology of experimental traumatic brain injury (TBI). The current study aims to clarify its role post-TBI using brain tissues from TBI patients. Histological examinations, including hematoxylin and eosin, Nissl staining, and brain water content analysis, were employed to monitor brain damage progression. Electron microscopy was used to visualize autophagic vesicles. Western blotting and immunohistochemistry were performed to analyze the levels of important autophagic flux-related proteins such as Beclin1, autophagy-related protein 5, lipidated microtubule-associated protein light-chain 3 (LC3-II), autophagic substrate sequestosome 1 (SQSTM1/p62), and cathepsin D (CTSD), a lysosomal enzyme. Immunofluorescence assays evaluated LC3 colocalization with NeuN, P62, or CTSD, and correlation analysis linked autophagy-related protein levels with brain water content and Nissl bodies. Early-stage TBI results showed increased autophagic vesicles and LC3-positive neurons, suggesting autophagosome accumulation due to enhanced initiation and reduced clearance. As TBI progressed, LC3-II and P62 levels increased, while CTSD levels decreased. This indicates autophagosome overload from impaired degradation rather than increased initiation. The study reveals a potential association between worsening brain damage and impaired autophagic flux post-TBI, positioning improved autophagic flux as a viable therapeutic target for TBI.
Collapse
Affiliation(s)
- Jiadong Lang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, the People’s Republic of China
| | - Boyu Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, the People’s Republic of China
| | - Shiyao Feng
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, the People’s Republic of China
| | - Guozhu Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, the People’s Republic of China
| |
Collapse
|
30
|
Rocha GS, Freire MAM, Paiva KM, Oliveira RF, Morais PLAG, Santos JR, Cavalcanti JRLP. The neurobiological effects of senescence on dopaminergic system: A comprehensive review. J Chem Neuroanat 2024; 137:102415. [PMID: 38521203 DOI: 10.1016/j.jchemneu.2024.102415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/26/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024]
Abstract
Over time, the body undergoes a natural, multifactorial, and ongoing process named senescence, which induces changes at the molecular, cellular, and micro-anatomical levels in many body systems. The brain, being a highly complex organ, is particularly affected by this process, potentially impairing its numerous functions. The brain relies on chemical messengers known as neurotransmitters to function properly, with dopamine being one of the most crucial. This catecholamine is responsible for a broad range of critical roles in the central nervous system, including movement, learning, cognition, motivation, emotion, reward, hormonal release, memory consolidation, visual performance, sexual drive, modulation of circadian rhythms, and brain development. In the present review, we thoroughly examine the impact of senescence on the dopaminergic system, with a primary focus on the classic delimitations of the dopaminergic nuclei from A8 to A17. We provide in-depth information about their anatomy and function, particularly addressing how senescence affects each of these nuclei.
Collapse
Affiliation(s)
- Gabriel S Rocha
- Behavioral and Evolutionary Neurobiology Laboratory, Federal University of Sergipe (UFS), Itabaiana, Brazil
| | - Marco Aurelio M Freire
- Behavioral and Evolutionary Neurobiology Laboratory, Federal University of Sergipe (UFS), Itabaiana, Brazil
| | - Karina M Paiva
- Laboratory of Experimental Neurology, State University of Rio Grande do Norte (UERN), Mossoró, Brazil
| | - Rodrigo F Oliveira
- Laboratory of Experimental Neurology, State University of Rio Grande do Norte (UERN), Mossoró, Brazil
| | - Paulo Leonardo A G Morais
- Laboratory of Experimental Neurology, State University of Rio Grande do Norte (UERN), Mossoró, Brazil
| | - José Ronaldo Santos
- Behavioral and Evolutionary Neurobiology Laboratory, Federal University of Sergipe (UFS), Itabaiana, Brazil
| | | |
Collapse
|
31
|
Lakshmipathy D, Rangarajan S, Barreau A, Lu J, Kleinberg G, Lucke-Wold B. Genetic Contributions to Recovery following Brain Trauma: A Narrative Review. FRONT BIOSCI-LANDMRK 2024; 29:103. [PMID: 38538271 DOI: 10.31083/j.fbl2903103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 01/08/2025]
Abstract
Traumatic brain injury (TBI) is a frequently encountered form of injury that can have lifelong implications. Despite advances in prevention, diagnosis, monitoring, and treatment, the degree of recovery can vary widely between patients. Much of this is explained by differences in severity of impact and patient-specific comorbidities; however, even among nearly identical patients, stark disparities can arise. Researchers have looked to genetics in recent years as a means of explaining this phenomenon. It has been hypothesized that individual genetic factors can influence initial inflammatory responses, recovery mechanisms, and overall prognoses. In this review, we focus on cytokine polymorphisms, mitochondrial DNA (mtDNA) haplotypes, immune cells, and gene therapy given their associated influx of novel research and magnitude of potential. This discussion is prefaced by a thorough background on TBI pathophysiology to better understand where each mechanism fits within the disease process. Cytokine polymorphisms causing unfavorable regulation of genes encoding IL-1β, IL-RA, and TNF-α have been linked to poor TBI outcomes like disability and death. mtDNA haplotype H has been correlated with deleterious effects on TBI recovery time, whereas haplotypes K, T, and J have been depicted as protective with faster recovery times. Immune cell genetics such as microglial differentially expressed genes (DEGs), monocyte receptor genes, and regulatory factors can be both detrimental and beneficial to TBI recovery. Gene therapy in the form of gene modification, inactivation, and editing show promise in improving post-TBI memory, cognition, and neuromotor function. Limitations of this study include a large proportion of cited literature being focused on pre-clinical murine models. Nevertheless, favorable evidence on the role of genetics in TBI recovery continues to grow. We aim for this work to inform interested parties on the current landscape of research, highlight promising targets for gene therapy, and galvanize translation of findings into clinical trials.
Collapse
Affiliation(s)
- Deepak Lakshmipathy
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Champaign, IL 61801, USA
| | - Shreya Rangarajan
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Champaign, IL 61801, USA
| | - Ariana Barreau
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Champaign, IL 61801, USA
| | - Jeffrey Lu
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Champaign, IL 61801, USA
| | - Giona Kleinberg
- College of Engineering, Northeastern University, Boston, MA 02115, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
32
|
Pandya JD, Musyaju S, Modi HR, Okada-Rising SL, Bailey ZS, Scultetus AH, Shear DA. Intranasal delivery of mitochondria targeted neuroprotective compounds for traumatic brain injury: screening based on pharmacological and physiological properties. J Transl Med 2024; 22:167. [PMID: 38365798 PMCID: PMC10874030 DOI: 10.1186/s12967-024-04908-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/18/2024] [Indexed: 02/18/2024] Open
Abstract
Targeting drugs to the mitochondrial level shows great promise for acute and chronic treatment of traumatic brain injury (TBI) in both military and civilian sectors. Perhaps the greatest obstacle to the successful delivery of drug therapies is the blood brain barrier (BBB). Intracerebroventricular and intraparenchymal routes may provide effective delivery of small and large molecule therapies for preclinical neuroprotection studies. However, clinically these delivery methods are invasive, and risk inadequate exposure to injured brain regions due to the rapid turnover of cerebral spinal fluid. The direct intranasal drug delivery approach to therapeutics holds great promise for the treatment of central nervous system (CNS) disorders, as this route is non-invasive, bypasses the BBB, enhances the bioavailability, facilitates drug dose reduction, and reduces adverse systemic effects. Using the intranasal method in animal models, researchers have successfully reduced stroke damage, reversed Alzheimer's neurodegeneration, reduced anxiety, improved memory, and delivered neurotrophic factors and neural stem cells to the brain. Based on literature spanning the past several decades, this review aims to highlight the advantages of intranasal administration over conventional routes for TBI, and other CNS disorders. More specifically, we have identified and compiled a list of most relevant mitochondria-targeted neuroprotective compounds for intranasal administration based on their mechanisms of action and pharmacological properties. Further, this review also discusses key considerations when selecting and testing future mitochondria-targeted drugs given intranasally for TBI.
Collapse
Affiliation(s)
- Jignesh D Pandya
- TBI Bioenergetics, Metabolism and Neurotherapeutics Program, Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA.
| | - Sudeep Musyaju
- TBI Bioenergetics, Metabolism and Neurotherapeutics Program, Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Hiren R Modi
- TBI Bioenergetics, Metabolism and Neurotherapeutics Program, Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Starlyn L Okada-Rising
- TBI Bioenergetics, Metabolism and Neurotherapeutics Program, Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Zachary S Bailey
- TBI Bioenergetics, Metabolism and Neurotherapeutics Program, Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Anke H Scultetus
- TBI Bioenergetics, Metabolism and Neurotherapeutics Program, Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Deborah A Shear
- TBI Bioenergetics, Metabolism and Neurotherapeutics Program, Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| |
Collapse
|
33
|
Sakul AA, Balcikanli Z, Ozsoy NA, Orhan C, Sahin N, Tuzcu M, Juturu V, Kilic E, Sahin K. A highly bioavailable curcumin formulation ameliorates inflammation cytokines and neurotrophic factors in mice with traumatic brain injury. Chem Biol Drug Des 2024; 103:e14439. [PMID: 38230778 DOI: 10.1111/cbdd.14439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 01/18/2024]
Abstract
A novel curcumin formulation increases relative absorption by 46 times (CurcuWIN®) of the total curcuminoids over the unformulated standard curcumin form. However, the exact mechanisms by which curcumin demonstrates its neuroprotective effects are not fully understood. This study aimed to investigate the impact of a novel formulation of curcumin on the expression of brain-derived neurotrophic factor (BDNF), glial fibrillary acidic protein (GFAP), a main component of the glial scar and growth-associated protein-43 (GAP-43), a signaling molecule in traumatic brain injury (TBI). Mice (adult, male, C57BL/6j) were randomly divided into three groups as follows: TBI group (TBI-induced mice); TBI + CUR group (TBI mice were injected i.p. curcumin just after TBI); TBI+ CurcuWIN® group (TBI mice were injected i.p. CurcuWIN® just after TBI). Brain injury was induced using a cold injury model. Injured brain tissue was stained with Cresyl violet to evaluate infarct volume and brain swelling, analyzed, and measured using ImageJ by Bethesda (MD, USA). Western blot analysis was performed to determine the protein levels related to injury. While standard curcumin significantly reduced brain injury, CurcuWIN® showed an even greater reduction associated with reductions in glial activation, NF-κB, and the inflammatory cytokines IL-1β and IL-6. Additionally, both standard curcumin and CurcuWIN® led to increased BDNF, GAP-43, ICAM-1, and Nrf2 expression. Notably, CurcuWIN® enhanced their expression more than standard curcumin. This data suggests that highly bioavailable curcumin formulation has a beneficial effect on the traumatic brain in mice.
Collapse
Affiliation(s)
- Ayse Arzu Sakul
- Department of Pharmacology, School of Medicine, University of Istanbul Medipol, Istanbul, Turkey
| | - Zeynep Balcikanli
- Department of Physiology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Nilay Ates Ozsoy
- Department of Pharmacology, School of Medicine, University of Istanbul Medipol, Istanbul, Turkey
- Regenerative and Restorative Medical Research Center, Experimental Neurology Laboratory, Istanbul Medipol University, Istanbul, Turkey
| | - Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Nurhan Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Mehmet Tuzcu
- Department of Biology, Faculty of Science, Firat University Elazig, Elazig, Turkey
| | - Vijaya Juturu
- Scientific and Clinical Affairs, Research, and Development, OmniActives Health Technologies Inc., Morristown, New Jersey, USA
| | - Ertugrul Kilic
- Department of Physiology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
34
|
Sakas R, Dan K, Edelman D, Abu-Ata S, Ben-Menashe A, Awad-Igbaria Y, Francois-Soustiel J, Palzur E. Hyperbaric Oxygen Therapy Alleviates Memory and Motor Impairments Following Traumatic Brain Injury via the Modulation of Mitochondrial-Dysfunction-Induced Neuronal Apoptosis in Rats. Antioxidants (Basel) 2023; 12:2034. [PMID: 38136154 PMCID: PMC10740762 DOI: 10.3390/antiox12122034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of morbidity and mortality in young adults, characterized by primary and secondary injury. Primary injury is the immediate mechanical damage, while secondary injury results from delayed neuronal death, often linked to mitochondrial damage accumulation. Hyperbaric oxygen therapy (HBOT) has been proposed as a potential treatment for modulating secondary post-traumatic neuronal death. However, the specific molecular mechanism by which HBOT modulates secondary brain damage through mitochondrial protection remains unclear. Spatial learning, reference memory, and motor performance were measured in rats before and after Controlled Cortical Impact (CCI) injury. The HBOT (2.5 ATA) was performed 4 h following the CCI and twice daily (12 h intervals) for four consecutive days. Mitochondrial functions were assessed via high-resolution respirometry on day 5 following CCI. Moreover, IHC was performed at the end of the experiment to evaluate cortical apoptosis, neuronal survival, and glial activation. The current result indicates that HBOT exhibits a multi-level neuroprotective effect. Thus, we found that HBOT prevents cortical neuronal loss, reduces the apoptosis marker (cleaved-Caspase3), and modulates glial cell proliferation. Furthermore, HBO treatment prevents the reduction in mitochondrial respiration, including non-phosphorylation state, oxidative phosphorylation, and electron transfer capacity. Additionally, a superior motor and spatial learning performance level was observed in the CCI group treated with HBO compared to the CCI group. In conclusion, our findings demonstrate that HBOT during the critical period following the TBI improves cognitive and motor damage via regulating glial proliferation apoptosis and protecting mitochondrial function, consequently preventing cortex neuronal loss.
Collapse
Affiliation(s)
- Reem Sakas
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (R.S.); (K.D.); (S.A.-A.); (A.B.-M.); (J.F.-S.)
- Research Institute of Galilee Medical Center, Nahariya 221001, Israel
| | - Katya Dan
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (R.S.); (K.D.); (S.A.-A.); (A.B.-M.); (J.F.-S.)
- Research Institute of Galilee Medical Center, Nahariya 221001, Israel
| | - Doron Edelman
- Neurosurgery Department, Tel-Aviv Sourasky Medical Center, Tel-Aviv 6423906, Israel;
| | - Saher Abu-Ata
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (R.S.); (K.D.); (S.A.-A.); (A.B.-M.); (J.F.-S.)
- Research Institute of Galilee Medical Center, Nahariya 221001, Israel
| | - Aviv Ben-Menashe
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (R.S.); (K.D.); (S.A.-A.); (A.B.-M.); (J.F.-S.)
- Research Institute of Galilee Medical Center, Nahariya 221001, Israel
| | - Yaseen Awad-Igbaria
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (R.S.); (K.D.); (S.A.-A.); (A.B.-M.); (J.F.-S.)
- Research Institute of Galilee Medical Center, Nahariya 221001, Israel
| | - Jean Francois-Soustiel
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (R.S.); (K.D.); (S.A.-A.); (A.B.-M.); (J.F.-S.)
- Neurosurgery Department, Galilee Medical Center, Nahariya 221001, Israel
| | - Eilam Palzur
- Research Institute of Galilee Medical Center, Nahariya 221001, Israel
| |
Collapse
|
35
|
Mavroudis I, Balmus IM, Ciobica A, Nicoara MN, Luca AC, Palade DO. The Role of Microglial Exosomes and miR-124-3p in Neuroinflammation and Neuronal Repair after Traumatic Brain Injury. Life (Basel) 2023; 13:1924. [PMID: 37763327 PMCID: PMC10532687 DOI: 10.3390/life13091924] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
(1) Background: In this study, we aimed to explore the regulatory mechanism of miR-124-3p microglial exosomes, as they were previously reported to modulate neuroinflammation and promote neuronal repair following traumatic brain injury (TBI). (2) Methods: Studies investigating the impact of microglial exosomal miRNAs, specifically miR-124-3p, on injured neurons and brain microvascular endothelial cells (BMVECs) in the context of TBI were reviewed. (3) Results: Animal models of TBI, in vitro cell culture experiments, RNA sequencing analysis, and functional assays were employed to elucidate the mechanisms underlying the effects of miR-124-3p-loaded exosomes on neuroinflammation and neuronal repair. Anti-inflammatory M2 polarization of microglia, mTOR signaling suppression, and BMVECs-mediated autophagy were reported as the main processes contributing to neuroprotection, reduced blood-brain barrier leakage, and improved neurologic outcomes in animal models of TBI. (4) Conclusions: Microglial exosomes, particularly those carrying miR-124-3p, have emerged as promising candidates for therapeutic interventions in TBI. These exosomes exhibit neuroprotective effects, attenuate neuroinflammation, and promote neuronal repair and plasticity. However, further research is required to fully elucidate the underlying mechanisms and optimize their delivery strategies for effective treatment in human TBI cases.
Collapse
Affiliation(s)
- Ioannis Mavroudis
- Department of Neurology, Leeds Teaching Hospitals, NHS Trust, Leeds LS2 9JT, UK;
- Faculty of Medicine, Leeds University, Leeds LS2 9JT, UK
| | - Ioana-Miruna Balmus
- Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research, Alexandru Ioan Cuza University of Iasi, Str. Alexandru Lapusneanu, no. 26, 700057 Iasi, Romania
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I no. 20A, 700505 Iasi, Romania
- Centre of Biomedical Research, Romanian Academy, Bd. Carol I, no. 8, 700506 Iasi, Romania
- Academy of Romanian Scientists, Str. Splaiul Independentei no. 54, Sector 5, 050094 Bucharest, Romania
- Preclinical Department, Apollonia University, Păcurari Street 11, 700511 Iasi, Romania
| | - Mircea Nicusor Nicoara
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I no. 20A, 700505 Iasi, Romania
- Doctoral School of Geosciences, Faculty of Geography and Geology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I no. 20A, 700505 Iasi, Romania
| | - Alina Costina Luca
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Str. Universitatii no. 16, 700115 Iasi, Romania
| | - Dragos Octavian Palade
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Str. Universitatii no. 16, 700115 Iasi, Romania
| |
Collapse
|