1
|
Zhu J, Li M, Li J, Wu J. Sialic acid metabolism of oral bacteria and its potential role in colorectal cancer and Alzheimer's disease. Carbohydr Res 2024; 541:109172. [PMID: 38823062 DOI: 10.1016/j.carres.2024.109172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/10/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Sialic acid metabolism in oral bacteria is a complex process involving nutrient acquisition, immune evasion, cell surface modification, and the production of metabolites that contribute to bacterial persistence and virulence in the oral cavity. In addition to causing various periodontal diseases, certain oral pathogenic bacteria, such as Porphyromonas gingivalis, Tannerella forsythia, and Fusobacterium nucleatum, can induce inflammatory reactions and influence the immunity of host cells. These associations with host cells are linked to various diseases, particularly colorectal cancer and Alzheimer's disease. Sialic acid can be found in the host oral mucosa, saliva, or food residues in the oral cavity, and it may promote the colonization of oral bacteria and contribute to disease development. This review aims to summarize the role of sialic acid metabolism in oral bacteria and discuss its effect on the pathogenesis of colorectal cancer and Alzheimer's disease.
Collapse
Affiliation(s)
- Jiao Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Mengyang Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jinfang Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jianrong Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
2
|
Decloquement M, Venuto MT, Cogez V, Steinmetz A, Schulz C, Lion C, Noel M, Rigolot V, Teppa RE, Biot C, Rebl A, Galuska SP, Harduin-Lepers A. Salmonid polysialyltransferases to generate a variety of sialic acid polymers. Sci Rep 2023; 13:15610. [PMID: 37730806 PMCID: PMC10511417 DOI: 10.1038/s41598-023-42095-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023] Open
Abstract
The human polysialyltransferases ST8Sia II and ST8Sia IV catalyze the transfer of several Neu5Ac residues onto glycoproteins forming homopolymers with essential roles during different physiological processes. In salmonids, heterogeneous set of sialic acids polymers have been described in ovary and on eggs cell surface and three genes st8sia4, st8sia2-r1 and st8sia2-r2 were identified that could be implicated in these heteropolymers. The three polysialyltransferases from the salmonid Coregonus maraena were cloned, recombinantly expressed in HEK293 cells and the ST8Sia IV was biochemically characterized. The MicroPlate Sialyltransferase Assay and the non-natural donor substrate CMP-SiaNAl were used to demonstrate enzyme activity and optimize polysialylation reactions. Polysialylation was also carried out with natural donor substrates CMP-Neu5Ac, CMP-Neu5Gc and CMP-Kdn in cell-free and cell-based assays and structural analyses of polysialylated products using the anti-polySia monoclonal antibody 735 and endoneuraminidase N and HPLC approaches. Our data highlighted distinct specificities of human and salmonid polysialyltransferases with notable differences in donor substrates use and the capacity of fish enzymes to generate heteropolymers. This study further suggested an evolution of the biological functions of polySia. C. maraena ST8Sia IV of particular interest to modify glycoproteins with a variety of polySia chains.
Collapse
Affiliation(s)
- Mathieu Decloquement
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Marzia Tindara Venuto
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Virginie Cogez
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Anna Steinmetz
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Céline Schulz
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Cédric Lion
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Maxence Noel
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Vincent Rigolot
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Roxana Elin Teppa
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Christophe Biot
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Alexander Rebl
- Institute of Genome Biology, Research Institute for Farm Animal Biology FBN, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Sebastian Peter Galuska
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| | - Anne Harduin-Lepers
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France.
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, Faculté des sciences et Technologies, Univ. Lille, 59655, Villeneuve d'Ascq, France.
| |
Collapse
|
3
|
Humpfle L, Hachem NE, Simon P, Weinhold B, Galuska SP, Middendorff R. Knockout of the polysialyltransferases ST8SiaII and ST8SiaIV leads to a dilatation of rete testis during postnatal development. Front Physiol 2023; 14:1240296. [PMID: 37520830 PMCID: PMC10382229 DOI: 10.3389/fphys.2023.1240296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Polysialic acid (polySia) is a carbohydrate polymer that modulates several cellular processes, such as migration, proliferation and differentiation processes. In the brain, its essential impact during postnatal development is well known. However, in most other polySia positive organs, only its localization has been described so far. For instance, in the murine epididymis, smooth muscle cells of the epididymal duct are polysialylated during the first 2 weeks of postnatal development. To understand the role of polySia during the development of the epididymis, the consequences of its loss were investigated in postnatal polySia knockout mice. As expected, no polysialylation was visible in the absence of the polysialyltransferases ST8SiaII and ST8SiaIV. Interestingly, cGMP-dependent protein kinase I (PGK1), which is essentially involved in smooth muscle cell relaxation, was not detectable in peritubular smooth muscle cells when tissue sections of polySia knockout mice were analyzed by immunohistochemistry. In contrast to this signaling molecule, the structural proteins smooth muscle actin (SMA) and calponin were expressed. As shown before, in the duct system of the testis, even the expression of these structural proteins was impaired due to the loss of polySia. We now found that the rete testis, connecting the duct system of the testis and epididymis, was extensively dilated. The obtained data suggest that less differentiated smooth muscle cells of the testis and epididymis result in disturbed contractility and thus, fluid transport within the duct system visible in the enlarged rete testis.
Collapse
Affiliation(s)
- Luisa Humpfle
- Institute of Anatomy and Cell Biology, Medical Faculty, Justus-Liebig-University, Giessen, Germany
| | - Nadim E. Hachem
- Institute of Anatomy and Cell Biology, Medical Faculty, Justus-Liebig-University, Giessen, Germany
| | - Peter Simon
- Institute of Anatomy and Cell Biology, Medical Faculty, Justus-Liebig-University, Giessen, Germany
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, Giessen, Germany
| | - Birgit Weinhold
- Institute of Cellular Chemistry, Hannover Medical School, Hannover, Germany
| | | | - Ralf Middendorff
- Institute of Anatomy and Cell Biology, Medical Faculty, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
4
|
Jarahian M, Marofi F, Maashi MS, Ghaebi M, Khezri A, Berger MR. Re-Expression of Poly/Oligo-Sialylated Adhesion Molecules on the Surface of Tumor Cells Disrupts Their Interaction with Immune-Effector Cells and Contributes to Pathophysiological Immune Escape. Cancers (Basel) 2021; 13:5203. [PMID: 34680351 PMCID: PMC8534074 DOI: 10.3390/cancers13205203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/28/2022] Open
Abstract
Glycans linked to surface proteins are the most complex biological macromolecules that play an active role in various cellular mechanisms. This diversity is the basis of cell-cell interaction and communication, cell growth, cell migration, as well as co-stimulatory or inhibitory signaling. Our review describes the importance of neuraminic acid and its derivatives as recognition elements, which are located at the outermost positions of carbohydrate chains linked to specific glycoproteins or glycolipids. Tumor cells, especially from solid tumors, mask themselves by re-expression of hypersialylated neural cell adhesion molecule (NCAM), neuropilin-2 (NRP-2), or synaptic cell adhesion molecule 1 (SynCAM 1) in order to protect themselves against the cytotoxic attack of the also highly sialylated immune effector cells. More particularly, we focus on α-2,8-linked polysialic acid chains, which characterize carrier glycoproteins such as NCAM, NRP-2, or SynCam-1. This characteristic property correlates with an aggressive clinical phenotype and endows them with multiple roles in biological processes that underlie all steps of cancer progression, including regulation of cell-cell and/or cell-extracellular matrix interactions, as well as increased proliferation, migration, reduced apoptosis rate of tumor cells, angiogenesis, and metastasis. Specifically, re-expression of poly/oligo-sialylated adhesion molecules on the surface of tumor cells disrupts their interaction with immune-effector cells and contributes to pathophysiological immune escape. Further, sialylated glycoproteins induce immunoregulatory cytokines and growth factors through interactions with sialic acid-binding immunoglobulin-like lectins. We describe the processes, which modulate the interaction between sialylated carrier glycoproteins and their ligands, and illustrate that sialic acids could be targets of novel therapeutic strategies for treatment of cancer and immune diseases.
Collapse
Affiliation(s)
- Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit Heidelberg, 69120 Heidelberg, Germany;
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran;
| | - Marwah Suliman Maashi
- Stem Cells and Regenerative Medicine Unit at King Fahad Medical Research Centre, Jeddah 11211, Saudi Arabia;
| | - Mahnaz Ghaebi
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan 4513956184, Iran;
| | - Abdolrahman Khezri
- Department of Biotechnology, Inland Norway University of Applied Sciences, 2418 Hamar, Norway;
| | - Martin R. Berger
- German Cancer Research Center, Toxicology and Chemotherapy Unit Heidelberg, 69120 Heidelberg, Germany;
| |
Collapse
|
5
|
Yan Z, Yang X, Hua Y, Li Z, Liu Y, Lin Y. An impedance sensor based on chitosan-carbon quantum dots for the detection sialic acid in humuan serum. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Lehti TA, Pajunen MI, Jokilammi A, Korja M, Lilie H, Vettenranta K, Finne J. Design of a Cytotoxic Neuroblastoma-Targeting Agent Using an Enzyme Acting on Polysialic Acid Fused to a Toxin. Mol Cancer Ther 2021; 20:1996-2007. [PMID: 34315766 DOI: 10.1158/1535-7163.mct-20-1031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/26/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022]
Abstract
Polysialic acid, an abundant cell surface component of the developing nervous system, which declines rapidly postnatally to virtual absence in the majority of adult tissues, is highly expressed in some malignant tumors including neuroblastoma. We found that the binding of a noncatalytic endosialidase to polysialic acid causes internalization of the complex from the surface of neuroblastoma kSK-N-SH cells, a subline of SK-N-SH, and leads to a complete relocalization of polysialic acid to the intracellular compartment. The binding and uptake of the endosialidase is polysialic acid-dependent as it is inhibited by free excess ligand or removal of polysialic acid by active endosialidase, and does not happen if catalytic endosialidase is used in place of inactive endosialidase. A fusion protein composed of the noncatalytic endosialidase and the cytotoxic portion of diphtheria toxin was prepared to investigate whether the cellular uptake observed could be used for the specific elimination of polysialic acid-containing cells. The conjugate toxin was found to be toxic to polysialic acid-positive kSK-N-SH with an IC50 of 1.0 nmol/L. Replacing the noncatalytic endosialidase with active endosialidase decreased the activity to the level of nonconjugated toxin. Normal nonmalignant cells were selectively resistant to the toxin conjugate. The results demonstrate that noncatalytic endosialidase induces a quantitative removal and cellular uptake of polysialic acid from the cell surface which, by conjugation with diphtheria toxin fragment, can be exploited for the selective elimination of polysialic acid-containing tumor cells.
Collapse
Affiliation(s)
- Timo A Lehti
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| | - Maria I Pajunen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Anne Jokilammi
- Institute of Biomedicine, Cancer Laboratories and Medicity Research Laboratories, Faculty of Medicine, University of Turku, Turku, Finland
| | - Miikka Korja
- Department of Neurosurgery, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Hauke Lilie
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Kim Vettenranta
- University of Helsinki and Hospital for Children and Adolescents, Helsinki University Central Hospital, Helsinki, Finland
| | - Jukka Finne
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Hachem NE, Humpfle L, Simon P, Kaese M, Weinhold B, Günther J, Galuska SP, Middendorff R. The Loss of Polysialic Acid Impairs the Contractile Phenotype of Peritubular Smooth Muscle Cells in the Postnatal Testis. Cells 2021; 10:1347. [PMID: 34072405 PMCID: PMC8230264 DOI: 10.3390/cells10061347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/07/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
In the testis, the germinal epithelium of seminiferous tubules is surrounded by contractile peritubular cells, which are involved in sperm transport. Interestingly, in postnatal testis, polysialic acid (polySia), which is also an essential player for the development of the brain, was observed around the tubules. Western blotting revealed a massive decrease of polySia from postnatal day 1 towards puberty, together with a fundamental reduction of the net-like intertubular polySia. Using polysialyltransferase knockout mice, we investigated the consequences of the loss of polySia in the postnatal testis. Compared to postnatal wild-type animals, polySia knockouts showed slightly reduced smooth muscle actin (SMA) immunostaining of peritubular smooth muscle cells (SMCs), while calponin, marking more differentiated SMCs, dramatically decreased. In contrast, testicular SMA and calponin immunostaining remained unchanged in vascular SMCs in all genotypes. In addition, the cGMP-dependent protein kinase PKG I, a key enzyme of SMC relaxation, was nearly undetectable in the peritubular SMCs. Cell proliferation in the peritubular layer increased significantly in the knockouts, as shown by proliferating cell nuclear anti (PCNA) staining. Taken together, in postnatal testis, the absence of polySia resulted in an impaired differentiation of peritubular, but not vascular, SMCs to a more synthetic phenotype. Thus, polySia might influence the maintenance of a differentiated phenotype of non-vascular SMCs.
Collapse
Affiliation(s)
- Nadim E. Hachem
- Department of Anatomy and Cell Biology, Medical Faculty, Justus-Liebig-University, Aulweg 123, 35385 Giessen, Germany; (N.E.H.); (L.H.)
| | - Luisa Humpfle
- Department of Anatomy and Cell Biology, Medical Faculty, Justus-Liebig-University, Aulweg 123, 35385 Giessen, Germany; (N.E.H.); (L.H.)
| | - Peter Simon
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, Friedrichstr. 24, 35392 Giessen, Germany; (P.S.); (M.K.)
| | - Miriam Kaese
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, Friedrichstr. 24, 35392 Giessen, Germany; (P.S.); (M.K.)
| | - Birgit Weinhold
- Institute of Clinical Biochemistry, OE 4340, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany;
| | - Juliane Günther
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany;
| | - Sebastian P. Galuska
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, Friedrichstr. 24, 35392 Giessen, Germany; (P.S.); (M.K.)
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany;
| | - Ralf Middendorff
- Department of Anatomy and Cell Biology, Medical Faculty, Justus-Liebig-University, Aulweg 123, 35385 Giessen, Germany; (N.E.H.); (L.H.)
| |
Collapse
|
8
|
Li Y, Peng Y, Lu H. Advances in Analysis of Linkage Isomers of Sialylated N-Glycans by Mass Spectrometry. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21020048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
9
|
Venuto MT, Martorell-Ribera J, Bochert R, Harduin-Lepers A, Rebl A, Galuska SP. Characterization of the Polysialylation Status in Ovaries of the Salmonid Fish Coregonus maraena and the Percid Fish Sander lucioperca. Cells 2020; 9:cells9112391. [PMID: 33142835 PMCID: PMC7693511 DOI: 10.3390/cells9112391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 11/30/2022] Open
Abstract
In vertebrates, the carbohydrate polymer polysialic acid (polySia) is especially well known for its essential role during neuronal development, regulating the migration and proliferation of neural precursor cells, for instance. Nevertheless, sialic acid polymers seem to be regulatory elements in other physiological systems, such as the reproductive tract. Interestingly, trout fish eggs have polySia, but we know little of its cellular distribution and role during oogenesis. Therefore, we localized α2,8-linked N-acetylneuraminic acid polymers in the ovaries of Coregonus maraena by immunohistochemistry and found that prevalent clusters of oogonia showed polySia signals on their surfaces. Remarkably, the genome of this salmonid fish contains two st8sia2 genes and one st8sia4 gene, that is, three polysialyltransferases. The expression analysis revealed that for st8sia2-r2, 60 times more mRNA was present than st8sia2-r1 and st8sia4. To compare polysialylation status regarding various polySiaT configurations, we performed a comparable analysis in Sander lucioperca. The genome of this perciform fish contains only one st8sia2 and no st8sia4 gene. Here, too, clusters of oogonia showed polysialylated cell surfaces, and we detected high mRNA values for st8sia2. These results suggest that in teleosts, polySia is involved in the cellular processes of oogonia during oogenesis.
Collapse
Affiliation(s)
- Marzia Tindara Venuto
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany;
| | - Joan Martorell-Ribera
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (J.M.-R.); (A.R.)
| | - Ralf Bochert
- Mecklenburg-Vorpommern Research Centre for Agriculture and Fisheries (LFA-MV), 18375 Born, Germany;
| | - Anne Harduin-Lepers
- Université de Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France;
| | - Alexander Rebl
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (J.M.-R.); (A.R.)
| | - Sebastian Peter Galuska
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany;
- Correspondence: ; Tel.: +49-382-0868-769
| |
Collapse
|
10
|
Decidual Vasculopathy and Spiral Artery Remodeling Revisited III: Hypoxia and Re-oxygenation Sequence with Vascular Regeneration. REPRODUCTIVE MEDICINE 2020. [DOI: 10.3390/reprodmed1020006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Aim: Spiral artery remodeling at early pregnancy is characterized by two distinct mechanisms with two morphologic features, namely, trophoblastic-dependent vascular invasion with “plugging”, and trophoblastic-independent mural muscular hypertrophy/hyperplasia, both of which lead to the blocking or narrowing of the arterial lumen with the consequence of reduced maternal blood flow to the developing embryo. Methods: Review of historic literature in light of the new discovery of CD56 (NCAM) expression on endovascular trophoblasts at late gestation, in relation to placental lateral growth with vascular regeneration. Results: Reduced maternal blood flow to the embryo results in a hypoxic condition critical for trophectoderm differentiation and proliferation. Hypoxia is also important for the development of hemangioblasts of vasculogenesis, and hematopoiesis of the placental villi. Up to 13 weeks, both uteroplacental and fetoplacental circulations are established and hypoxic condition relieved for normal fetal/placenta development by ultrasonography. The persistence of trophoblastic plugging and/or mural muscular hypertrophy/hyperplasia leads to persistent reduced maternal blood flow to the placenta, resulting in persistent hypoxia and increased angiogenesis, with a constellation of pathologic features of maternal vascular malperfusion atlate gestation. Wilm’s tumor gene (WT1) expression appears to be central to steroid and peptide hormonal actions in early pregnancy, and vascular regeneration/restoration after pregnancy. Conclusions: Spiral artery remodeling at early pregnancy leads to hypoxia with vascular transformation, and the establishment of uteroplacental circulation results in relief of hypoxia. The hypoxia–re-oxygenation sequence may provide insights into the mechanism of normal fetal/placental development and associated pregnancy complications, such as preeclampsia.
Collapse
|
11
|
Gunesch JT, Dixon AL, Ebrahim TAM, Berrien-Elliott MM, Tatineni S, Kumar T, Hegewisch-Solloa E, Fehniger TA, Mace EM. CD56 regulates human NK cell cytotoxicity through Pyk2. eLife 2020; 9:e57346. [PMID: 32510326 PMCID: PMC7358009 DOI: 10.7554/elife.57346] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/07/2020] [Indexed: 12/12/2022] Open
Abstract
Human natural killer (NK) cells are defined as CD56+CD3-. Despite its ubiquitous expression on human NK cells the role of CD56 (NCAM) in human NK cell cytotoxic function has not been defined. In non-immune cells, NCAM can induce signaling, mediate adhesion, and promote exocytosis through interactions with focal adhesion kinase (FAK). Here we demonstrate that deletion of CD56 on the NK92 cell line leads to impaired cytotoxic function. CD56-knockout (KO) cells fail to polarize during immunological synapse (IS) formation and have severely impaired exocytosis of lytic granules. Phosphorylation of the FAK family member Pyk2 at tyrosine 402 is decreased in NK92 CD56-KO cells, demonstrating a functional link between CD56 and signaling in human NK cells. Cytotoxicity, lytic granule exocytosis, and the phosphorylation of Pyk2 are rescued by the reintroduction of CD56. These data highlight a novel functional role for CD56 in stimulating exocytosis and promoting cytotoxicity in human NK cells.
Collapse
Affiliation(s)
| | - Amera L Dixon
- Baylor College of MedicineHoustonUnited States
- Rice UniversityHoustonUnited States
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical CenterNew YorkUnited States
| | - Tasneem AM Ebrahim
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical CenterNew YorkUnited States
- Barnard CollegeNew YorkUnited States
| | | | | | | | - Everardo Hegewisch-Solloa
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical CenterNew YorkUnited States
| | - Todd A Fehniger
- Washington University School of MedicineSt. LouisUnited States
| | - Emily M Mace
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical CenterNew YorkUnited States
| |
Collapse
|
12
|
Jasminka Rešić Karara, Kowalski M, Markotić A, Zemunik T, Čulić VČ. Distinct Cerebellar Glycosphingolipid Phenotypes in Wistar and Lewis Rats. NEUROCHEM J+ 2020. [DOI: 10.1134/s1819712420010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Amoura L, El-Ghazouani FZ, Kassem M, El Habhab A, Kreutter G, Sahraoui S, Bosco D, Jessel N, Berney T, Benhamou PY, Toti F, Kessler L. Assessment of plasma microvesicles to monitor pancreatic islet graft dysfunction: Beta cell- and leukocyte-derived microvesicles as specific features in a pilot longitudinal study. Am J Transplant 2020; 20:40-51. [PMID: 31319009 DOI: 10.1111/ajt.15534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 06/28/2019] [Accepted: 07/09/2019] [Indexed: 01/25/2023]
Abstract
Markers of early pancreatic islet graft dysfunction and its causes are lacking. We monitored 19 type 1 diabetes islet-transplanted patients for up to 36 months following last islet injection. Patients were categorized as Partial (PS) or complete (S) Success, or Graft Failure (F), using the β-score as an indicator of graft function. F was the subset reference of maximum worsened graft outcome. To identify the immune, pancreatic, and liver contribution to the graft dysfunction, the cell origin and concentration of circulating microvesicles (MVs) were assessed, including MVs from insulin-secreting β-cells typified by polysialic acid of neural cell adhesion molecule (PSA-NCAM), and data were compared with values of the β-score. Similar ranges of PSA-NCAM+ -MVs were found in healthy volunteers and S patients, indicating minimal cell damage. In PS, a 2-fold elevation in PSA-NCAM+ -MVs preceded each β-score drop along with a concomitant rise in insulin needs, suggesting β-cell damage or altered function. Significant elevation of liver asialoglycoprotein receptor (ASGPR)+ -MVs, endothelial CD105+ -MVs, neutrophil CD66b+ -MVs, monocyte CD 14+ -MVs, and T4 lymphocyte CD4+ -MVs occurred before each β-score drop, CD8+ -MVs increased only in F, and B lymphocyte CD19+ -MVs remained undetectable. In conclusion, PSA-NCAM+ -MVs are noninvasive early markers of transplant dysfunction, while ASGPR+ -MVs signal host tissue remodeling. Leukocyte MVs could identify the cause of graft dysfunction.
Collapse
Affiliation(s)
- Lamia Amoura
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, University of Strasbourg, Strasbourg, France.,CLINICA Group, Contract Research Organization, Alger, Algeria
| | - Fatiha Z El-Ghazouani
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, University of Strasbourg, Strasbourg, France
| | - Mohamad Kassem
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, University of Strasbourg, Strasbourg, France
| | - Ali El Habhab
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, University of Strasbourg, Strasbourg, France
| | - Guillaume Kreutter
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, University of Strasbourg, Strasbourg, France
| | - Salah Sahraoui
- CLINICA Group, Contract Research Organization, Alger, Algeria
| | - Domenico Bosco
- Department of Surgery, Islet Isolation, and Transplantation, University Hospitals, Geneva, Switzerland
| | - Nadia Jessel
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, University of Strasbourg, Strasbourg, France
| | - Thierry Berney
- Department of Surgery, Islet Isolation, and Transplantation, University Hospitals, Geneva, Switzerland
| | - Pierre-Yves Benhamou
- Department of Endocrinology, Diabetes, and Nutrition, Grenoble Alpes University, Grenoble, France.,Laboratory of Fundamental and Applied Bioenergetics Grenoble, Inserm U1055, Grenoble, France
| | - Florence Toti
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, University of Strasbourg, Strasbourg, France
| | - Laurence Kessler
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, University of Strasbourg, Strasbourg, France.,Department of Endocrinology, Diabetes and Nutrition, University Hospital of Strasbourg, Strasbourg, France.,Faculty of Medicine, Federation of Translational Medicine (FMTS), Strasbourg, France
| | | |
Collapse
|
14
|
Kühnle A, Galuska CE, Zlatina K, Galuska SP. The Bovine Antimicrobial Peptide Lactoferricin Interacts with Polysialic Acid without Loss of Its Antimicrobial Activity against Escherichia coli. Animals (Basel) 2019; 10:E1. [PMID: 31861263 PMCID: PMC7022438 DOI: 10.3390/ani10010001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/09/2019] [Accepted: 12/15/2019] [Indexed: 01/28/2023] Open
Abstract
The lactoferrin-derived peptide lactoferricin (LFcin) belongs to the family of antimicrobial peptides, and its bovine form has already been successfully applied to counteract enterohemorrhagic Escherichia coli (EHEC) infection. Recently, it was described that LFcin interacts with the sugar polymer polysialic acid (polySia) and that the binding of lactoferrin to polySia is mediated by LFcin, included in the N-terminal domain of lactoferrin. For this reason, the impact of polySia on the antimicrobial activity of bovine LFcin was investigated. Initially, the interaction of LFcin was characterized in more detail by native agarose gel electrophoresis, demonstrating that a chain length of 10 sialic acid residues was necessary to bind LFcin, whereas approximately twice-as-long chains were needed to detect binding of lactoferrin. Remarkably, the binding of polySia showed, independently of the chain length, no impact on the antimicrobial effects of LFcin. Thus, LFcin binds polySia without loss of its protective activity as an antimicrobial peptide.
Collapse
Affiliation(s)
- Andrea Kühnle
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (A.K.); (C.E.G.); (K.Z.)
- Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, Friedrichstr. 24, 35392 Giessen, Germany
| | - Christina E. Galuska
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (A.K.); (C.E.G.); (K.Z.)
- Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, Friedrichstr. 24, 35392 Giessen, Germany
| | - Kristina Zlatina
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (A.K.); (C.E.G.); (K.Z.)
| | - Sebastian P. Galuska
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (A.K.); (C.E.G.); (K.Z.)
- Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, Friedrichstr. 24, 35392 Giessen, Germany
| |
Collapse
|
15
|
Human adenovirus binding to host cell receptors: a structural view. Med Microbiol Immunol 2019; 209:325-333. [PMID: 31784892 PMCID: PMC7248032 DOI: 10.1007/s00430-019-00645-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/14/2019] [Indexed: 12/31/2022]
Abstract
Human Adenoviruses (HAdVs) are a family of clinically and therapeutically relevant viruses. A precise understanding of their host cell attachment and entry mechanisms can be applied in inhibitor design and the construction of targeted gene delivery vectors. In this article, structural data on adenovirus attachment and entry are reviewed. HAdVs engage two types of receptors: first, an attachment receptor that is bound by the fibre knob protein protruding from the icosahedral capsid, and next, an integrin entry receptor bound by the pentameric penton base at the capsid vertices. Adenoviruses use remarkably diverse attachment receptors, five of which have been studied structurally in the context of HAdV binding: Coxsackie and Adenovirus Receptor, CD46, the glycans GD1a and polysialic acid, and desmoglein-2. Together with the integrin entry receptors, they display both symmetrical and asymmetrical modes of binding to the virus as demonstrated by the structural analyses reviewed here. The diversity of HAdV receptors contributes to the broad tropism of these viruses, and structural studies are thus an important source of information on HAdV-host cell interactions. The imbalance in structural data between the more and less extensively studied receptors remains to be addressed by future research.
Collapse
|
16
|
Bornhöfft KF, Galuska SP. Glycans as Modulators for the Formation and Functional Properties of Neutrophil Extracellular Traps: Used by the Forces of Good and Evil. Front Immunol 2019; 10:959. [PMID: 31134066 PMCID: PMC6514094 DOI: 10.3389/fimmu.2019.00959] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/15/2019] [Indexed: 12/13/2022] Open
Abstract
A very common mechanism to trap pathogens is the release of DNA. Like flies in a spider's web, pathogens are enclosed in a sticky chromatin meshwork. Interestingly, plants already use this mechanism to catch bacteria. In mammals, especially neutrophils release their DNA to prevent an invasion of bacteria. These neutrophil extracellular traps (NETs) are equipped with antimicrobial molecules, including, for instance, histones, antimicrobial peptides, lactoferrin, and neutrophil elastase. Thus, in a defined area, pathogens and toxic molecules are directly adjacent. However, several of these antimicrobial substances are also cytotoxic for endogenous cells. It is, therefore, not surprising that distinct control mechanisms exist to prevent an exaggerated NETosis. Nevertheless, despite these endogenous control instruments, an extraordinary NET release is characteristic for several pathologies. Consequently, NETs are a novel target for developing therapeutic strategies. In this review, we summarize the roles of glycans in the biology of NETs; on the one hand, we focus on the glycan-dependent strategies of endogenous cells to control NET formation or to inactivate its cytotoxic effects, and, on the other hand, the “sweet” tricks of pathogens to inhibit the release of NETs or to prevent NET-mediated killing mechanisms are examined. Understanding both, the forces of good and evil, allows the development of novel glycan-based approaches to combat the harmful side of NETs during distinct pathologies.
Collapse
Affiliation(s)
- Kim F Bornhöfft
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Sebastian P Galuska
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| |
Collapse
|
17
|
Polysialic Acid Modulates the Binding of External Lactoferrin in Neutrophil Extracellular Traps. BIOLOGY 2019; 8:biology8020020. [PMID: 30925725 PMCID: PMC6627751 DOI: 10.3390/biology8020020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/28/2019] [Accepted: 03/21/2019] [Indexed: 02/07/2023]
Abstract
Neutrophil extracellular traps (NETs) are formed by neutrophils during inflammation. Among other things, these DNA constructs consist of antimicrobial proteins such as lactoferrin and histones. With these properties, NETs capture and destroy invading microorganisms. The carbohydrate polysialic acid (polySia) interacts with both lactoferrin and histones. Previous experiments demonstrated that, in humans, lactoferrin inhibits the release of NET and that this effect is supported by polySia. In this study, we examined the interplay of lactoferrin and polySia in already-formed NETs from bovine neutrophils. The binding of polySia was considered to occur at the lactoferricin (LFcin)-containing domain of lactoferrin. The interaction with the peptide LFcin was studied in more detail using groups of defined polySia chain lengths, which suggested a chain-length-dependent interaction mechanism with LFcin. The LFcin domain of lactoferrin was found to interact with DNA. Therefore, the possibility that polySia influences the integration of lactoferrin into the DNA-structures of NETs was tested by isolating bovine neutrophils and inducing NETosis. Experiments with NET fibers saturated with lactoferrin demonstrated that polySia initiates the incorporation of external lactoferrin in already-loaded NETs. Thus, polySia may modulate the constituents of NET.
Collapse
|
18
|
Strubl S, Schubert U, Kühnle A, Rebl A, Ahmadvand N, Fischer S, Preissner KT, Galuska SP. Polysialic acid is released by human umbilical vein endothelial cells (HUVEC) in vitro. Cell Biosci 2018; 8:64. [PMID: 30555678 PMCID: PMC6288938 DOI: 10.1186/s13578-018-0262-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/04/2018] [Indexed: 12/27/2022] Open
Abstract
Background Sialic acids represent common terminal residues on numerous mammalian glycoconjugates, thereby influencing e.g. lumen formation in developing blood vessels. Interestingly, besides monosialylated also polysialylated glycoconjugates are produced by endothelial cells. Polysialic acid (polySia) is formed in several organs during embryonal and postnatal development influencing, for instance, cell migration processes. Furthermore, the function of cytokines like basic fibroblast growth factor (bFGF) is modulated by polySia. Results In this study, we demonstrated that human umbilical vein endothelial cells (HUVEC) also secrete polysialylated glycoconjugates. Furthermore, an interaction between polySia and vascular endothelial growth factor (VEGF) was observed. VEGF modulates like bFGF the migration of HUVEC. Since both growth factors interact with polySia, we examined, if polySia modulates the migration of HUVEC. To this end scratch assays were performed showing that the migration of HUVEC is stimulated, when polySia was degraded. Conclusions Since polySia can interact with bFGF as well as VEGF and the degradation of polySia resulted in an increased cell migration capacity in the applied scratch assay, we propose that polySia may trap these growth factors influencing their biological activity. Thus, polySia might also contribute to the fine regulation of physiological processes in endothelial cells.
Collapse
Affiliation(s)
- Sebastian Strubl
- 1Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, Friedrichstrasse 24, 35392 Giessen, Germany.,2Department II of Internal Medicine, Center for Molecular Medicine Cologne, University Cologne, Kerpener Str. 62, 50931 Cologne, Germany
| | - Uwe Schubert
- 1Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Andrea Kühnle
- 3Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Alexander Rebl
- 4Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Negah Ahmadvand
- 1Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, Friedrichstrasse 24, 35392 Giessen, Germany.,Excellence Cluster Cardio Pulmonary System (ECCPS), Aulweg 130, 35392 Giessen, Germany
| | - Silvia Fischer
- 1Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Klaus T Preissner
- 1Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Sebastian P Galuska
- 1Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, Friedrichstrasse 24, 35392 Giessen, Germany.,3Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| |
Collapse
|
19
|
Chemical and biological methods for probing the structure and functions of polysialic acids. Emerg Top Life Sci 2018; 2:363-376. [DOI: 10.1042/etls20180008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/18/2018] [Accepted: 08/01/2018] [Indexed: 01/27/2023]
Abstract
Owing to its poly-anionic charge and large hydrodynamic volume, polysialic acid (polySia) attached to neural cell adhesion molecule regulates axon–axon and axon–substratum interactions and signalling, particularly, in the development of the central nervous system (CNS). Expression of polySia is spatiotemporally regulated by the action of two polysialyl transferases, namely ST8SiaII and ST8SiaIV. PolySia expression peaks during late embryonic and early post-natal period and maintained at a steady state in adulthood in neurogenic niche of the brain. Aberrant polySia expression is associated with neurological disorders and brain tumours. Investigations on the structure and functions, over the past four decades, have shed light on the physiology of polySia. This review focuses on the biological, biochemical, and chemical tools available for polySia engineering. Genetic knockouts, endo-neuraminidases that cleave polySia, antibodies, exogenous expression, and neuroblastoma cells have provided deep insights into the ability of polySia to guide migration of neuronal precursors in neonatal brain development, neuronal clustering, axonal pathway guidance, and axonal targeting. Advent of metabolic sialic acid engineering using ManNAc analogues has enabled reversible and dose-dependent modulation polySia in vitro and ex vivo. In vivo, ManNAc analogues readily engineer the sialoglycans in peripheral tissues, but show no effect in the brain. A recently developed carbohydrate-neuroactive hybrid strategy enables a non-invasive access to the brain in living animals across the blood–brain barrier. A combination of recent advances in CNS drugs and imaging with ManNAc analogues for polySia modulation would pave novel avenues for understanding intricacies of brain development and tackling the challenges of neurological disorders.
Collapse
|
20
|
Baker AT, Aguirre-Hernández C, Halldén G, Parker AL. Designer Oncolytic Adenovirus: Coming of Age. Cancers (Basel) 2018; 10:E201. [PMID: 29904022 PMCID: PMC6025169 DOI: 10.3390/cancers10060201] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/06/2018] [Accepted: 06/11/2018] [Indexed: 12/26/2022] Open
Abstract
The licensing of talimogene laherparepvec (T-Vec) represented a landmark moment for oncolytic virotherapy, since it provided unequivocal evidence for the long-touted potential of genetically modified replicating viruses as anti-cancer agents. Whilst T-Vec is promising as a locally delivered virotherapy, especially in combination with immune-checkpoint inhibitors, the quest continues for a virus capable of specific tumour cell killing via systemic administration. One candidate is oncolytic adenovirus (Ad); it’s double stranded DNA genome is easily manipulated and a wide range of strategies and technologies have been employed to empower the vector with improved pharmacokinetics and tumour targeting ability. As well characterised clinical and experimental agents, we have detailed knowledge of adenoviruses’ mechanisms of pathogenicity, supported by detailed virological studies and in vivo interactions. In this review we highlight the strides made in the engineering of bespoke adenoviral vectors to specifically infect, replicate within, and destroy tumour cells. We discuss how mutations in genes regulating adenoviral replication after cell entry can be used to restrict replication to the tumour, and summarise how detailed knowledge of viral capsid interactions enable rational modification to eliminate native tropisms, and simultaneously promote active uptake by cancerous tissues. We argue that these designer-viruses, exploiting the viruses natural mechanisms and regulated at every level of replication, represent the ideal platforms for local overexpression of therapeutic transgenes such as immunomodulatory agents. Where T-Vec has paved the way, Ad-based vectors now follow. The era of designer oncolytic virotherapies looks decidedly as though it will soon become a reality.
Collapse
Affiliation(s)
- Alexander T Baker
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK.
| | - Carmen Aguirre-Hernández
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Gunnel Halldén
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Alan L Parker
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK.
| |
Collapse
|
21
|
Zlatina K, Saftenberger M, Kühnle A, Galuska CE, Gärtner U, Rebl A, Oster M, Vernunft A, Galuska SP. Polysialic Acid in Human Plasma Can Compensate the Cytotoxicity of Histones. Int J Mol Sci 2018; 19:E1679. [PMID: 29874880 PMCID: PMC6032143 DOI: 10.3390/ijms19061679] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 12/15/2022] Open
Abstract
The innate immune system has numerous mechanisms to fight against pathogens, including the formation of neutrophil extracellular traps (NETs). By spreading out chromatin, antimicrobial peptides and enzymes, neutrophils efficiently trap pathogens like bacteria and facilitate their elimination. During this process, high concentrations of extracellular histones can be reached. Several researchers have demonstrated that the cytotoxic characteristics of these histones can trigger diseases like sepsis. Interestingly, the carbohydrate polysialic acid (polySia) can bind histones and reduce histone-mediated cytotoxicity in a chain length-dependent manner. In the present study, we examined the chain length of polySia in plasma and tested its ability to decrease the cytotoxic characteristics of extracellular histones. Remarkably, we detected polySia not only in the soluble fraction of plasma, but also on enriched extracellular vesicles (EVs). Chain length analysis revealed that polySia chains originating from human plasma can consists of more than 40 sialic acid residues and show a cytoprotective effect against extracellular histones. Intriguingly, polySia is not only present in human plasma but also in fish and other branches of vertebrates. Thus, polySia is a physiological element in plasma and may represent a natural buffer for extracellular histones.
Collapse
Affiliation(s)
- Kristina Zlatina
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| | - Max Saftenberger
- Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, Friedrichstr. 24, 35392 Giessen, Germany.
| | - Andrea Kühnle
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| | - Christina E Galuska
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| | - Ulrich Gärtner
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Aulweg 123, 35385 Giessen, Germany.
| | - Alexander Rebl
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| | - Michael Oster
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| | - Andreas Vernunft
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| | - Sebastian P Galuska
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| |
Collapse
|
22
|
Abstract
We present here that adenovirus type 52 (HAdV-52) attaches to target cells through a mechanism not previously observed in other human pathogenic viruses. The interaction involves unusual, transient, electrostatic interactions between the short fiber capsid protein and polysialic acid (polySia)-containing receptors on target cells. Knowledge about the binding interactions between polySia and its natural ligands is relatively limited, and our results therefore provide additional insight not only into adenovirus biology but also into the structural basis of polySia function. Since polySia can be found in high expression levels in brain and lung cancers where its presence is associated with poor prognosis, we suggest that this polySia-binding adenovirus could be useful for design of vectors for gene therapy of these cancers. Human adenovirus 52 (HAdV-52) is one of only three known HAdVs equipped with both a long and a short fiber protein. While the long fiber binds to the coxsackie and adenovirus receptor, the function of the short fiber in the virus life cycle is poorly understood. Here, we show, by glycan microarray analysis and cellular studies, that the short fiber knob (SFK) of HAdV-52 recognizes long chains of α-2,8-linked polysialic acid (polySia), a large posttranslational modification of selected carrier proteins, and that HAdV-52 can use polySia as a receptor on target cells. X-ray crystallography, NMR, molecular dynamics simulation, and structure-guided mutagenesis of the SFK reveal that the nonreducing, terminal sialic acid of polySia engages the protein with direct contacts, and that specificity for polySia is achieved through subtle, transient electrostatic interactions with additional sialic acid residues. In this study, we present a previously unrecognized role for polySia as a cellular receptor for a human viral pathogen. Our detailed analysis of the determinants of specificity for this interaction has general implications for protein–carbohydrate interactions, particularly concerning highly charged glycan structures, and provides interesting dimensions on the biology and evolution of members of Human mastadenovirus G.
Collapse
|
23
|
Individual Impact of Distinct Polysialic Acid Chain Lengths on the Cytotoxicity of Histone H1, H2A, H2B, H3 and H4. Polymers (Basel) 2017; 9:polym9120720. [PMID: 30966022 PMCID: PMC6418544 DOI: 10.3390/polym9120720] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 12/28/2022] Open
Abstract
Neutrophils are able to neutralize pathogens by phagocytosis, by the release of antimicrobial components, as well as by the formation of neutrophil extracellular traps (NETs). The latter possibility is a DNA-meshwork mainly consisting of highly concentrated extracellular histones, which are not only toxic for pathogens, but also for endogenous cells triggering several diseases. To reduce the negative outcomes initiated by extracellular histones, different approaches like antibodies against histones, proteases, and the polysaccharide polysialic acid (polySia) were discussed. We examined whether each of the individual histones is a binding partner of polySia, and analyzed their respective cytotoxicity in the presence of this linear homopolymer. Interestingly, all of the histones (H1, H2A, H2B, H3, and H4) seem to interact with α2,8-linked sialic acids. However, we observed strong differences regarding the required chain length of polySia to bind histone H1, H2A, H2B, H3, and H4. Moreover, distinct degrees of polymerization were necessary to act as a cytoprotective agent in the presence of the individual histones. In sum, the outlined results described polySia-based strategies to bind and/or to reduce the cytotoxicity of individual histones using distinct polySia chain length settings.
Collapse
|
24
|
Bhide GP, Zapater JL, Colley KJ. Autopolysialylation of polysialyltransferases is required for polysialylation and polysialic acid chain elongation on select glycoprotein substrates. J Biol Chem 2017; 293:701-716. [PMID: 29183999 DOI: 10.1074/jbc.ra117.000401] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/21/2017] [Indexed: 11/06/2022] Open
Abstract
Polysialic acid (polySia) is a large glycan polymer that is added to some glycoproteins by two polysialyltransferases (polySTs), ST8Sia-II and ST8Sia-IV. As polySia modulates cell adhesion and signaling, immune cell function, and tumor metastasis, it is of interest to determine how the polySTs recognize their select substrates. We have recently identified residues within the ST8Sia-IV polybasic region (PBR) that are required for neural cell adhesion molecule (NCAM) recognition and subsequent polysialylation. Here, we compared the PBR sequence requirements for NCAM, neuropilin-2 (NRP-2), and synaptic cell adhesion molecule 1 (SynCAM 1) for polysialylation by their respective polySTs. We found that the polySTs use unique but overlapping sets of PBR residues for substrate recognition, that the NCAM-recognizing PBR sites in ST8Sia-II and ST8Sia-IV include homologous residues, but that the ST8Sia-II site is larger, and that fewer PBR residues are involved in NRP-2 and SynCAM 1 recognition than in NCAM recognition. Noting that the two sites for ST8Sia-IV autopolysialylation flank the PBR, we evaluated the role of PBR residues in autopolysialylation and found that the requirements for polyST autopolysialylation and substrate polysialylation overlap. These data together with the evaluation of the polyST autopolysialylation mechanism enabled us to further identify PBR residues potentially playing dual roles in substrate recognition and in polySia chain polymerization. Finally, we found that ST8Sia-IV autopolysialylation is required for NRP-2 polysialylation and that ST8Sia-II autopolysialylation promotes the polymerization of longer polySia chains on SynCAM 1, suggesting a critical role for polyST autopolysialylation in substrate selection and polySia chain elongation.
Collapse
Affiliation(s)
- Gaurang P Bhide
- From the Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Joseph L Zapater
- From the Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Karen J Colley
- From the Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60607
| |
Collapse
|