1
|
Javed M, Goswami DK, Raj H, Lohana K, Goswami B, Karim A, Warayo A, Farooqi P, Alamy H, Ullah ZO, Mohammad A, Farooqi SA, Ali H, Shuja D, Malik J, Baloch ZQ. Cardiac Manifestations in Inherited Metabolic Diseases. Cardiol Rev 2024:00045415-990000000-00299. [PMID: 38980048 DOI: 10.1097/crd.0000000000000753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Inherited metabolic diseases (IMDs) stem from genetic defects affecting enzyme function within specific metabolic pathways, collectively constituting rare conditions with an incidence of less than 1/100,000 births. While IMDs typically manifest with multisystemic symptoms, cardiac manifestations are common, notably hypertrophic cardiomyopathy. Additionally, they can lead to dilated or restrictive cardiomyopathy, as well as noncompacted left ventricular cardiomyopathy. Rhythm disturbances such as atrioventricular conduction abnormalities, Wolff-Parkinson-White syndrome, and ventricular arrhythmias, along with valvular pathologies and ischemic coronary issues, are also prevalent. This study aims to provide a narrative review of IMDs associated with cardiac involvement, delineating the specific cardiac manifestations of each disorder alongside systemic symptoms pivotal for diagnosis.
Collapse
Affiliation(s)
- Mubeena Javed
- From the Department of Medicine, Allama Iqbal Medical College, Lahore, Pakistan
| | - Danish Kumar Goswami
- Department of Medicine, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Hem Raj
- Department of Medicine, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Kiran Lohana
- Department of Medicine, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Barkha Goswami
- Department of Medicine, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Ali Karim
- Department of Medicine, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Allah Warayo
- Department of Medicine, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Palwasha Farooqi
- Department of Medicine, Kabul University of Medical Sciences, Kabul, Afghanistan
| | - Haroon Alamy
- Department of Medicine, Kabul University of Medical Sciences, Kabul, Afghanistan
| | - Zainab Obaid Ullah
- Department of Medicine, Fatima Jinnah Medical University, Lahore, Pakistan
| | - Aamer Mohammad
- Department of Medicine, Rajiv Gandhi University of Health Sciences, Bengaluru, India
| | - Syed Ahmad Farooqi
- Department of Medicine, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Hafsah Ali
- Department of Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Darab Shuja
- Department of Medicine, Services Hospital, Lahore, Pakistan
| | - Jahanzeb Malik
- Department of Cardiovascular Medicine, Cardiovascular Analytics Group, Islamabad, Pakistan
| | | |
Collapse
|
2
|
Cuenca-Gómez JÁ, Lara-Rojas CM, Bonilla-López A. Cardiac manifestations in inherited metabolic diseases. Curr Probl Cardiol 2024; 49:102587. [PMID: 38653442 DOI: 10.1016/j.cpcardiol.2024.102587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 04/25/2024]
Abstract
Inherited metabolic diseases (IMD) are caused by the functional defect of an enzyme, of genetic origin, that provokes a blockage in a specific metabolic pathway. Individually, IMD are considered rare diseases, with an incidence of less than 1/100,000 births. The symptoms are usually multisystemic, but frequently include cardiac manifestations. Of these, the most common are cardiomyopathies, especially hypertrophic cardiomyopathy. In addition, they can cause dilated or restrictive cardiomyopathy and non-compacted cardiomyopathy of the left ventricle. Characteristic signs also include rhythm alterations (atrio-ventricular conduction disturbances, Wolff-Parkinson-White syndrome or ventricular arrhythmias), valvular pathology and ischaemic coronary pathologies. The aim of this study is to present a narrative review of the IMD that may produce cardiac involvement. We describe both the specific cardiac manifestations of each disease and the systemic symptoms that guide diagnosis.
Collapse
Affiliation(s)
- José Ángel Cuenca-Gómez
- Internal Medicine Service Hospital de Poniente El Ejido, Almería, Spain; Working Group on Minority Diseases of the Spanish Society of Internal Medicine (GTEM-SEMI), Almería, Spain.
| | | | | |
Collapse
|
3
|
Thompson T, Phimister A, Raskin A. Adolescent Onset of Acute Heart Failure. Med Clin North Am 2024; 108:59-77. [PMID: 37951656 DOI: 10.1016/j.mcna.2023.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Heart failure in adolescents can manifest due to a multitude of causes. Presentation is often quite variable ranging from asymptomatic to decompensated heart failure or sudden cardiac death. Because of the diverse nature of this disease, a thoughtful and extensive evaluation is critical to establishing the diagnosis and treatment plan. Identifying and addressing reversible pathologies often leads to functional cardiac recovery. Some disease states are irreversible and progressive, requiring chronic heart failure management and potentially advanced therapies such as transplantation.
Collapse
Affiliation(s)
- Tracey Thompson
- Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | |
Collapse
|
4
|
Krumbein M, Oberman F, Cinnamon Y, Golomb M, May D, Vainer G, Belzer V, Meir K, Fridman I, Haybaeck J, Poelzl G, Kehat I, Beeri R, Kessler SM, Yisraeli JK. RNA binding protein IGF2BP2 expression is induced by stress in the heart and mediates dilated cardiomyopathy. Commun Biol 2023; 6:1229. [PMID: 38052926 PMCID: PMC10698010 DOI: 10.1038/s42003-023-05547-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
The IGF2BP family of RNA binding proteins consists of three paralogs that regulate intracellular RNA localization, RNA stability, and translational control. Although IGF2BP1 and 3 are oncofetal proteins, IGF2BP2 expression is maintained in many tissues, including the heart, into adulthood. IGF2BP2 is upregulated in cardiomyocytes during cardiac stress and remodeling and returns to normal levels in recovering hearts. We wondered whether IGF2BP2 might play an adaptive role during cardiac stress and recovery. Enhanced expression of an IGF2BP2 transgene in a conditional, inducible mouse line leads to dilated cardiomyopathy (DCM) and death within 3-4 weeks in newborn or adult hearts. Downregulation of the transgene after 2 weeks, however, rescues these mice, with complete recovery by 12 weeks. Hearts overexpressing IGF2BP2 downregulate sarcomeric and mitochondrial proteins and have fragmented mitochondria and elongated, thinner sarcomeres. IGF2BP2 is also upregulated in DCM or myocardial infarction patients. These results suggest that IGF2BP2 may be an attractive target for therapeutic intervention in cardiomyopathies.
Collapse
Affiliation(s)
- Miriam Krumbein
- Department of Developmental Biology and Cancer Research, Institute for Medical Research-Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Froma Oberman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research-Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yuval Cinnamon
- Institute of Animal Science, Agricultural Research Organization, The Volcani Institute, Rishon Lezion, Israel
| | | | - Dalit May
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Shaare Zedek Medical Center, Jerusalem, Israel
- Clalit Health Service, Jerusalem, Israel
| | - Gilad Vainer
- Department of Pathology, Hadassah Medical Center, Jerusalem, Israel
| | - Vitali Belzer
- Department of Pathology, Hadassah Medical Center, Jerusalem, Israel
| | - Karen Meir
- Department of Pathology, Hadassah Medical Center, Jerusalem, Israel
| | - Irina Fridman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research-Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Johannes Haybaeck
- Institut für Pathologie, Neuropathologie und Molekularpathologie, Medical University Innsbruck, Innsbruck, Austria
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8010, Graz, Austria
| | - Gerhard Poelzl
- Department of Cardiology and Angiology, Medical University Innsbruck, Innsbruck, Austria
| | - Izhak Kehat
- Department of Physiology and Biophysics, The Ruth and Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Bat Galim, Haifa, Israel
| | - Ronen Beeri
- Department of Cardiology, Hadassah Medical Center, Jerusalem, Israel
| | - Sonja M Kessler
- Experimental Pharmacology for Natural Sciences, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle, Germany.
| | - Joel K Yisraeli
- Department of Developmental Biology and Cancer Research, Institute for Medical Research-Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
5
|
Sharma V, Mehdi MM. Oxidative stress, inflammation and hormesis: The role of dietary and lifestyle modifications on aging. Neurochem Int 2023; 164:105490. [PMID: 36702401 DOI: 10.1016/j.neuint.2023.105490] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
Oxidative stress (OS) is primarily caused by the formation of free radicals and reactive oxygen species; it is considered as one of the prominent factors in slowing down and degrading cellular machinery of an individual, and it eventually leads to aging and age-related diseases by its continuous higher state. The relation between molecular damage and OS should be particularized to understand the beginning of destruction at the cellular levels, extending outwards to affect tissues, organs, and ultimately to the organism. Several OS biomarkers, which are established at the biomolecular level, are useful in investigating the disease susceptibility during aging. Slowing down the aging process is a matter of reducing the rate of oxidative damage to the cellular machinery over time. The breakdown of homeostasis, the mild overcompensation, the reestablishment of homeostasis, and the adaptive nature of the process are the essential features of hormesis, which incorporates several factors, including calorie restriction, nutrition and lifestyle modifications that play an important role in reducing the OS. In the current review, along with the concept and theories of aging (with emphasis on free radical theory), various manifestations of OS with special attention on mitochondrial dysfunction and age-related diseases have been discussed. To alleviate the OS, hormetic approaches including caloric restriction, exercise, and nutrition have also been discussed.
Collapse
Affiliation(s)
- Vinita Sharma
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144401, India
| | - Mohammad Murtaza Mehdi
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144401, India.
| |
Collapse
|
6
|
Rehman A, Kumari R, Kamthan A, Tiwari R, Srivastava RK, van der Westhuizen FH, Mishra PK. Cell-free circulating mitochondrial DNA: An emerging biomarker for airborne particulate matter associated with cardiovascular diseases. Free Radic Biol Med 2023; 195:103-120. [PMID: 36584454 DOI: 10.1016/j.freeradbiomed.2022.12.083] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022]
Abstract
The association of airborne particulate matter exposure with the deteriorating function of the cardiovascular system is fundamentally driven by the impairment of mitochondrial-nuclear crosstalk orchestrated by aberrant redox signaling. The loss of delicate balance in retrograde communication from mitochondria to the nucleus often culminates in the methylation of the newly synthesized strand of mitochondrial DNA (mtDNA) through DNA methyl transferases. In highly metabolic active tissues such as the heart, mtDNA's methylation state alteration impacts mitochondrial bioenergetics. It affects transcriptional regulatory processes involved in biogenesis, fission, and fusion, often accompanied by the integrated stress response. Previous studies have demonstrated a paradoxical role of mtDNA methylation in cardiovascular pathologies linked to air pollution. A pronounced alteration in mtDNA methylation contributes to systemic inflammation, an etiological determinant for several co-morbidities, including vascular endothelial dysfunction and myocardial injury. In the current article, we evaluate the state of evidence and examine the considerable promise of using cell-free circulating methylated mtDNA as a predictive biomarker to reduce the more significant burden of ambient air pollution on cardiovascular diseases.
Collapse
Affiliation(s)
- Afreen Rehman
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| | - Roshani Kumari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| | - Arunika Kamthan
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| | | | | | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
7
|
Bharathidasan K, Evans A, Fernandez FMAO, Motes AT, Nugent K. Mitochondrial Myopathy in a 21-Year-Old Man Presenting With Bilateral Lower Extremity Weakness and Swelling. J Prim Care Community Health 2023; 14:21501319231172697. [PMID: 37162197 PMCID: PMC10184240 DOI: 10.1177/21501319231172697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Bilateral lower extremity weakness and swelling can have several causes. Although often underdiagnosed, mitochondrial myopathy is more prevalent in the general population than more commonly suspected diseases, such as Guillain-Barre syndrome. The clinical manifestations of mitochondrial disease can be broadly classified into 3 categories: chronic progressive external ophthalmoplegia, skeletal muscle-central nervous system syndromes, or pure myopathy. Cardiac abnormalities occur in 30% to 32% of cases, mostly in the form of hypertrophic cardiomyopathy, dilated cardiomyopathy, or conduction abnormalities. We report a case of a 21-year-old student who developed bilateral lower limb weakness, pain, and swelling diagnosed with mitochondrial myopathy on muscle biopsy. Initial laboratory tests revealed elevated creatinine kinase, brain natriuretic peptide, troponin, myoglobin, and lactic acid and reduced serum bicarbonate. Cardiac workup revealed systolic heart failure with a reduced ejection fraction. Endomyocardial biopsy revealed punctate foci of lymphocytic myocarditis. However, cardiac magnetic resonance imaging did not reveal either myocarditis or an infiltrative cardiac disease. An extensive autoimmune and infection work-up was negative. A muscle biopsy from the patient's rectus femoris revealed scattered ragged-blue fibers (stained with NADH dehydrogenase), scattered ragged-red fibers on modified Gomori trichrome stain, and cytochrome-c oxidase negative fibers with increased perimysial and endomysial connective tissue, consistent with active and chronic primary mitochondrial myopathy. The patient was treated successfully with furosemide, metoprolol, and methylprednisolone. Adult-onset mitochondrial myopathy is a rare clinical disorder, and our experience stresses the importance of using an inter-disciplinary team approach to diagnose uncommon clinical disorders with widely variable multisystem involvement.
Collapse
Affiliation(s)
| | - Abbie Evans
- Texas Tech University Health Science Center, Lubbock, TX, USA
| | | | | | - Kenneth Nugent
- Texas Tech University Health Science Center, Lubbock, TX, USA
| |
Collapse
|
8
|
Sarohi V, Srivastava S, Basak T. A Comprehensive Outlook on Dilated Cardiomyopathy (DCM): State-Of-The-Art Developments with Special Emphasis on OMICS-Based Approaches. J Cardiovasc Dev Dis 2022; 9:jcdd9060174. [PMID: 35735803 PMCID: PMC9225617 DOI: 10.3390/jcdd9060174] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
Dilated cardiomyopathy (DCM) remains an enigmatic cardiovascular disease (CVD) condition characterized by contractile dysfunction of the myocardium due to dilation of the ventricles. DCM is one of the major forms of CVD contributing to heart failure. Dilation of the left or both ventricles with systolic dysfunction, not explained by known causes, is a hallmark of DCM. Progression of DCM leads to heart failure. Genetic and various other factors greatly contribute to the development of DCM, but the etiology has still remained elusive in a large number of cases. A significant number of studies have been carried out to identify the genetic causes of DCM. These candidate-gene studies revealed that mutations in the genes of the fibrous, cytoskeletal, and sarcomeric proteins of cardiomyocytes result in the development of DCM. However, a significant proportion of DCM patients are idiopathic in nature. In this review, we holistically described the symptoms, causes (in adults and newborns), genetic basis, and mechanistic progression of DCM. Further, we also summarized the state-of-the-art diagnosis, available biomarkers, treatments, and ongoing clinical trials of potential drug regimens. DCM-mediated heart failure is on the rise worldwide including in India. The discovery of biomarkers with a better prognostic value is the need of the hour for better management of DCM-mediated heart failure patients. With the advent of next-generation omics-based technologies, it is now possible to probe systems-level alterations in DCM patients pertaining to the identification of novel proteomic and lipidomic biomarkers. Here, we also highlight the onset of a systems-level study in Indian DCM patients by applying state-of-the-art mass-spectrometry-based “clinical proteomics” and “clinical lipidomics”.
Collapse
Affiliation(s)
- Vivek Sarohi
- Indian Institute of Technology (IIT)-Mandi, School of Basic Sciences (SBS), Mandi 175075, HP, India; (V.S.); (S.S.)
- BioX Centre, Indian Institute of Technology (IIT)-Mandi, Mandi 175075, HP, India
| | - Shriya Srivastava
- Indian Institute of Technology (IIT)-Mandi, School of Basic Sciences (SBS), Mandi 175075, HP, India; (V.S.); (S.S.)
| | - Trayambak Basak
- Indian Institute of Technology (IIT)-Mandi, School of Basic Sciences (SBS), Mandi 175075, HP, India; (V.S.); (S.S.)
- BioX Centre, Indian Institute of Technology (IIT)-Mandi, Mandi 175075, HP, India
- Correspondence: ; Tel.: +91-1905-267826
| |
Collapse
|
9
|
Saoji M, Petersen CE, Sen A, Tripoli BA, Smyth JT, Cox RT. Reduction of Drosophila Mitochondrial RNase P in Skeletal and Heart Muscle Causes Muscle Degeneration, Cardiomyopathy, and Heart Arrhythmia. Front Cell Dev Biol 2022; 10:788516. [PMID: 35663400 PMCID: PMC9162060 DOI: 10.3389/fcell.2022.788516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 04/14/2022] [Indexed: 11/19/2022] Open
Abstract
In this study, we examine the cause and progression of mitochondrial diseases linked to the loss of mtRNase P, a three-protein complex responsible for processing and cleaving mitochondrial transfer RNAs (tRNA) from their nascent transcripts. When mtRNase P function is missing, mature mitochondrial tRNA levels are decreased, resulting in mitochondrial dysfunction. mtRNase P is composed of Mitochondrial RNase P Protein (MRPP) 1, 2, and 3. MRPP1 and 2 have their own enzymatic activity separate from MRPP3, which is the endonuclease responsible for cleaving tRNA. Human mutations in all subunits cause mitochondrial disease. The loss of mitochondrial function can cause devastating, often multisystemic failures. When mitochondria do not provide enough energy and metabolites, the result can be skeletal muscle weakness, cardiomyopathy, and heart arrhythmias. These symptoms are complex and often difficult to interpret, making disease models useful for diagnosing disease onset and progression. Previously, we identified Drosophila orthologs of each mtRNase P subunit (Roswell/MRPP1, Scully/MRPP2, Mulder/MRPP3) and found that the loss of each subunit causes lethality and decreased mitochondrial tRNA processing in vivo. Here, we use Drosophila to model mtRNase P mitochondrial diseases by reducing the level of each subunit in skeletal and heart muscle using tissue-specific RNAi knockdown. We find that mtRNase P reduction in skeletal muscle decreases adult eclosion and causes reduced muscle mass and function. Adult flies exhibit significant age-progressive locomotor defects. Cardiac-specific mtRNase P knockdowns reduce fly lifespan for Roswell and Scully, but not Mulder. Using intravital imaging, we find that adult hearts have impaired contractility and exhibit substantial arrhythmia. This occurs for roswell and mulder knockdowns, but with little effect for scully. The phenotypes shown here are similar to those exhibited by patients with mitochondrial disease, including disease caused by mutations in MRPP1 and 2. These findings also suggest that skeletal and cardiac deficiencies induced by mtRNase P loss are differentially affected by the three subunits. These differences could have implications for disease progression in skeletal and heart muscle and shed light on how the enzyme complex functions in different tissues.
Collapse
Affiliation(s)
- Maithili Saoji
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD, United States
- Henry M. Jackson Foundation, Bethesda, MD, United States.
| | - Courtney E. Petersen
- Henry M. Jackson Foundation, Bethesda, MD, United States.
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, MD, United States
| | - Aditya Sen
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD, United States
- Henry M. Jackson Foundation, Bethesda, MD, United States.
| | - Benjamin A. Tripoli
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, MD, United States
| | - Jeremy T. Smyth
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, MD, United States
| | - Rachel T. Cox
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD, United States
| |
Collapse
|
10
|
Bourke JP, Ng YS, Tynan M, Bates MGD, Mohiddin S, Turnbull D, Gorman GS. Arrhythmia prevalence and sudden death risk in adults with the m.3243A>G mitochondrial disorder. Open Heart 2022; 9:openhrt-2021-001819. [PMID: 35393351 PMCID: PMC8991061 DOI: 10.1136/openhrt-2021-001819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 03/22/2022] [Indexed: 11/05/2022] Open
Abstract
AIMS To define the prevalence of non-sustained tachyarrhythmias and bradyarrhythmias in patients with the m.3243A>G mitochondrial genotype and a previously defined, profile, associated with 'high sudden-death risk'. METHODS AND RESULTS Patients at high risk of sudden death because of combinations of ventricular hypertrophy, mitochondrial encephalopathy, lactic acidosis and stroke-like episodes family phenotype, epilepsy or high mutation load, due to the m.3243A>G mutation, were identified from a mitochondrial cohort of 209 patients. All recruited had serial ECG and echo assessments previously according to schedule, had an ECG-loop recorder implanted and were followed for as long as the device allowed. Devices were programmed to detect non-sustained brady- or tachy-arrhythmias. This provided comprehensive rhythm surveillance and automatic downloads of all detections to a monitoring station for cardiology interpretation. Those with sinus tachycardia were treated with beta-blockers and those with ventricular hypertrophy received a beta-blocker and ACE-inhibitor combination.Nine consecutive patients, approached (37.2±3.9 years, seven males) and consented, were recruited. None died and no arrhythmias longer than 30s duration occurred during 3-year follow-up. Three patients reported palpitations but ECGs correlated with sinus rhythm. One manifest physiological, sinus pauses >3.5 s during sleep and another had one asymptomatic episode of non-sustained ventricular tachycardia. CONCLUSIONS Despite 'high-risk' features for sudden death, those studied had negligible prevalence of arrhythmias over prolonged follow-up. By implication, the myocardium in this genotype is not primarily arrhythmogenic. Arrhythmias may not explain sudden death in patients without Wolff-Parkinson-White or abnormal atrioventricular conduction or, it must require a confluence of other, dynamic, proarrhythmic factors to trigger them.
Collapse
Affiliation(s)
- John P Bourke
- Department of Cardiology, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research & NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle University and NUTH NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Margaret Tynan
- Department of Cardiology, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Matthew G D Bates
- Department of Cardiology, James Cook University Hospital, Middlesbrough, UK
| | - Saidi Mohiddin
- Department of Cardiology, Barts Heart Centre, St Bartholomew’s Hospital, London, UK
| | - Doug Turnbull
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Grainne S Gorman
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Department of Neurology, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK,Wellcome Trust Centre for Mitochondrial Research, Newcastle upon Tyne, UK
| |
Collapse
|
11
|
Bayat G, Hashemi SA, Karim H, Fallah P, Hedayatyanfard K, Bayat M, Khalili A. Biliary cirrhosis-induced cardiac abnormality in rats: Interaction between Farnesoid-X-activated receptors and the cardiac uncoupling proteins 2 and 3. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:126-133. [PMID: 35656450 PMCID: PMC9118280 DOI: 10.22038/ijbms.2022.60888.13485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 01/03/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES This study aimed to evaluate the relationship between Farnesoid-X-activated receptors (FXR) as nuclear regulators of the antioxidant defense system as well as cardiac mitochondrial carrier proteins of UCP2 and UCP3 in cardiac damage induced by cirrhosis. MATERIALS AND METHODS Twenty-two male Wistar rats (200-250 g) were randomly divided into 3 experimental groups, including a control group (n=6), a sham-operated group (n=8), and a bile duct ligated (BDL) group (n=8). Four weeks after surgical intervention, biochemical assessment (AST, ALT, GGT, LDH, and ALP), histological observation, and molecular evaluation (FXR, UCP2, UCP3, BNP, Caspase3, and GAPDH) using real-time RT-PCR were performed. RESULTS Compared with the sham-operation group, the BDL group showed a significant rise in liver enzymes of AST, ALT, GGT, LDH, and ALP. Defined fibrotic and necrotic bundles and thick reticulin fibers were also found in BDL liver tissue. Besides liver morphological alterations, left ventricles of BDL ones were also associated with defined cardiomyocyte hypertrophy, myofiber vacuolization, and clear pigmentation. Findings showed a significant up-regulation of cardiac Brain Natriuretic Peptide (BNP) along with marked down-regulation in hepatic FXR, cardiac FXR, and cardiac UCP2 and UCP3. However, the expression of caspase 3 in the cardiac tissue was not affected by BDL operation during 4 weeks. CONCLUSION Expression of FXR as an upstream regulator of cellular redox status, besides the non-enzymatic ROS buffering defense system of cardiac UCPs, has a pivotal role in the pathogenesis of cirrhotic-induced cardiac abnormality in rats.
Collapse
Affiliation(s)
- Gholamreza Bayat
- Department of Physiology-Pharmacology-Medical Physic, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Seyed Ali Hashemi
- Department of Pathology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Hosein Karim
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Cardiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Parviz Fallah
- Department of Medical Laboratory Sciences, Faculty of Para-Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Keshvad Hedayatyanfard
- Department of Physiology-Pharmacology-Medical Physic, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mahnaz Bayat
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azadeh Khalili
- Department of Physiology-Pharmacology-Medical Physic, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
12
|
Shimura M, Onuki T, Sugiyama Y, Matsuhashi T, Ebihara T, Fushimi T, Tajika M, Ichimoto K, Matsunaga A, Tsuruoka T, Nitta KR, Imai-Okazaki A, Yatsuka Y, Kishita Y, Ohtake A, Okazaki Y, Murayama K. Development of Leigh syndrome with a high probability of cardiac manifestations in infantile-onset patients with m.14453G > A. Mitochondrion 2021; 63:1-8. [PMID: 34933128 DOI: 10.1016/j.mito.2021.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/24/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022]
Abstract
The m.14453G > A mutation in MT-ND6 has been described in a few patients with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes or Leigh syndrome.However, the clinical spectrum and molecular characteristics are unclear.Here, we present four infantile-onset patients with m.14453G > A-associated Leigh syndrome. All four patients had brainstem lesions with basal ganglia lesions, and two patients had cardiac manifestations. Decreased ND6 protein expression and immunoreactivity were observed in patient-derived samples. There was no clear correlation between heteroplasmy levels and onset age or between heteroplasmy levels and phenotype; however, infantile onset was associated with Leigh syndrome.
Collapse
Affiliation(s)
- Masaru Shimura
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho Midori-ku, Chiba 266-0007, Japan
| | - Takanori Onuki
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho Midori-ku, Chiba 266-0007, Japan
| | - Yohei Sugiyama
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho Midori-ku, Chiba 266-0007, Japan
| | - Tetsuro Matsuhashi
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho Midori-ku, Chiba 266-0007, Japan
| | - Tomohiro Ebihara
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho Midori-ku, Chiba 266-0007, Japan
| | - Takuya Fushimi
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho Midori-ku, Chiba 266-0007, Japan
| | - Makiko Tajika
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho Midori-ku, Chiba 266-0007, Japan
| | - Keiko Ichimoto
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho Midori-ku, Chiba 266-0007, Japan
| | - Ayako Matsunaga
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho Midori-ku, Chiba 266-0007, Japan
| | - Tomoko Tsuruoka
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho Midori-ku, Chiba 266-0007, Japan
| | - Kazuhiro R Nitta
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Hongo 2-1-1 Bunkyo-ku, Tokyo 113-8421, Japan
| | - Atsuko Imai-Okazaki
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Hongo 2-1-1 Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yukiko Yatsuka
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Hongo 2-1-1 Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yoshihito Kishita
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Hongo 2-1-1 Bunkyo-ku, Tokyo 113-8421, Japan; Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan
| | - Akira Ohtake
- Department of Pediatrics & Clinical Genomics, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama 350-0495, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Hongo 2-1-1 Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kei Murayama
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho Midori-ku, Chiba 266-0007, Japan; Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Hongo 2-1-1 Bunkyo-ku, Tokyo 113-8421, Japan.
| |
Collapse
|
13
|
Peoples JN, Ghazal N, Duong DM, Hardin KR, Manning JR, Seyfried NT, Faundez V, Kwong JQ. Loss of the mitochondrial phosphate carrier SLC25A3 induces remodeling of the cardiac mitochondrial protein acylome. Am J Physiol Cell Physiol 2021; 321:C519-C534. [PMID: 34319827 DOI: 10.1152/ajpcell.00156.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondria are recognized as signaling organelles because, under stress, mitochondria can trigger various signaling pathways to coordinate the cell's response. The specific pathway(s) engaged by mitochondria in response to mitochondrial energy defects in vivo and in high-energy tissues like the heart are not fully understood. Here, we investigated cardiac pathways activated in response to mitochondrial energy dysfunction by studying mice with cardiomyocyte-specific loss of the mitochondrial phosphate carrier (SLC25A3), an established model that develops cardiomyopathy as a result of defective mitochondrial ATP synthesis. Mitochondrial energy dysfunction induced a striking pattern of acylome remodeling, with significantly increased post-translational acetylation and malonylation. Mass spectrometry-based proteomics further revealed that energy dysfunction-induced remodeling of the acetylome and malonylome preferentially impacts mitochondrial proteins. Acetylation and malonylation modified a highly interconnected interactome of mitochondrial proteins, and both modifications were present on the enzyme isocitrate dehydrogenase 2 (IDH2). Intriguingly, IDH2 activity was enhanced in SLC25A3-deleted mitochondria, and further study of IDH2 sites targeted by both acetylation and malonylation revealed that these modifications can have site-specific and distinct functional effects. Finally, we uncovered a novel crosstalk between the two modifications, whereby mitochondrial energy dysfunction-induced acetylation of sirtuin 5 (SIRT5), inhibited its function. Because SIRT5 is a mitochondrial deacylase with demalonylase activity, this finding suggests that acetylation can modulate the malonylome. Together, our results position acylations as an arm of the mitochondrial response to energy dysfunction and suggest a mechanism by which focal disruption to the energy production machinery can have an expanded impact on global mitochondrial function.
Collapse
Affiliation(s)
- Jessica N Peoples
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Nasab Ghazal
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Duc M Duong
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
| | - Katherine R Hardin
- Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, United States
| | - Janet R Manning
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
| | - Victor Faundez
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Jennifer Q Kwong
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA, United States.,Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
14
|
Liu C, Lou X, Lyu J, Wang J, Xu Y. Prenatal Diagnosis and Preimplantation Genetic Diagnosis. CLINICAL MOLECULAR DIAGNOSTICS 2021:769-800. [DOI: 10.1007/978-981-16-1037-0_43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
15
|
Wang Y, Hekimi S. Micellization of coenzyme Q by the fungicide caspofungin allows for safe intravenous administration to reach extreme supraphysiological concentrations. Redox Biol 2020; 36:101680. [PMID: 32810741 PMCID: PMC7451649 DOI: 10.1016/j.redox.2020.101680] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/15/2022] Open
Abstract
Coenzyme Q10 (CoQ10; also known as ubiquinone) is a vital, redox-active membrane component that functions as obligate electron transporter in the mitochondrial respiratory chain, as cofactor in other enzymatic processes and as antioxidant. CoQ10 supplementation has been widely investigated for treating a variety of acute and chronic conditions in which mitochondrial function or oxidative stress play a role. In addition, it is used as replacement therapy in patients with CoQ deficiency including inborn primary CoQ10 deficiency due to mutations in CoQ10-biosynthetic genes as well as secondary CoQ10 deficiency, which is frequently observed in patients with mitochondrial disease syndrome and in other conditions. However, despite many tests and some promising results, whether CoQ10 treatment is beneficial in any indication has remained inconclusive. Because CoQ10 is highly insoluble, it is only available in oral formulations, despite its very poor oral bioavailability. Using a novel model of CoQ-deficient cells, we screened a library of FDA-approved drugs for an activity that could increase the uptake of exogenous CoQ10 by the cell. We identified the fungicide caspofungin as capable of increasing the aqueous solubility of CoQ10 by several orders of magnitude. Caspofungin is a mild surfactant that solubilizes CoQ10 by forming nano-micelles with unique properties favoring stability and cellular uptake. Intravenous administration of the formulation in mice achieves unprecedented increases in CoQ10 plasma levels and in tissue uptake, with no observable toxicity. As it contains only two safe components (caspofungin and CoQ10), this injectable formulation presents a high potential for clinical safety and efficacy. Coenzyme Q10 (CoQ10) can be solubilized by the antifungal drug caspofungin (CF). CF is a mild surfactant and solubilizes CoQ10 in water by forming micellar structures with a high CoQ10 content. CF/CoQ10 micelles have unique properties favoring rapid and efficient uptake into cells and mitochondria. CF/CoQ10 micelles can be intravenously administrated without signs of toxicity. Intravenous administration of CF/CoQ10 in mice achieves unprecedented elevation of CoQ10 plasma levels and tissue uptake.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Siegfried Hekimi
- Department of Biology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
16
|
Novel Point Mutations in Mitochondrial MT-CO2 Gene May Be Risk Factors for Coronary Artery Disease. Appl Biochem Biotechnol 2020; 191:1326-1339. [PMID: 32096057 DOI: 10.1007/s12010-020-03275-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/13/2020] [Indexed: 12/11/2022]
Abstract
A wide range of genetic and environmental interactions are involved in the development of coronary artery disease (CAD). Considerable evidence suggests that mitochondrial DNA mutations are associated with heart failure. In this work, we examined the possible mutations in hotspot mitochondrial genes and their association with Iranian patients with coronary artery disease. In this case-control study, nucleotide variations were investigated in 109 patients with coronary atherosclerosis and 105 control subjects with no family history of cardiovascular disease. The molecular analysis of related mitochondrial genes was performed by polymerase chain reaction sequencing. Our results showed 25 nucleotide variations (10 missense mutations, 9 synonymous polymorphisms, and 6 variants in tRNA genes) that for the first time were presented in coronary artery disease. Our results suggest that novel heteroplasmic m.8231 C>A mutation is involved in CAD (p = 0.007). These nucleotide variations suggest the role of mitochondrial mutations as a predisposing factor which in combination with environmental risk factors may affect the pathogenesis of coronary atherosclerosis. So, further investigation is needed for a better understanding of the pathogenesis and predisposing effects of these variations on the disease.
Collapse
|
17
|
Mitochondrial Dysfunction in Aging and Diseases of Aging. BIOLOGY 2019; 8:biology8020048. [PMID: 31213034 PMCID: PMC6627182 DOI: 10.3390/biology8020048] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/26/2022]
|