1
|
Mendes O. Inflammation and neurodegeneration in multiple sclerosis. A REVIEW ON DIVERSE NEUROLOGICAL DISORDERS 2024:321-345. [DOI: 10.1016/b978-0-323-95735-9.00023-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Jin X, Li X, Guan F, Zhang J. Human Endogenous Retroviruses and Toll-Like Receptors. Viral Immunol 2023; 36:73-82. [PMID: 36251943 DOI: 10.1089/vim.2022.0090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human endogenous retroviruses (HERVs) are estimated to comprise ∼8% of the entire human genome, but the vast majority of them remain transcriptionally silent in most normal tissues due to accumulated mutations. However, HERVs can be frequently activated and detected in various tissues under certain conditions. Nucleic acids or proteins produced by HERVs can bind to pattern recognition receptors of immune cells or other cells and initiate an innate immune response, which may be involved in some pathogenesis of diseases, especially cancer and autoimmune diseases. In this review, we collect studies of the interaction between HERV elements and Toll-like receptors and attempt to provide an overview of their role in the immunopathological mechanisms of inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Xinyi Jin
- Department of Laboratory Medicine, School of Medicine, Shaoxing University, Shaoxing, P.R. China
| | - Xueyuan Li
- Department of Laboratory Medicine, School of Medicine, Shaoxing University, Shaoxing, P.R. China
| | - Fang Guan
- Department of Laboratory Medicine, School of Medicine, Shaoxing University, Shaoxing, P.R. China
| | - Jianhua Zhang
- Department of Laboratory Medicine, School of Medicine, Shaoxing University, Shaoxing, P.R. China
| |
Collapse
|
3
|
Posso-Osorio I, Tobón GJ, Cañas CA. Human endogenous retroviruses (HERV) and non-HERV viruses incorporated into the human genome and their role in the development of autoimmune diseases. J Transl Autoimmun 2021; 4:100137. [PMID: 34917914 PMCID: PMC8669383 DOI: 10.1016/j.jtauto.2021.100137] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/18/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Genomic incorporation of viruses as human endogenous retroviruses (HERVs) are components of our genome that possibly originated by incorporating ancestral of exogenous viruses. Their roles in the evolution of the human genome, gene expression, and the pathogenesis of autoimmune diseases (ADs) and neoplastic phenomena are the subject of intense research. This review analyzes the evolutionary and virological aspects of HERVs and other viruses that incorporate their genome into the human genome and have known role in the genesis of ADs. These insights are helpful to understand further the possible role in autoimmunity genesis of HERVs, other ancestral viruses no HERVs and modern viruses with the ability to incorporate into the human genome or interact with HERVs.
Collapse
Affiliation(s)
- Iván Posso-Osorio
- CIRAT: Centro de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Fundación Valle Del Lili and Universidad Icesi, Cali, Colombia.,Fundación Valle del Lili, Rheumatology Unit, Cali, Colombia
| | - Gabriel J Tobón
- Fundación Valle del Lili, Rheumatology Unit, Cali, Colombia.,Department of Medical Microbiology, Immunology and Cell Biology. Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Carlos A Cañas
- CIRAT: Centro de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Fundación Valle Del Lili and Universidad Icesi, Cali, Colombia.,Fundación Valle del Lili, Rheumatology Unit, Cali, Colombia
| |
Collapse
|
4
|
Pérez-Pérez S, Domínguez-Mozo MI, García-Martínez MÁ, García-Frontini MC, Villarrubia N, Costa-Frossard L, Villar LM, Arroyo R, Álvarez-Lafuente R. Anti-Human Herpesvirus 6 A/B Antibodies Titers Correlate With Multiple Sclerosis-Associated Retrovirus Envelope Expression. Front Immunol 2021; 12:798003. [PMID: 34912348 PMCID: PMC8666430 DOI: 10.3389/fimmu.2021.798003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/11/2021] [Indexed: 12/23/2022] Open
Abstract
Human endogenous retrovirus W family envelope proteins (pHERV-W ENV/syncytin-1) have been repeatedly associated with multiple sclerosis (MS). Here, we have focused on the study of pHERV-W ENV/syncytin-1 expression levels in MS patients (relapsing and progressive forms) and in healthy donors (HD) and on exploring their possible relationship with Epstein-Barr virus (EBV) and human herpesvirus-6A/B (HHV-6A/B). We included blood samples from 101 MS patients and 37 HD to analyze antiviral antibody titers by ELISA and pHERV-W ENV/syncytin-1 expression levels by flow cytometry as well as by qPCR. Patients with relapsing MS forms showed significantly higher pHERV-W ENV/syncytin-1 protein and gene expression levels than HD. Progressive MS patients also showed significantly higher protein and gene expression levels than both HD and relapsing MS patients. Regarding antiviral antibodies titers, anti-HHV-6A/B IgM levels were positively correlated with pHERV-W ENV/syncytin-1 protein expression levels in patients with relapsing MS, while in the progressive forms patients this correlation was found with anti-HHVA/B IgG levels. Therefore, pHERV-W ENV could be involved in MS pathogenesis, playing a role in relapsing and progressive forms. Besides, anti-HHV-6A/B antibodies positively correlated with pHERV-W ENV expression. Further studies are needed to better understand this possible relationship.
Collapse
Affiliation(s)
- Silvia Pérez-Pérez
- Environmental Factors in Degenerative Diseases Research Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - María I. Domínguez-Mozo
- Environmental Factors in Degenerative Diseases Research Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - M. Ángel García-Martínez
- Environmental Factors in Degenerative Diseases Research Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - M. Celeste García-Frontini
- Environmental Factors in Degenerative Diseases Research Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Noelia Villarrubia
- Immunology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | | | - Luisa M. Villar
- Immunology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Rafael Arroyo
- Neurology Department, Hospital Universitario Quironsalud Madrid, Madrid, Spain
| | - Roberto Álvarez-Lafuente
- Environmental Factors in Degenerative Diseases Research Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| |
Collapse
|
5
|
Bello-Morales R, Andreu S, Ripa I, López-Guerrero JA. HSV-1 and Endogenous Retroviruses as Risk Factors in Demyelination. Int J Mol Sci 2021; 22:ijms22115738. [PMID: 34072259 PMCID: PMC8199333 DOI: 10.3390/ijms22115738] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/19/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a neurotropic alphaherpesvirus that can infect the peripheral and central nervous systems, and it has been implicated in demyelinating and neurodegenerative processes. Transposable elements (TEs) are DNA sequences that can move from one genomic location to another. TEs have been linked to several diseases affecting the central nervous system (CNS), including multiple sclerosis (MS), a demyelinating disease of unknown etiology influenced by genetic and environmental factors. Exogenous viral transactivators may activate certain retrotransposons or class I TEs. In this context, several herpesviruses have been linked to MS, and one of them, HSV-1, might act as a risk factor by mediating processes such as molecular mimicry, remyelination, and activity of endogenous retroviruses (ERVs). Several herpesviruses have been involved in the regulation of human ERVs (HERVs), and HSV-1 in particular can modulate HERVs in cells involved in MS pathogenesis. This review exposes current knowledge about the relationship between HSV-1 and human ERVs, focusing on their contribution as a risk factor for MS.
Collapse
Affiliation(s)
- Raquel Bello-Morales
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (S.A.); (I.R.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
- Correspondence:
| | - Sabina Andreu
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (S.A.); (I.R.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| | - Inés Ripa
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (S.A.); (I.R.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| | - José Antonio López-Guerrero
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (S.A.); (I.R.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
6
|
Recognize Yourself-Innate Sensing of Non-LTR Retrotransposons. Viruses 2021; 13:v13010094. [PMID: 33445593 PMCID: PMC7827607 DOI: 10.3390/v13010094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/13/2022] Open
Abstract
Although mobile genetic elements, or transposons, have played an important role in genome evolution, excess activity of mobile elements can have detrimental consequences. Already, the enhanced expression of transposons-derived nucleic acids can trigger autoimmune reactions that may result in severe autoinflammatory disorders. Thus, cells contain several layers of protective measures to restrict transposons and to sense the enhanced activity of these “intragenomic pathogens”. This review focuses on our current understanding of immunogenic patterns derived from the most active elements in humans, the retrotransposons long interspersed element (LINE)-1 and Alu. We describe the role of known pattern recognition receptors in nucleic acid sensing of LINE-1 and Alu and the possible consequences for autoimmune diseases.
Collapse
|