1
|
Papulino C, Chianese U, Ali A, Favale G, Tuccillo C, Ciardiello F, Di Mauro A, Mignogna C, Ferrara G, Budillon A, Megchelenbrink WL, Del Gaudio N, Conte M, Merciai F, Campiglia P, Altucci L, Carafa V, Sommella E, Benedetti R. Inverse FASN and LDHA correlation drives metabolic resistance in breast cancer. J Transl Med 2024; 22:676. [PMID: 39044184 PMCID: PMC11267768 DOI: 10.1186/s12967-024-05517-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/18/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Breast cancer manifests as a heterogeneous pathology marked by complex metabolic reprogramming essential to satisfy its energy demands. Oncogenic signals boost the metabolism, modifying fatty acid synthesis and glucose use from the onset to progression and therapy resistant-forms. However, the exact contribution of metabolic dependencies during tumor evolution remains unclear. METHODS In this study, we elucidate the connection between FASN and LDHA, pivotal metabolic genes, and their correlation with tumor grade and therapy response using datasets from public repositories. Subsequently, we evaluated the metabolic and proliferative functions upon FASN and LDHA inhibition in breast cancer models. Lastly, we integrated metabolomic and lipidomic analysis to define the contributions of metabolites, lipids, and precursors to the metabolic phenotypes. RESULTS Collectively, our findings indicate metabolic shifts during breast cancer progression, unvealling two distinct functional energy phenotypes associated with aggressiveness and therapy response. Specifically, FASN exhibits reduced expression in advance-grade tumors and therapy-resistant forms, whereas LDHA demonstrates higher expression. Additionally, the biological and metabolic impact of blocking the enzymatic activity of FASN and LDHA was correlated with resistant conditions. CONCLUSIONS These observations emphasize the intrinsic metabolic heterogeneity within breast cancer, thereby highlighting the relevance of metabolic interventions in the field of precision medicine.
Collapse
Affiliation(s)
- Chiara Papulino
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Ugo Chianese
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Ahmad Ali
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Gregorio Favale
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Concetta Tuccillo
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Fortunato Ciardiello
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Annabella Di Mauro
- Pathology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Chiara Mignogna
- Pathology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Gerardo Ferrara
- Pathology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Alfredo Budillon
- Scientific Directorate, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | | | - Nunzio Del Gaudio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Mariarosaria Conte
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Fabrizio Merciai
- Department of Pharmacy (DIFARMA), University of Salerno, 84084, Salerno, Italy
| | - Pietro Campiglia
- Department of Pharmacy (DIFARMA), University of Salerno, 84084, Salerno, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
- Biogem Institute of Molecular and Genetic Biology, 83031, Ariano Irpino, Italy
- Institute of Endocrinology and Oncology "Gaetano Salvatore" (IEOS), 80131, Naples, Italy
- Program of Medical Epigenetics, Vanvitelli Hospital, Naples, Italy
| | - Vincenzo Carafa
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy.
- Biogem Institute of Molecular and Genetic Biology, 83031, Ariano Irpino, Italy.
| | - Eduardo Sommella
- Department of Pharmacy (DIFARMA), University of Salerno, 84084, Salerno, Italy.
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy.
- Program of Medical Epigenetics, Vanvitelli Hospital, Naples, Italy.
| |
Collapse
|
2
|
Khan F, Elsori D, Verma M, Pandey S, Obaidur Rab S, Siddiqui S, Alabdallah NM, Saeed M, Pandey P. Unraveling the intricate relationship between lipid metabolism and oncogenic signaling pathways. Front Cell Dev Biol 2024; 12:1399065. [PMID: 38933330 PMCID: PMC11199418 DOI: 10.3389/fcell.2024.1399065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Lipids, the primary constituents of the cell membrane, play essential roles in nearly all cellular functions, such as cell-cell recognition, signaling transduction, and energy provision. Lipid metabolism is necessary for the maintenance of life since it regulates the balance between the processes of synthesis and breakdown. Increasing evidence suggests that cancer cells exhibit abnormal lipid metabolism, significantly affecting their malignant characteristics, including self-renewal, differentiation, invasion, metastasis, and drug sensitivity and resistance. Prominent oncogenic signaling pathways that modulate metabolic gene expression and elevate metabolic enzyme activity include phosphoinositide 3-kinase (PI3K)/AKT, MAPK, NF-kB, Wnt, Notch, and Hippo pathway. Conversely, when metabolic processes are not regulated, they can lead to malfunctions in cellular signal transduction pathways. This, in turn, enables uncontrolled cancer cell growth by providing the necessary energy, building blocks, and redox potentials. Therefore, targeting lipid metabolism-associated oncogenic signaling pathways could be an effective therapeutic approach to decrease cancer incidence and promote survival. This review sheds light on the interactions between lipid reprogramming and signaling pathways in cancer. Exploring lipid metabolism as a target could provide a promising approach for creating anticancer treatments by identifying metabolic inhibitors. Additionally, we have also provided an overview of the drugs targeting lipid metabolism in cancer in this review.
Collapse
Affiliation(s)
- Fahad Khan
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Deena Elsori
- Faculty of Resilience, Rabdan Academy, Abu Dhabi, United Arab Emirates
| | - Meenakshi Verma
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India
| | - Shivam Pandey
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Samra Siddiqui
- Department of Health Service Management, College of Public Health and Health Informatics, University of Hail, Haʼil, Saudi Arabia
| | - Nadiyah M. Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Basic and Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Haʼil, Saudi Arabia
| | - Pratibha Pandey
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh, India
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India
| |
Collapse
|
3
|
Tan L, Solis-Sainz JC. Monochasma Savatieri Aqueous Extract inhibits Human Breast Cancer Cell Line Migration and Adhesion Without Generating Toxicity. Anticancer Agents Med Chem 2024; 24:982-989. [PMID: 38629374 DOI: 10.2174/0118715206287870240408031843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Monochasma savatieri, is a rare and endangered plant used to treat cancer in Chinese traditional medicine. OBJECTIVE To evaluate the anti-cancer activity of M. savatieri aqueous extract by determining its cytotoxicity, anti-migratory, and anti-adhesion effects on breast cancer cells. METHODS Cell viability, migration, adhesion, circularity, and cell cycle were evaluated by crystal violet (CV) staining, wound-healing, and transwell assays and flow cytometry in MCF7 and MDA-MB-231 cells. Caveolin-1, snail, vimentin and activated Erk and Akt expression were determined by western blot in MDA-MB-231 cells. Immunofluorescent assays confirmed caveolin-1 expression in MDA-MB-231 cells. RESULTS Survival and cell cycle of MCF7 and MDA-MB-231 cells were not modified by doses up to 500 μg/mL of the extract. The extract inhibited cell migration and adhesion of MDA-MB-231 cells. When cells were exposed to the extract, there was a slight decrease in protein expression of factors related to epithelial-to-mesenchymal transition (snail and vimentin) and a strong decrease in the expression of the oncogenic membrane protein caveolin- 1. Furthermore, the levels of phosphorylated Erk and Akt were also decreased. The content of acteoside, a phenylpropanoid glycoside with reported anti-cancer activity present in M. savatieri, was almost 5 times as much as isoacteoside. CONCLUSION M. savatieri possesses anti-cancer activity without exerting cytotoxicity on breast cancer cells. The extract exhibited anti-migratory and anti-adhesion effects on breast cancer cells by regulating Erk and Akt signaling pathways and the expression of caveolin-1. In addition, acteoside present in M. savatieri could be responsible for the observed effects.
Collapse
Affiliation(s)
- Lin Tan
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan, 571101, China
| | - Juan C Solis-Sainz
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan, 571101, China
- Department of Biomedical Research, School of Medicine, Autonomous University of Queretaro, Queretaro Qro, 76170, Mexico
| |
Collapse
|
4
|
Ferrante A, Tamma M, Agriesti F, Tucci F, Lopriore P, Amodio ML, Colelli G, Capitanio N, Piccoli C, Pacelli C. Characterization of the effect of pomegranate crude extract, and its post-harvesting preservation procedures, on redox tone, cellular growth and metabolic profile of MDA-MB-231 cell line. BMC Complement Med Ther 2023; 23:311. [PMID: 37684643 PMCID: PMC10485948 DOI: 10.1186/s12906-023-04134-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Pomegranate is known for its beneficial properties due to its high content in antioxidants and might constitute a natural option for preventing and treatment of different pathologies including cancer. Since mitochondria are involved in tumorigenesis through ROS production and modulation of oxidative metabolism, we investigated the biological effects of pomegranate on cellular redox state, proliferation and metabolism in the breast cancer cell line MDA-MB-231 (MDA). METHODS MDA were treated for 24 h with graded concentration of filtered Pomegranate juice (PJ) and tested for metabolic Flux Analysis with XFe96 Extracellular Flux Analyzer, for proliferation using the xCELLigence System Real-Time Cell Analyzer and for intracellular ROS content by Confocal Microscopy Imaging. RESULTS Cells-treatment with freshly prepared pomegranate juice (PJ) resulted in a significant reduction of the intracellular ROS content already at the lower concentration of PJ tested. Additionally, it enhanced mitochondria respiration, and decreased glycolysis at high concentrations, inhibiting at the same time cell proliferation. As pomegranate is a seasonal fruit, assessment of optimum storage conditions preserving its bio-active properties was investigated. Our results indicated that storage conditions under controlled atmosphere for 30 days was able to enhance mitochondrial respiration at the same extent than freshly extracted PJ. Conversely, freezing procedure, though retaining the antioxidant and cell-growth inhibitory property, elicited an opposite effect on the metabolic profile as compared with fresh extract. CONCLUSION Overall, the results of our study, on the one hand, confirms the preventive/therapeutic potential of PJ, as well as of its post-harvested processing, for cancer management. On the other hand, it highlights the intrinsic difficulties in attaining mechanistic insights when a multiplicity of effects is elicited by a crude mixture of bio-active compounds.
Collapse
Affiliation(s)
- Aristide Ferrante
- Department of Clinical and Experimental Medicine, University of Foggia, 71122, Foggia, Italy
| | - Mirko Tamma
- Department of Clinical and Experimental Medicine, University of Foggia, 71122, Foggia, Italy
| | - Francesca Agriesti
- Department of Clinical and Experimental Medicine, University of Foggia, 71122, Foggia, Italy
| | - Francesco Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, 71122, Foggia, Italy
| | - Piervito Lopriore
- Department of Clinical and Experimental Medicine, University of Foggia, 71122, Foggia, Italy
| | - Maria Luisa Amodio
- Department of Agricultural Sciences, Food, Natural Resources and Engineering, University of Foggia, 71122, Foggia, Italy
| | - Giancarlo Colelli
- Department of Agricultural Sciences, Food, Natural Resources and Engineering, University of Foggia, 71122, Foggia, Italy
| | - Nazzareno Capitanio
- Department of Clinical and Experimental Medicine, University of Foggia, 71122, Foggia, Italy
| | - Claudia Piccoli
- Department of Clinical and Experimental Medicine, University of Foggia, 71122, Foggia, Italy.
| | - Consiglia Pacelli
- Department of Clinical and Experimental Medicine, University of Foggia, 71122, Foggia, Italy.
| |
Collapse
|
5
|
San-Millan I, Martinez JL, Pickard SL, Yu H, Hirsch FR, Rivard CJ, Brooks GA. Role of Lactate in the Regulation of Transcriptional Activity of Breast Cancer-Related Genes and Epithelial-to-Mesenchymal Transition Proteins: A Compassion of MCF7 and MDA-MB-231 Cancer Cell Lines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533060. [PMID: 36993762 PMCID: PMC10055400 DOI: 10.1101/2023.03.23.533060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The Warburg Effect is characterized by accelerated glycolytic metabolism and lactate production and under fully aerobic conditions is a hallmark of cancer cells. Recently, we have demonstrated the role of endogenous, glucose-derived lactate as an oncometabolite which regulates gene expression in the estrogen receptor positive (ER+) MCF7 cell line cultivated in glucose media. Presently, with the addition of a triple negative breast cancer (TNBC) cell line, MDA-MB-231, we further confirm the effect of lactate on gene expression patterns and extend results to include lactate effects on protein expression. As well, we report effects of lactate on the expression of E-cadherin and vimentin, proteins associated with epithelial-to-mesenchymal transition (EMT). Endogenous lactate regulates the expression of multiple genes involved in carcinogenesis. In MCF7 cells, lactate increased the expression of EGFR, VEGF, HIF-1a, KRAS, MIF, mTOR, PIK3CA, TP53, and CDK4 as well as decreased the expression of ATM, BRCA1, BRCA2, E2F1, MET, MYC, and RAF mainly after 48h of exposure. On the other hand, in the MDA-MB-231 cell line, lactate increased the expressions of PIK3CA, VEGF, EGFR, mTOR, HIF-1α, ATM, E2F1, TP53 and decreased the expressions of BRCA1, BRCA2, CDK4, CDK6, MET, MIF, MYC, and RAF after 48h of exposure. In response to endogenous lactate, changes in protein expression of representative genes corroborated changes in mRNA expressions. Finally, lactate exposure decreased E-cadherin protein expression in MCF7 cells and increased vimentin expression in MDA-MB-231 cells. Furthermore, by genetically silencing LDHA in MCF7 cells, we show suppression of protein expression of EGFR and HIF-1α, while full protein expression occurred under glucose and glucose + exogenous lactate exposure. Hence, endogenous, glucose-derived lactate, and not glucose, elicited changes in gene and protein expression levels. In this study, we demonstrate that endogenous lactate produced under aerobic conditions (Warburg Effect) elicits important changes in gene and protein expression in both ER+ and TNBC cell lines. The widespread regulation of multiple genes by lactate and involves those involved in carcinogenesis including DNA repair, cell growth, proliferation, angiogenesis, and metastasis. Furthermore, lactate affected the expression of two relevant EMT biomarkers, E-cadherin and vimentin, which could contribute to the complex process of EMT and a shift towards a more mesenchymal phenotype in the two cancer cell lines studied.
Collapse
Affiliation(s)
- Inigo San-Millan
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Human Physiology and Nutrition, University of Colorado, Colorado Springs, CO, USA
| | - Janel L. Martinez
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Shivaun Lueke Pickard
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Hui Yu
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Fred R. Hirsch
- Tisch Cancer Institute, Center for Thoracic Oncology, Mount Sinai Health System, New York, NY, USA
| | - Christopher J. Rivard
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - George A. Brooks
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
6
|
Miao X, Wang H, Fan C, Song Q, Ding R, Wu J, Hu H, Chen K, Ji P, Wen Q, Shi M, Ye B, Fu D, Xiang M. Enhancing prognostic accuracy in head and neck squamous cell carcinoma chemotherapy via a lipid metabolism-related clustered polygenic model. Cancer Cell Int 2023; 23:164. [PMID: 37568192 PMCID: PMC10422777 DOI: 10.1186/s12935-023-03014-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
OBJECTIVE Systemic chemotherapy is the first-line therapeutic option for head and neck squamous cell carcinoma (HNSCC), but it often fails. This study aimed to develop an effective prognostic model for evaluating the therapeutic effects of systemic chemotherapy. METHODS This study utilized CRISPR/cas9 whole gene loss-of-function library screening and data from The Cancer Genome Atlas (TCGA) HNSCC patients who have undergone systemic therapy to examine differentially expressed genes (DEGs). A lipid metabolism-related clustered polygenic model called the lipid metabolism related score (LMRS) model was established based on the identified functionally enriched DEGs. The prediction efficiency of the model for survival outcome, chemotherapy, and immunotherapy response was evaluated using HNSCC datasets, the GEO database and clinical samples. RESULTS Screening results from the study demonstrated that genes those were differentially expressed were highly associated with lipid metabolism-related pathways, and patients receiving systemic therapy had significantly different prognoses based on lipid metabolism gene characteristics. The LMRS model, consisting of eight lipid metabolism-related genes, outperformed each lipid metabolism gene-based model in predicting outcome and drug response. Further validation of the LMRS model in HNSCCs confirmed its prognostic value. CONCLUSION In conclusion, the LMRS polygenic prognostic model is helpful to assess outcome and drug response for HNSCCs and could assist in the timely selection of the appropriate treatment for HNSCC patients. This study provides important insights for improving systemic chemotherapy and enhancing patient outcomes.
Collapse
Affiliation(s)
- Xiangwan Miao
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Wang
- Department of Otorhinolaryngology, Ruijin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cui Fan
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - QianQian Song
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, USA
| | - Rui Ding
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jichang Wu
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haixia Hu
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaili Chen
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peilin Ji
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Wen
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minmin Shi
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Ye
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Da Fu
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China.
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Mingliang Xiang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Xia Z, Zhao N, Liu M, Jiang D, Gao S, Ma P, Huang L. GPD1 inhibits the carcinogenesis of breast cancer through increasing PI3K/AKT-mediated lipid metabolism signaling pathway. Heliyon 2023; 9:e18128. [PMID: 37483742 PMCID: PMC10362286 DOI: 10.1016/j.heliyon.2023.e18128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023] Open
Abstract
Glycerol 3-phosphate dehydrogenase 1 (GPD1) acts as a tumor suppressor in various types of cancer. However, the mechanisms of GPD1 anti-tumor remain unclear in breast cancer. This study aims to explore the function and clinical relevance of GPD1 in breast cancer. We confirmed that GPD1 inhibited the ability of proliferation, migration, and invasion in GPD1 overexpression breast cancer cells by CCK-8, wound healing, and Transwell assays, respectively. We found that GPD1 overexpression activated the lipid synthesis pathway and PI3K/AKT signaling pathway. The inhibitory effect of GPD1 on breast cancer cells was also weakened after treatment with LY294002, a PI3K/AKT pathway inhibitor. These results indicated that GPD1 suppressed the carcinogenesis of breast cancer through increasing PI3K/AKT-mediated lipid signaling pathways. Meanwhile, we detected that the relationship between GPD1 level and survival rate presents a positive correlation in breast cancer patients from the Cancer Genome Atlas (TCGA) database. Therefore, GPD1 can be a prognostic biomarker and target in developing therapeutic strategies for breast cancer patients.
Collapse
Affiliation(s)
- Zhengchao Xia
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Ningming Zhao
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Mingzhou Liu
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - DanDan Jiang
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Shanjun Gao
- Microbiome Laboratory, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Peizhi Ma
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Li Huang
- Department of Pathology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| |
Collapse
|
8
|
Ellis K, Wood R. The Comparative Invasiveness of Endometriotic Cell Lines to Breast and Endometrial Cancer Cell Lines. Biomolecules 2023; 13:1003. [PMID: 37371583 DOI: 10.3390/biom13061003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Endometriosis is an invasive condition that affects 10% of women (and people assigned as female at birth) worldwide. The purpose of this study was to characterize the relative invasiveness of three available endometriotic cell lines (EEC12Z, iEc-ESCs, tHESCs) to cancer cell lines (MDA-MB-231, SW1353 and EM-E6/E7/TERT) and assess whether the relative invasiveness was consistent across different invasion assays. All cell lines were subjected to transwell, spheroid drop, and spheroid-gel invasion assays, and stained for vimentin, cytokeratin, E-Cadherin and N-Cadherin to assess changes in expression. In all assays, endometriotic cell lines showed comparable invasiveness to the cancer cell lines used in this study, with no significant differences in invasiveness identified. EEC12Z cells that had invaded within the assay periods showed declines in E-Cadherin expression compared to cells that had not invaded within the assay period, without significant changes in N-Cadherin expression, which may support the hypothesis that an epithelial-to-mesenchymal transition is an influence on the invasiveness shown by this peritoneal endometriosis cell line.
Collapse
Affiliation(s)
- Katherine Ellis
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch 8041, New Zealand
- Endometriosis New Zealand, Christchurch 8041, New Zealand
| | - Rachael Wood
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch 8041, New Zealand
- The Biomolecular Interaction Centre, University of Canterbury, Christchurch 8041, New Zealand
| |
Collapse
|
9
|
Reinema FV, Sweep FCGJ, Adema GJ, Peeters WJM, Martens JWM, Bussink J, Span PN. Tamoxifen induces radioresistance through NRF2-mediated metabolic reprogramming in breast cancer. Cancer Metab 2023; 11:3. [PMID: 36755288 PMCID: PMC9909892 DOI: 10.1186/s40170-023-00304-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 01/29/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Recently, we reported that tamoxifen-resistant (TAM-R) breast cancer cells are cross-resistant to irradiation. Here, we investigated the mechanisms associated with tamoxifen-induced radioresistance, aiming to prevent or reverse resistance and improve breast cancer treatment. METHODS Wild-type ERα-positive MCF7 and ERα-negative MDA-MB-231 breast cancer cells and their TAM-R counterparts were analyzed for cellular metabolism using the Seahorse metabolic analyzer. Real-time ROS production, toxicity, and antioxidant capacity in response to H2O2, tamoxifen, and irradiation were determined. Tumor material from 28 breast cancer patients before and after short-term presurgical tamoxifen (ClinicalTrials.gov Identifier: NCT00738777, August 19, 2008) and cellular material was analyzed for NRF2 gene expression and immunohistochemistry. Re-sensitization of TAM-R cells to irradiation was established using pharmacological inhibition. RESULTS TAM-R cells exhibited decreased oxygen consumption and increased glycolysis, suggesting mitochondrial dysfunction. However, this did not explain radioresistance, as cells without mitochondria (Rho-0) were actually more radiosensitive. Real-time measurement of ROS after tamoxifen and H2O2 exposure indicated lower ROS levels and toxicity in TAM-R cells. Consistently, higher antioxidant levels were found in TAM-R cells, providing protection from irradiation-induced ROS. NRF2, a main activator of the antioxidant response, was increased in TAM-R cells and in tumor tissue of patients treated with short-term presurgical tamoxifen. NRF2 inhibition re-sensitized TAM-R cells to irradiation. CONCLUSION Mechanisms underlying tamoxifen-induced radioresistance are linked to cellular adaptations to persistently increased ROS levels, leading to cells with chronically upregulated antioxidant capacity and glycolysis. Pharmacological inhibition of antioxidant responses re-sensitizes breast cancer cells to irradiation.
Collapse
Affiliation(s)
- F V Reinema
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, 6500 HB, the Netherlands
| | - F C G J Sweep
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - G J Adema
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, 6500 HB, the Netherlands
| | - W J M Peeters
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, 6500 HB, the Netherlands
| | - J W M Martens
- Department of Medical Oncology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - J Bussink
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, 6500 HB, the Netherlands
| | - P N Span
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, 6500 HB, the Netherlands.
| |
Collapse
|
10
|
Miao X, Wang B, Chen K, Ding R, Wu J, Pan Y, Ji P, Ye B, Xiang M. Perspectives of lipid metabolism reprogramming in head and neck squamous cell carcinoma: An overview. Front Oncol 2022; 12:1008361. [PMID: 36185215 PMCID: PMC9524856 DOI: 10.3389/fonc.2022.1008361] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Recent studies showed that lipid metabolism reprogramming contributes to tumorigenicity and malignancy by interfering energy production, membrane formation, and signal transduction in cancers. HNSCCs are highly reliant on aerobic glycolysis and glutamine metabolism. However, the mechanisms underlying lipid metabolism reprogramming in HNSCCs remains obscure. The present review summarizes and discusses the "vital" cellular signaling roles of the lipid metabolism reprogramming in HNSCCs. We also address the differences between HNSCCs regions caused by anatomical heterogeneity. We enumerate these recent findings into our current understanding of lipid metabolism reprogramming in HNSCCs and introduce the new and exciting therapeutic implications of targeting the lipid metabolism.
Collapse
Affiliation(s)
- Xiangwan Miao
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Beilei Wang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaili Chen
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Ding
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jichang Wu
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Pan
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peilin Ji
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Ye
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingliang Xiang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Galindo CM, Oliveira Ganzella FAD, Klassen G, Souza Ramos EAD, Acco A. Nuances of PFKFB3 signaling in breast cancer. Clin Breast Cancer 2022; 22:e604-e614. [DOI: 10.1016/j.clbc.2022.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/28/2021] [Accepted: 01/09/2022] [Indexed: 02/08/2023]
|
12
|
Resendiz-Acevedo K, García-Aguilera ME, Esturau-Escofet N, Ruiz-Azuara L. 1H -NMR Metabolomics Study of the Effect of Cisplatin and Casiopeina IIgly on MDA-MB-231 Breast Tumor Cells. Front Mol Biosci 2021; 8:742859. [PMID: 34926572 PMCID: PMC8671756 DOI: 10.3389/fmolb.2021.742859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/02/2021] [Indexed: 01/06/2023] Open
Abstract
The knowledge of the metabolic processes of designed metallodrugs for cancer treatment is an area that has been not profoundly studied. Casiopeina IIgly (CasIIgly), which belongs to the Casiopeínas® family, is a copper (II) coordination compound that has shown good biological activity against several cancer cells, low toxicity in normal cells, and antineoplastic activity in in vivo murine and xenografted models. In this work we employed a triple-negative highly metastatic breast carcinoma line (MDA-MB-231), which is one of the cancer types with a great mortality index, for 1H-NMR metabolomic analysis using cisplatin and CasIIgly, in order to quantify the effect of metallodrugs in the metabolic profile of this cell tumor line as a consequence of treatment at different times. Our findings indicate that cisplatin mainly contributes to phospholipid biosynthesis while CasIIgly affects processes such as carbohydrates and nucleotides metabolism. Also, we observed that CasIIgly treatment has an important and fast effect over MDA-MB-231 cell metabolism, which makes it a good alternative for treatment in this type of cancer.
Collapse
Affiliation(s)
| | | | - Nuria Esturau-Escofet
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Lena Ruiz-Azuara
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
13
|
Germain N, Dhayer M, Boileau M, Fovez Q, Kluza J, Marchetti P. Lipid Metabolism and Resistance to Anticancer Treatment. BIOLOGY 2020; 9:biology9120474. [PMID: 33339398 PMCID: PMC7766644 DOI: 10.3390/biology9120474] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022]
Abstract
Simple Summary Cancer cells directly control nutrient uptake and utilization in a different manner from that of normal cells. These metabolic changes drive growth, proliferation of cancer cells as well as their ability to develop resistance to traditional therapies. We review published studies with pre-clinical models, showing the essential roles of lipid metabolism in anticancer drug resistance. We also discuss how changes in cellular lipid metabolism contribute to the acquisition of drug resistance and the new therapeutic opportunities to target lipid metabolism for treating drug resistant cancers. Abstract Metabolic reprogramming is crucial to respond to cancer cell requirements during tumor development. In the last decade, metabolic alterations have been shown to modulate cancer cells’ sensitivity to chemotherapeutic agents including conventional and targeted therapies. Recently, it became apparent that changes in lipid metabolism represent important mediators of resistance to anticancer agents. In this review, we highlight changes in lipid metabolism associated with therapy resistance, their significance and how dysregulated lipid metabolism could be exploited to overcome anticancer drug resistance.
Collapse
Affiliation(s)
- Nicolas Germain
- UMR 9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut de Recherche contre le Cancer de Lille, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (M.D.); (M.B.); (Q.F.); (J.K.)
- Banque de Tissus, Centre de biologie-pathologie, CHU Lille, F-59000 Lille, France
- Correspondence: (N.G.); (P.M.); Tel.: +33-3-20-16-92-20 (P.M.)
| | - Mélanie Dhayer
- UMR 9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut de Recherche contre le Cancer de Lille, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (M.D.); (M.B.); (Q.F.); (J.K.)
| | - Marie Boileau
- UMR 9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut de Recherche contre le Cancer de Lille, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (M.D.); (M.B.); (Q.F.); (J.K.)
- Service de Dermatologie, Hopital Claude Huriez, CHU Lille, F-59000 Lille, France
| | - Quentin Fovez
- UMR 9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut de Recherche contre le Cancer de Lille, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (M.D.); (M.B.); (Q.F.); (J.K.)
| | - Jerome Kluza
- UMR 9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut de Recherche contre le Cancer de Lille, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (M.D.); (M.B.); (Q.F.); (J.K.)
| | - Philippe Marchetti
- UMR 9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut de Recherche contre le Cancer de Lille, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (M.D.); (M.B.); (Q.F.); (J.K.)
- Banque de Tissus, Centre de biologie-pathologie, CHU Lille, F-59000 Lille, France
- Correspondence: (N.G.); (P.M.); Tel.: +33-3-20-16-92-20 (P.M.)
| |
Collapse
|
14
|
Rey-Blanes C, Pérez-Portero Y, Morris-Quevedo HJ, Casas V, Abdala R, Quesada AR, Martínez-Poveda B, Medina MÁ. In vitro evaluation of the antitumoral and antiangiogenic effects of extracts from Spondias mombin L. leaves. Biomed Pharmacother 2020; 131:110716. [PMID: 32920516 DOI: 10.1016/j.biopha.2020.110716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/24/2020] [Accepted: 08/30/2020] [Indexed: 01/05/2023] Open
Abstract
The traditional ethnobotanic and pharmacologic use of Spondias mombin L. samples includes a wide range of applications. In the present study, new antiangiogenic and antitumor effects of two types of extracts from Spondias mombin L. leaves have been demonstrated by using a number of in vitro assays in both endothelial and human cancer and non cancer cells.
Collapse
Affiliation(s)
- Cristina Rey-Blanes
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, E-29071, Málaga, Spain
| | - Yalina Pérez-Portero
- Facultad de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Oriente, Santiago de Cuba, Cuba
| | - Humberto J Morris-Quevedo
- Centro de Estudios de Biotecnología Industrial (CEBI), Universidad de Oriente, Santiago de Cuba, Cuba
| | - Virginia Casas
- Universidad de Málaga, Andalucía Tech, Departamento de Ecología y Geología, Facultad de Ciencias, E-29071, Málaga, Spain
| | - Roberto Abdala
- Universidad de Málaga, Andalucía Tech, Departamento de Ecología y Geología, Facultad de Ciencias, E-29071, Málaga, Spain; IBYDA (Institute of Blue Biotechnology and Development), Málaga, Spain
| | - Ana R Quesada
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, E-29071, Málaga, Spain; IBIMA (Biomedical Research Institute of Málaga), E-29071, Málaga, Spain; CIBER de Enfermedades Raras (CIBERER), E-29071, Málaga, Spain
| | - Beatriz Martínez-Poveda
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, E-29071, Málaga, Spain; IBIMA (Biomedical Research Institute of Málaga), E-29071, Málaga, Spain; CIBER de Enfermedades Vasculares (CIBERCV), Madrid, Spain
| | - Miguel Ángel Medina
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, E-29071, Málaga, Spain; IBIMA (Biomedical Research Institute of Málaga), E-29071, Málaga, Spain; CIBER de Enfermedades Raras (CIBERER), E-29071, Málaga, Spain.
| |
Collapse
|