1
|
Uti DE, Atangwho IJ, Alum EU, Ntaobeten E, Obeten UN, Bawa I, Agada SA, Ukam CIO, Egbung GE. Antioxidants in cancer therapy mitigating lipid peroxidation without compromising treatment through nanotechnology. DISCOVER NANO 2025; 20:70. [PMID: 40272665 DOI: 10.1186/s11671-025-04248-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/03/2025] [Indexed: 04/27/2025]
Abstract
BACKGROUND Cancer treatments often exploit oxidative stress to selectively kill tumour cells by disrupting their lipid peroxidation membranes and inhibiting antioxidant enzymes. However, lipid peroxidation plays a dual role in cancer progression, acting as both a tumour promoter and a suppressor. Balancing oxidative stress through antioxidant therapy remains a challenge, as excessive antioxidant activity may compromise the efficacy of chemotherapy and radiotherapy. AIM This review explores the role of antioxidants in mitigating lipid peroxidation in cancer therapy while maintaining treatment efficacy. It highlights recent advancements in nanotechnology-based targeted antioxidant delivery to optimize therapeutic outcomes. METHODS A comprehensive literature review was conducted using reputable databases, including PubMed, Scopus, Web of Science, and ScienceDirect. The search focused on publications from the past five years (2020-2025), supplemented by relevant studies from earlier years. Keywords such as "antioxidants," "lipid peroxidation," "nanotechnology in cancer therapy," and "oxidative stress" were utilized. Relevant articles were critically analysed, and graphical illustrations were created. RESULTS Emerging evidence suggests that nanoparticles, including liposomes, polymeric nanoparticles, metal-organic frameworks, and others, can effectively encapsulate and control the release of antioxidants in tumour cells while minimizing systemic toxicity. Stimuli-responsive carriers with tumour-specific targeting mechanisms further enhance antioxidant delivery. Studies indicate that these strategies help preserve normal cells, mitigate oxidative stress-related damage, and improve treatment efficacy. However, challenges such as bioavailability, stability, and potential interactions with standard therapies remain. CONCLUSION Integrating nanotechnology with antioxidant-based interventions presents a promising approach for optimizing cancer therapy. Future research should focus on refining lipid peroxidation modulation strategies, assessing oxidative stress profiles during treatment, and employing biomarkers to determine optimal antioxidant dosing. A balanced approach to antioxidant use may enhance therapeutic efficacy while minimizing adverse effects.
Collapse
Affiliation(s)
- Daniel Ejim Uti
- Department of Biochemistry, Research and Publications, Kampala International University, P.O. Box 20000, Kampala, Uganda.
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Otukpo, Benue State, Nigeria.
| | - Item Justin Atangwho
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, Calabar, Nigeria
| | - Esther Ugo Alum
- Department of Biochemistry, Research and Publications, Kampala International University, P.O. Box 20000, Kampala, Uganda
| | - Emmanuella Ntaobeten
- Department of Cancer and Haematology, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Uket Nta Obeten
- Department of Chemistry/Biochemistry and Molecular Biology, Alex Ekwueme Federal University, Ndufu-Alike Ikwo, PMB 1010, Abakaliki, Ebonyi State, Nigeria
| | - Inalegwu Bawa
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Otukpo, Benue State, Nigeria
| | - Samuel A Agada
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Otukpo, Benue State, Nigeria
| | | | - Godwin Eneji Egbung
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, Calabar, Nigeria
| |
Collapse
|
2
|
Mottaghi M, Eidi A, Heidari F, Movahhed TK, Moslehi A. SIRT1/NOX1 pathway mediated ameliorative effects of rosmarinic acid in folic acid-induced renal injury. Res Pharm Sci 2024; 19:622-633. [PMID: 39691298 PMCID: PMC11648342 DOI: 10.4103/rps.rps_213_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 04/24/2024] [Accepted: 08/18/2024] [Indexed: 12/19/2024] Open
Abstract
Background and purpose Renal injury is a serious disorder that can be caused by some diseases or agents. Rosmarinic acid (RA) is a natural and safe compound with powerful antioxidant and anti-inflammatory properties. In this study, the ameliorative effects of RA were assayed in folic acid (FA)-induced renal injury by involving the SIRT1/NOX1 pathway. Experimental approach Thirty-six male C57/BL6 mice were divided into 6 groups (n = 6) including control, vehicle, FA, RA, FA + RA 50, and FA + RA 100. After 10 days, blood urea nitrogen (BUN), creatinine, and oxidative stress were measured. The expression of SIRT1 and NOX1 proteins was evaluated by western blot. Also, histopathological alterations were assayed by H&E and PAS staining methods. Findings/Results BUN and creatinine were significantly higher in the FA group compared to the control group; however, their levels decreased after RA treatment in both doses. A significant decrease was observed in swelling, necrosis, and desquamation of tubular epithelial cells in the FA + RA 50 and FA + RA 100 groups compared to the FA group. RA in the animals receiving FA increased SIRT1 expression and the levels of GSH and SOD compared to the FA group. RA in the animals receiving FA showed a significant decrease in NOX1 expression and MDA level compared to the FA group. Conclusion and implications The findings declared that the administration of RA has positive effects against renal damage induced by FA. The effect might result from involvement in the SIRT1/NOX1 pathway and thereby attenuation of oxidative stress.
Collapse
Affiliation(s)
- Maryam Mottaghi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, I.R. Iran
| | - Akram Eidi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, I.R. Iran
| | - Fatemeh Heidari
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, I.R. Iran
| | | | - Azam Moslehi
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, I.R. Iran
- Department of Physiolgy, Faculty of Medicine, Qom University of Medical Sciences, Qom, I.R. Iran
| |
Collapse
|
3
|
Shi XY, Yue XL, Xu YS, Jiang M, Li RJ. Aldehyde dehydrogenase 2 and NOD-like receptor thermal protein domain associated protein 3 inflammasome in atherosclerotic cardiovascular diseases: A systematic review of the current evidence. Front Cardiovasc Med 2023; 10:1062502. [PMID: 36910525 PMCID: PMC9996072 DOI: 10.3389/fcvm.2023.1062502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/02/2023] [Indexed: 02/25/2023] Open
Abstract
Inflammation and dyslipidemia underlie the pathological basis of atherosclerosis (AS). Clinical studies have confirmed that there is still residual risk of atherosclerotic cardiovascular diseases (ASCVD) even after intense reduction of LDL. Some of this residual risk can be explained by inflammation as anti-inflammatory therapy is effective in improving outcomes in subjects treated with LDL-lowering agents. NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome activation is closely related to early-stage inflammation in AS. Aldehyde dehydrogenase 2 (ALDH2) is an important enzyme of toxic aldehyde metabolism located in mitochondria and works in the metabolism of toxic aldehydes such as 4-HNE and MDA. Despite studies confirming that ALDH2 can negatively regulate NLRP3 inflammasome and delay the development of atherosclerosis, the mechanisms involved are still poorly understood. Reactive Oxygen Species (ROS) is a common downstream pathway activated for NLRP3 inflammasome. ALDH2 can reduce the multiple sources of ROS, such as oxidative stress, inflammation, and mitochondrial damage, thereby reducing the activation of NLRP3 inflammasome. Further, according to the downstream of ALDH2 and the upstream of NLRP3, the molecules and related mechanisms of ALDH2 on NLRP3 inflammasome are comprehensively expounded as possible. The potential mechanism may provide potential inroads for treating ASCVD.
Collapse
Affiliation(s)
- Xue-Yun Shi
- Qilu Medical College, Shandong University, Jinan, China
| | - Xiao-Lin Yue
- Qilu Medical College, Shandong University, Jinan, China
| | - You-Shun Xu
- Qilu Medical College, Shandong University, Jinan, China
| | - Mei Jiang
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, China
| | - Rui-Jian Li
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
4
|
Chamekh A, Kharbech O, Fersi C, Driss Limam R, Brandt KK, Djebali W, Chouari R. Insights on strain 115 plant growth-promoting bacteria traits and its contribution in lead stress alleviation in pea (Pisum sativum L.) plants. Arch Microbiol 2022; 205:1. [PMID: 36436136 DOI: 10.1007/s00203-022-03341-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/20/2022] [Accepted: 11/16/2022] [Indexed: 11/28/2022]
Abstract
The present study aims to characterize the plant growth-promoting bacterial traits of Bacillus simplex (strain 115). This bacterium was inoculated in hydroponically conditions to improve pea (Pisum sativum L.) growth submitted to lead (Pb) toxicity. Root nodulation system was developed enough in 23-day-old plants attesting the interaction between the two organisms. In addition to its phosphate solubilization and siderophore production traits that reached 303.8 μg P mL-1 and 49.6 psu respectively, the Bacillus strain 115 exhibited Pb bio-sorption ability. Inoculation of Pb-stressed pea with strain 115 showed roots and shoots biomass recovery (+ 70% and + 61%, respectively). Similarly, water and protein contents were increased in Pb-treated plants after bacterial inoculation. In the presence of strain 115, Pb relative toxicity level decreased (- 39.3% compared to Pb stress only). Moreover, catalase and superoxide dismutase activities were upregulated in Pb-exposed plants (+ 56% and + 51%, respectively). After inoculation with strain 115, catalase and superoxide dismutase activities were restored by - 38% and - 44% respectively. Simultaneously, oxidant stress indicator (H2O2 and 4-hydroxynonenal) and osmo-regulators (proline and glycine-betaine) contents as well as lipoxygenase activity decreased significantly in Pb-treated plants after Bacillus strain's inoculation. Taken together, the results give some evidences for the plant growth-promoting capacity of strain 115 in helping alleviation of Pb stress.
Collapse
Affiliation(s)
- Anissa Chamekh
- Faculty of Sciences of Bizerte, Laboratory of Plant Toxicology and Environmental Microbiology (LR 18ES38), University of Carthage, 7021, Bizerte, Zarzouna, Tunisia
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Oussama Kharbech
- Faculty of Sciences of Bizerte, Laboratory of Plant Toxicology and Environmental Microbiology (LR 18ES38), University of Carthage, 7021, Bizerte, Zarzouna, Tunisia
| | - Cheima Fersi
- National Institute for Research and Physico-Chemical Analyses, 2020, Sidi Thabet, Tunisia
| | - Rim Driss Limam
- National Center for Nuclear Sciences and Technologies, 2020, Sidi Thabet, Tunisia
| | - Kristian Koefed Brandt
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Wahbi Djebali
- Faculty of Sciences of Bizerte, Laboratory of Plant Toxicology and Environmental Microbiology (LR 18ES38), University of Carthage, 7021, Bizerte, Zarzouna, Tunisia
| | - Rakia Chouari
- Faculty of Sciences of Bizerte, Laboratory of Plant Toxicology and Environmental Microbiology (LR 18ES38), University of Carthage, 7021, Bizerte, Zarzouna, Tunisia.
| |
Collapse
|
5
|
Zhou X, Fu Y, Liu W, Mu Y, Zhang H, Chen J, Liu P. Ferroptosis in Chronic Liver Diseases: Opportunities and Challenges. Front Mol Biosci 2022; 9:928321. [PMID: 35720113 PMCID: PMC9205467 DOI: 10.3389/fmolb.2022.928321] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/16/2022] [Indexed: 01/01/2023] Open
Abstract
Ferroptosis, an iron-dependent non-apoptotic cell death characterized by lipid peroxidation, is a cell death pathway discovered in recent years. Ferroptosis plays an important role in tumors, ischemia-reperfusion injury, neurological diseases, blood diseases, etc. Recent studies have shown the importance of ferroptosis in chronic liver disease. This article summarizes the pathological mechanisms of ferroptosis involved in System Xc-, iron metabolism, lipid metabolism, and some GPX4-independent pathways, and the latest research on ferroptosis in chronic liver diseases such as alcoholic liver disease, non-alcoholic fatty liver disease, liver fibrosis, hepatocellular carcinoma. In addition, the current bottleneck issues that restrict the research on ferroptosis are proposed to provide ideas and strategies for exploring new therapeutic targets for chronic liver diseases.
Collapse
Affiliation(s)
- Xiaoxi Zhou
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Yadong Fu
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
- Institute of Interdisciplinary Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Wei Liu
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Yongping Mu
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Hua Zhang
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Jiamei Chen
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Ping Liu
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
- Institute of Interdisciplinary Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
6
|
Ivanov YV, Ivanova AI, Kartashov AV, Kuznetsov VV. Phytotoxicity of short-term exposure to excess zinc or copper in Scots pine seedlings in relation to growth, water status, nutrient balance, and antioxidative activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:14828-14843. [PMID: 33219509 DOI: 10.1007/s11356-020-11723-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/16/2020] [Indexed: 06/11/2023]
Abstract
The toxic effects of heavy metals pose a significant threat to the productivity and stability of forest ecosystems. Changes in the agrochemical properties of polluted forest soils due to global climate changes can increase the bioavailability of previously immobilized heavy metals. To test this hypothesis, we studied the effects of short-term shock exposure to ZnSO4 (50, 150, 300 μM) or CuSO4 (2.5, 5, 10 μM) in hydroculture on 4- to 6-week-old seedlings of Scots pine (Pinus sylvestris L.) with well-developed root systems. The effects of the excess heavy metals on mineral nutrients and the functioning of low-molecular-weight antioxidants and glutathione in protecting plants from oxidative damage were studied. Even short-term exposure to exogenous metals led to their rapid accumulation in the root system and their subsequent transport to aboveground organs. An increase in the 4-hydroxyalkenals content in seedling needles exposed to excess Cu led to an increase in the content of proanthocyanidins and catechins, which act as scavengers of reactive oxygen species. The impact of both metals led to the rapid development of mineral nutrient imbalances in the seedlings, which were most pronounced in the presence of excess Zn. Exposure to excess Zn led to a disruption in the translocation of Fe and a decrease in the Fe content in the needles. The most dramatic consequence of Zn exposure was the development of Mn deficiency in the roots, which was the likely cause of the inhibition of phenolic compound synthesis. A deficiency in phenolic compounds can have serious environmental consequences for pine populations that are at risk of contamination by Zn and Cu salts.
Collapse
Affiliation(s)
- Yury V Ivanov
- K.A. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St, Moscow, 127276, Russia.
| | - Alexandra I Ivanova
- K.A. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St, Moscow, 127276, Russia
| | - Alexander V Kartashov
- K.A. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St, Moscow, 127276, Russia
| | - Vladimir V Kuznetsov
- K.A. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St, Moscow, 127276, Russia
| |
Collapse
|
7
|
Phytochemical Omics in Medicinal Plants. Biomolecules 2020; 10:biom10060936. [PMID: 32575904 PMCID: PMC7356902 DOI: 10.3390/biom10060936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
Medicinal plants are used to treat diseases and provide health benefits, and their applications are increasing around the world [...].
Collapse
|