1
|
So CY, Li Y, Chow KT. New insights on Galectin-9 expression in cancer prognosis: An updated systemic review and meta-analysis. PLoS One 2025; 20:e0320441. [PMID: 40138336 PMCID: PMC11940609 DOI: 10.1371/journal.pone.0320441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 02/18/2025] [Indexed: 03/29/2025] Open
Abstract
Galectin-9 (Gal-9) has gained increasing attention in recent years in the field of cancer immunology. Its interactions with various immune cell types in the tumor microenvironment influence tumor progression, making it a novel target for immunotherapy. Despite its potential as a therapeutic target, the prognostic significance of Gal-9 in tumor cells remains unclear. Conflicting data exists on its expression levels and outcomes, prompting a comprehensive review and meta-analysis to elucidate its independent prognostic role across different cancer types. This study aims to examine the varying effects of Gal-9 expression across various cancer subtypes, providing insights into its potential as a prognostic marker and highlighting its significance in the realm of cancer treatment. To assess the prognostic significance of Gal-9 expression in cancer, we conducted a comprehensive database search across PubMed, Embase, and Web of Science, incorporating studies published until December 2024, regardless of language. Using pooled hazard ratios (HRs) with 95% confidence intervals (CIs), we evaluated the role of Gal-9 expression in predicting cancer outcomes across various cancer types. Our analysis encompassed 29 studies with a total of 4,720 patients to investigate the prognostic significance of Gal-9 expression across different cancer types. The results demonstrated that elevated Gal-9 expression was significantly associated with improved overall survival (OS) in solid tumors, with a pooled hazard ratio of 0.75 (95% CI: 0.63-0.90, p = 0.002). No statistically significant correlation was observed between Gal-9 expression and cancer recurrence (HR = 0.88, 95% CI: 0.65-1.19, p = 0.42). Conversely, in hematological cancers, high Gal-9 expression correlated with more rapid disease progression, as reflected by progression-free survival (PFS) or time to treatment (TTT) (HR = 2.29, 95% CI: 1.26-4.16, p = 0.007). The subgroup analyses further revealed that higher Gal-9 expression was associated with OS in gastrointestinal and urological cancers and was linked to disease-free survival (DFS) and recurrence-free survival (RFS) in hepatobiliary and urological cancers. Our research has uncovered that Gal-9 serves as a promising prognostic indicator for solid tumors, offering valuable insights into patient outcomes. High levels of Gal-9 expression within gastrointestinal, hepatobiliary, and urological cancers have been linked to better prognoses, while its presence in hematological cancers is associated with poorer outcomes. These contrasting findings emphasize the importance of interpreting biomarkers with careful consideration to the specific context. Moreover, our study sheds light on the diverse physiological roles of intracellular and secreted Gal-9, highlighting the intricate ways in which this protein influences cancer progression.
Collapse
Affiliation(s)
- Chun Yan So
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Yusong Li
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Kwan Ting Chow
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR
| |
Collapse
|
2
|
Zhang N, Liu Q, Wang D, Wang X, Pan Z, Han B, He G. Multifaceted roles of Galectins: from carbohydrate binding to targeted cancer therapy. Biomark Res 2025; 13:49. [PMID: 40134029 PMCID: PMC11934519 DOI: 10.1186/s40364-025-00759-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/05/2025] [Indexed: 03/27/2025] Open
Abstract
Galectins play pivotal roles in cellular recognition and signaling processes by interacting with glycoconjugates. Extensive research has highlighted the significance of Galectins in the context of cancer, aiding in the identification of biomarkers for early detection, personalized therapy, and predicting treatment responses. This review offers a comprehensive overview of the structural characteristics, ligand-binding properties, and interacting proteins of Galectins. We delve into their biological functions and examine their roles across various cancer types. Galectins, characterized by a conserved carbohydrate recognition domain (CRD), are divided into prototype, tandem-repeat, and chimera types based on their structural configurations. Prototype Galectins contain a single CRD, tandem-repeat Galectins contain two distinct CRDs linked by a peptide, and the chimera-type Galectin-3 features a unique structural arrangement. The capacity of Galectins to engage in multivalent interactions allows them to regulate a variety of signaling pathways, thereby affecting cell fate and function. In cancer, Galectins contribute to tumor cell transformation, angiogenesis, immune evasion, and metastasis, making them critical targets for therapeutic intervention. This review discusses the multifaceted roles of Galectins in cancer progression and explores current advancements in the development of Galectin-targeted therapies. We also address the challenges and future directions for integrating Galectin research into clinical practice to enhance cancer treatment outcomes. In brief, understanding the complex functions of Galectins in cancer biology opens new avenues for therapeutic strategies. Continued research on Galectin interactions and their pathological roles is essential for developing effective carbohydrate-based treatments and improving clinical interventions for cancer patients.
Collapse
Affiliation(s)
- Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Qiao Liu
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Daihan Wang
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Xiaoyun Wang
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Zhaoping Pan
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Gu He
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, 116023, China.
| |
Collapse
|
3
|
Prouza V, Zýka J, Kozák J, Magdolenová A, Pohl R, Parkan K. The Evaluation of Glyceryl C3-Azolyl-Thiogalactosides as Galectin-1 and Galectin-3 Ligands. ChemMedChem 2025; 20:e202400826. [PMID: 39673714 DOI: 10.1002/cmdc.202400826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/16/2024]
Abstract
Galectins are a family of galactoside-binding proteins involved in various pathophysiological processes, which makes them attractive targets for drug discovery. The derivatization of d-galactose at C3 and C1 positions has been shown to increase the affinity of synthetic galectin antagonists. In this study, two small libraries of d-galactose derivatives have been designed and synthesized. The first series involved the development of novel aromatic 3-azolyl-3-deoxy-d-galactopyranoses. The second series consisted of epimeric analogs of glyceryl β-S-d-galactopyranosides, which were also derivatized. Binding-affinity evaluations for galectin-1 and galectin-3 have revealed that galactose analogs from both series have potential for further optimization. Notably, a combination of modifications at the C3 position of the galactose ring and on the aglycone has led to the identification of promising galectin inhibitors, specifically the compounds 29R and 32S.
Collapse
Affiliation(s)
- Vít Prouza
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Jakub Zýka
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Jaroslav Kozák
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague, Czech Republic
| | - Alžbeta Magdolenová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague, Czech Republic
| | - Kamil Parkan
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague, Czech Republic
| |
Collapse
|
4
|
Gossink EM, Coffer PJ, Cutilli A, Lindemans CA. Immunomodulation by galectin-9: Distinct role in T cell populations, current therapeutic avenues and future potential. Cell Immunol 2025; 407:104890. [PMID: 39571310 DOI: 10.1016/j.cellimm.2024.104890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 12/15/2024]
Abstract
Galectins, glycan-binding proteins, have been identified as critical regulators of the immune system. Recently, Galectin-9 (Gal-9) has emerged as biomarker that correlates with disease severity in a range of inflammatory conditions. However, Gal-9 has highly different roles in the context of immunoregulation, with the potential to either stimulate or suppress the immune response. Neutralizing antibodies targeting Gal-9 have been developed and are in early test phase investigating their therapeutic potential in cancer. Despite ongoing research, the mechanisms behind Gal-9 action remain not fully understood, and extrapolating the implications of targeting this molecule from previous studies is challenging. Here, we examine the pleiotropic function of Gal-9 focusing on conventional T lymphocytes, providing a current overview of its immunostimulatory and immunosuppressive roles. In particular, we highlight that Gal-9 differentially regulates immune responses depending on the context. Considering this complexity, further investigation of Gal-9's intricate biology is necessary to define therapeutic strategies in immune disorders and cancer treatment aimed at inducing or inhibiting Gal-9 signaling.
Collapse
Affiliation(s)
- Eva M Gossink
- Princess Máxima Center for Pediatric Oncology, 3584CS Utrecht, the Netherlands; Division of Pediatrics, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, 3584CT Utrecht, the Netherlands
| | - Paul J Coffer
- Division of Pediatrics, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, 3584CT Utrecht, the Netherlands; Center of Molecular Medicine, University Medical Center Utrecht, 3584CG Utrecht, the Netherlands
| | - Alessandro Cutilli
- Regenerative Medicine Center, University Medical Center Utrecht, 3584CT Utrecht, the Netherlands; Center of Molecular Medicine, University Medical Center Utrecht, 3584CG Utrecht, the Netherlands
| | - Caroline A Lindemans
- Princess Máxima Center for Pediatric Oncology, 3584CS Utrecht, the Netherlands; Division of Pediatrics, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, 3584CT Utrecht, the Netherlands.
| |
Collapse
|
5
|
Sun Y, Hsieh T, Lin C, Shao W, Lin Y, Huang J. A Few Charged Residues in Galectin-3's Folded and Disordered Regions Regulate Phase Separation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402570. [PMID: 39248370 PMCID: PMC11538691 DOI: 10.1002/advs.202402570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/25/2024] [Indexed: 09/10/2024]
Abstract
Proteins with intrinsically disordered regions (IDRs) often undergo phase separation to control their functions spatiotemporally. Changing the pH alters the protonation levels of charged sidechains, which in turn affects the attractive or repulsive force for phase separation. In a cell, the rupture of membrane-bound compartments, such as lysosomes, creates an abrupt change in pH. However, how proteins' phase separation reacts to different pH environments remains largely unexplored. Here, using extensive mutagenesis, NMR spectroscopy, and biophysical techniques, it is shown that the assembly of galectin-3, a widely studied lysosomal damage marker, is driven by cation-π interactions between positively charged residues in its folded domain with aromatic residues in the IDR in addition to π-π interaction between IDRs. It is also found that the sole two negatively charged residues in its IDR sense pH changes for tuning the condensation tendency. Also, these two residues may prevent this prion-like IDR domain from forming rapid and extensive aggregates. These results demonstrate how cation-π, π-π, and electrostatic interactions can regulate protein condensation between disordered and structured domains and highlight the importance of sparse negatively charged residues in prion-like IDRs.
Collapse
Affiliation(s)
- Yung‐Chen Sun
- Institute of Biochemistry and Molecular BiologyNational Yang Ming Chiao Tung UniversityNo. 155, Sec. 2, Linong St.Taipei112304Taiwan
- Taiwan International Graduate Program in Molecular MedicineNational Yang Ming Chiao Tung University and Academia SinicaTaipeiTaiwan
| | - Tsung‐Lun Hsieh
- Institute of Biochemistry and Molecular BiologyNational Yang Ming Chiao Tung UniversityNo. 155, Sec. 2, Linong St.Taipei112304Taiwan
| | - Chia‐I Lin
- Institute of Biochemistry and Molecular BiologyNational Yang Ming Chiao Tung UniversityNo. 155, Sec. 2, Linong St.Taipei112304Taiwan
| | - Wan‐Yu Shao
- Department of Life Sciences and Institute of Genome SciencesNational Yang Ming Chiao Tung UniversityNo. 155, Sec. 2, Linong St.Taipei112304Taiwan
| | - Yu‐Hao Lin
- Institute of Biochemistry and Molecular BiologyNational Yang Ming Chiao Tung UniversityNo. 155, Sec. 2, Linong St.Taipei112304Taiwan
- Taiwan International Graduate Program in Molecular MedicineNational Yang Ming Chiao Tung University and Academia SinicaTaipeiTaiwan
| | - Jie‐rong Huang
- Institute of Biochemistry and Molecular BiologyNational Yang Ming Chiao Tung UniversityNo. 155, Sec. 2, Linong St.Taipei112304Taiwan
- Department of Life Sciences and Institute of Genome SciencesNational Yang Ming Chiao Tung UniversityNo. 155, Sec. 2, Linong St.Taipei112304Taiwan
- Institute of Biomedical InformaticsNational Yang Ming Chiao Tung UniversityNo. 155, Sec. 2, Linong St.Taipei112304Taiwan
| |
Collapse
|
6
|
Weng M, Zhang R, Zhang Z, Wu J, Zheng W, Lu Q, Long S, Liu R, Wang Z, Cui J. A Novel Trichinella spiralis Galectin Strengthens the Macrophage ADCC Killing of Larvae via Driving M1 Polarization. Int J Mol Sci 2024; 25:10920. [PMID: 39456703 PMCID: PMC11506943 DOI: 10.3390/ijms252010920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Galectin recognizes β-galactosides through its carbohydrate recognition domains (CRDs). This study aimed to determine the biological features of a novel Trichinella spiralis galectin (galactoside-binding lectin family protein, TsGLFP) and its role in driving macrophage M1 polarization and enhancing ADCC killing of larvae. TsGLFP belongs to the galectin family and has two CRDs. The complete TsGLFP cDNA sequence was cloned and then expressed in Escherichia coli BL21. The results of qPCR, Western blot, and indirect immunofluorescence tests (IIFTs) revealed that TsGLFP was expressed in various stages of T. spiralis worms and principally localized at the cuticle and around the female embryos of the nematode. rTsGLFP had the function of agglutinating mouse erythrocytes, and this agglutination activity could be inhibited by lactose. After the mouse macrophage RAW264.7 was incubated with rTsGLFP, the expression level of the M1 genes (iNOS, IL-6, and TNF-α) and NO production were obviously increased. After incubating macrophages with rTsGLFP, there was a noticeable rise in the expression levels of p-IκB-α and p-NF-κB p65. Additionally, rTsGLFP enhanced the macrophage's ability to kill newborn larvae by ADCC cytotoxicity. When the macrophages were pretreated with the specific p-NF-κB p65 inhibitor PDTC, and then stimulated with rTsGLFP, the expression levels of iNOS, NO, and p-NF-κB p65 and the macrophages' ADCC cytotoxicity were distinctly decreased. These findings indicated that rTsGLFP enhanced the macrophage ADCC killing of larvae by driving M1 polarization through activating the NF-κB pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhongquan Wang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (M.W.); (R.Z.); (Z.Z.); (J.W.); (W.Z.); (Q.L.); (S.L.); (R.L.)
| | - Jing Cui
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (M.W.); (R.Z.); (Z.Z.); (J.W.); (W.Z.); (Q.L.); (S.L.); (R.L.)
| |
Collapse
|
7
|
Shil RK, Mohammed NBB, Dimitroff CJ. Galectin-9 - ligand axis: an emerging therapeutic target for multiple myeloma. Front Immunol 2024; 15:1469794. [PMID: 39386209 PMCID: PMC11461229 DOI: 10.3389/fimmu.2024.1469794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Galectin-9 (Gal-9) is a tandem-repeat galectin with diverse roles in immune homeostasis, inflammation, malignancy, and autoimmune diseases. In cancer, Gal-9 displays variable expression patterns across different tumor types. Its interactions with multiple binding partners, both intracellularly and extracellularly, influence key cellular processes, including immune cell modulation and tumor microenvironment dynamics. Notably, Gal-9 binding to cell-specific glycoconjugate ligands has been implicated in both promoting and suppressing tumor progression. Here, we provide insights into Gal-9 and its involvement in immune homeostasis and cancer biology with an emphasis on multiple myeloma (MM) pathophysiology, highlighting its complex and context-dependent dual functions as a pro- and anti-tumorigenic molecule and its potential implications for therapy in MM patients.
Collapse
Affiliation(s)
- Rajib K. Shil
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Norhan B. B. Mohammed
- The Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, United States
- Department of Medical Biochemistry, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Charles J. Dimitroff
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| |
Collapse
|
8
|
Miura A, Manabe Y, Suzuki KGN, Shomura H, Okamura S, Shirakawa A, Yano K, Miyake S, Mayusumi K, Lin CC, Morimoto K, Ishitobi J, Nakase I, Arai K, Kobayashi S, Ishikawa U, Kanoh H, Miyoshi E, Yamaji T, Kabayama K, Fukase K. De Novo Glycan Display on Cell Surfaces Using HaloTag: Visualizing the Effect of the Galectin Lattice on the Lateral Diffusion and Extracellular Vesicle Loading of Glycosylated Membrane Proteins. J Am Chem Soc 2024; 146:22193-22207. [PMID: 38963258 DOI: 10.1021/jacs.4c02040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Glycans cover the cell surface to form the glycocalyx, which governs a myriad of biological phenomena. However, understanding and regulating glycan functions is extremely challenging due to the large number of heterogeneous glycans that engage in intricate interaction networks with diverse biomolecules. Glycocalyx-editing techniques offer potent tools to probe their functions. In this study, we devised a HaloTag-based technique for glycan manipulation, which enables the introduction of chemically synthesized glycans onto a specific protein (protein of interest, POI) and concurrently incorporates fluorescent units to attach homogeneous, well-defined glycans to the fluorescence-labeled POIs. Leveraging this HaloTag-based glycan-display system, we investigated the influence of the interactions between Gal-3 and various N-glycans on protein dynamics. Our analyses revealed that glycosylation modulates the lateral diffusion of the membrane proteins in a structure-dependent manner through interaction with Gal-3, particularly in the context of the Gal-3-induced formation of the glycan network (galectin lattice). Furthermore, N-glycan attachment was also revealed to have a significant impact on the extracellular vesicle-loading of membrane proteins. Notably, our POI-specific glycan introduction does not disrupt intact glycan structures, thereby enabling a functional analysis of glycans in the presence of native glycan networks. This approach complements conventional glycan-editing methods and provides a means for uncovering the molecular underpinnings of glycan functions on the cell surface.
Collapse
Affiliation(s)
- Ayane Miura
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Kenichi G N Suzuki
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
- National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan
| | - Hiroki Shomura
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Soichiro Okamura
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Asuka Shirakawa
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Kumpei Yano
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Shuto Miyake
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Koki Mayusumi
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Chun-Cheng Lin
- Department of Chemistry, National Tsing-Hua University, Hsinchu 30013, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Kenta Morimoto
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Jojiro Ishitobi
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Ikuhiko Nakase
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- Department of Biological Chemistry, School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Kenta Arai
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, Hyogo 651-2492, Japan
| | - Shouhei Kobayashi
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, Hyogo 651-2492, Japan
| | - Ushio Ishikawa
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsushima, Aoba Ward, Sendai, Miyagi 981-8558, Japan
| | - Hirotaka Kanoh
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsushima, Aoba Ward, Sendai, Miyagi 981-8558, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Toshiyuki Yamaji
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Kazuya Kabayama
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Interdisciplinary Research Center for Radiation Sciences, Institute for Radiation Sciences, Osaka University, 2-4 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Center for Advanced Modalities and DDS, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
9
|
van Klaveren S, Hassan M, Håkansson M, Johnsson RE, Larsson J, Jakopin Ž, Anderluh M, Leffler H, Tomašič T, Nilsson UJ. Galectin-8N-Selective 4-Halophenylphthalazinone-Galactals Double π-Stack in a Unique Pocket. ACS Med Chem Lett 2024; 15:1319-1324. [PMID: 39140038 PMCID: PMC11318003 DOI: 10.1021/acsmedchemlett.4c00212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
Galectin-8 contains two different carbohydrate recognition domains (CRDs). Selective inhibitors for at least one CRD are desirable for galectin-8 biology studies and potentially for pharmacological purposes. Structure-guided design led to the discovery of potent and selective glycomimetic-heterocycle hybrid ligands, with a 4-(p-bromophenyl)phthalazinone derivative displaying a 34 μM K d for galectin-8N (N-terminal CRD), no binding to galectin-8C (C-terminal CRD), -1, -3, -4N, -7, -9C, or -9N, and >40-fold selectivity over galectin-4C. Selectivity was achieved with the halogenated 4-phenylphthalazinone moiety occupying a galectin-8N-specific sub-pocket. A 1.30 Å resolution X-ray structure revealed the phthalazinone moiety stacking with Arg45 and the 4-bromophenyl moiety stacking both Arg59 and Tyr141 of galectin-8N. Physicochemical and in vitro ADME studies revealed a desirable LogD, which also translated to good passive permeability. The chemical, microsome, and plasma stability support these compounds as promising tool compounds and candidates for hit-to-lead optimization.
Collapse
Affiliation(s)
- Sjors van Klaveren
- Department
of Chemistry, Faculty of Science, Lund University, Naturvetarvägen 14, 223 62, Lund, Sweden
- Pharmaceutical
Chemistry, Faculty of Pharmacy, University
of Ljubljana, Aškerčeva
cesta 7, 1000 Ljubljana, Slovenia
| | - Mujtaba Hassan
- Department
of Chemistry, Faculty of Science, Lund University, Naturvetarvägen 14, 223 62, Lund, Sweden
| | - Maria Håkansson
- SARomics
Biostructures AB, Medicon
Village, SE-223 81, Lund, Sweden
| | | | - Jessica Larsson
- Red
Glead Discovery AB, Medicon
Village, SE-223 81, Lund, Sweden
| | - Žiga Jakopin
- Pharmaceutical
Chemistry, Faculty of Pharmacy, University
of Ljubljana, Aškerčeva
cesta 7, 1000 Ljubljana, Slovenia
| | - Marko Anderluh
- Pharmaceutical
Chemistry, Faculty of Pharmacy, University
of Ljubljana, Aškerčeva
cesta 7, 1000 Ljubljana, Slovenia
| | - Hakon Leffler
- Department
of Laboratory Medicine, Section MIG, Lund
University, BMC-C1228b, Klinikgatan 28, 221 84, Lund, Sweden
| | - Tihomir Tomašič
- Pharmaceutical
Chemistry, Faculty of Pharmacy, University
of Ljubljana, Aškerčeva
cesta 7, 1000 Ljubljana, Slovenia
| | - Ulf J. Nilsson
- Department
of Chemistry, Faculty of Science, Lund University, Naturvetarvägen 14, 223 62, Lund, Sweden
| |
Collapse
|
10
|
Fan Y, Meng Y, Hu X, Liu J, Qin X. Uncovering novel mechanisms of chitinase-3-like protein 1 in driving inflammation-associated cancers. Cancer Cell Int 2024; 24:268. [PMID: 39068486 PMCID: PMC11282867 DOI: 10.1186/s12935-024-03425-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
Chitinase-3-like protein 1 (CHI3L1) is a secreted glycoprotein that is induced and regulated by multiple factors during inflammation in enteritis, pneumonia, asthma, arthritis, and other diseases. It is associated with the deterioration of the inflammatory environment in tissues with chronic inflammation caused by microbial infection or autoimmune diseases. The expression of CHI3L1 expression is upregulated in several malignant tumors, underscoring the crucial role of chronic inflammation in the initiation and progression of cancer. While the precise mechanism connecting inflammation and cancer is unclear, the involvement of CHI3L1 is involved in chronic inflammation, suggesting its role as a contributing factor to in the link between inflammation and cancer. CHI3L1 can aggravate DNA oxidative damage, induce the cancerous phenotype, promote the development of a tumor inflammatory environment and angiogenesis, inhibit immune cells, and promote cancer cell growth, invasion, and migration. Furthermore, it participates in the initiation of cancer progression and metastasis by binding with transmembrane receptors to mediate intracellular signal transduction. Based on the current research on CHI3L1, we explore introduce the receptors that interact with CHI3L1 along with the signaling pathways that may be triggered during chronic inflammation to enhance tumorigenesis and progression. In the last section of the article, we provide a brief overview of anti-inflammatory therapies that target CHI3L1.
Collapse
Affiliation(s)
- Yan Fan
- Department of Laboratory Medicine, Liaoning Clinical Research Center for Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110122, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| | - Yuan Meng
- Department of Laboratory Medicine, Liaoning Clinical Research Center for Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110122, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| | - Xingwei Hu
- Department of Laboratory Medicine, Liaoning Clinical Research Center for Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110122, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| | - Jianhua Liu
- Department of Laboratory Medicine, Liaoning Clinical Research Center for Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110122, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| | - Xiaosong Qin
- Department of Laboratory Medicine, Liaoning Clinical Research Center for Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110122, China.
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China.
| |
Collapse
|
11
|
Anila MM, Rogowski P, Różycki B. Scrutinising the Conformational Ensemble of the Intrinsically Mixed-Folded Protein Galectin-3. Molecules 2024; 29:2768. [PMID: 38930833 PMCID: PMC11207097 DOI: 10.3390/molecules29122768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/24/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Galectin-3 is a protein involved in many intra- and extra-cellular processes. It has been identified as a diagnostic or prognostic biomarker for certain types of heart disease, kidney disease and cancer. Galectin-3 comprises a carbohydrate recognition domain (CRD) and an N-terminal domain (NTD), which is unstructured and contains eight collagen-like Pro-Gly-rich tandem repeats. While the structure of the CRD has been solved using protein crystallography, current knowledge about conformations of full-length galectin-3 is limited. To fill in this knowledge gap, we performed molecular dynamics (MD) simulations of full-length galectin-3. We systematically re-scaled the solute-solvent interactions in the Martini 3 force field to obtain the best possible agreement between available data from SAXS experiments and the ensemble of conformations generated in the MD simulations. The simulation conformations were found to be very diverse, as reflected, e.g., by (i) large fluctuations in the radius of gyration, ranging from about 2 to 5 nm, and (ii) multiple transient contacts made by amino acid residues in the NTD. Consistent with evidence from NMR experiments, contacts between the CRD and NTD were observed to not involve the carbohydrate-binding site on the CRD surface. Contacts within the NTD were found to be made most frequently by aromatic residues. Formation of fuzzy complexes with unspecific stoichiometry was observed to be mediated mostly by the NTD. Taken together, we offer a detailed picture of the conformational ensemble of full-length galectin-3, which will be important for explaining the biological functions of this protein at the molecular level.
Collapse
Affiliation(s)
| | | | - Bartosz Różycki
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland; (M.M.A.); (P.R.)
| |
Collapse
|
12
|
Yoshimura H, Takeda Y, Shirai Y, Yamamoto M, Nakatsubo D, Amiya S, Enomoto T, Hara R, Adachi Y, Edahiro R, Yaga M, Masuhiro K, Koba T, Itoh-Takahashi M, Nakayama M, Takata S, Hosono Y, Obata S, Nishide M, Hata A, Yanagawa M, Namba S, Iwata M, Hamano M, Hirata H, Koyama S, Iwahori K, Nagatomo I, Suga Y, Miyake K, Shiroyama T, Fukushima K, Futami S, Naito Y, Kawasaki T, Mizuguchi K, Kawashima Y, Yamanishi Y, Adachi J, Nogami-Itoh M, Ueki S, Kumanogoh A. Galectin-10 in serum extracellular vesicles reflects asthma pathophysiology. J Allergy Clin Immunol 2024; 153:1268-1281. [PMID: 38551536 DOI: 10.1016/j.jaci.2023.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 11/13/2023] [Accepted: 12/07/2023] [Indexed: 05/07/2024]
Abstract
BACKGROUND Novel biomarkers (BMs) are urgently needed for bronchial asthma (BA) with various phenotypes and endotypes. OBJECTIVE We sought to identify novel BMs reflecting tissue pathology from serum extracellular vesicles (EVs). METHODS We performed data-independent acquisition of serum EVs from 4 healthy controls, 4 noneosinophilic asthma (NEA) patients, and 4 eosinophilic asthma (EA) patients to identify novel BMs for BA. We confirmed EA-specific BMs via data-independent acquisition validation in 61 BA patients and 23 controls. To further validate these findings, we performed data-independent acquisition for 6 patients with chronic rhinosinusitis without nasal polyps and 7 patients with chronic rhinosinusitis with nasal polyps. RESULTS We identified 3032 proteins, 23 of which exhibited differential expression in EA. Ingenuity pathway analysis revealed that protein signatures from each phenotype reflected disease characteristics. Validation revealed 5 EA-specific BMs, including galectin-10 (Gal10), eosinophil peroxidase, major basic protein, eosinophil-derived neurotoxin, and arachidonate 15-lipoxygenase. The potential of Gal10 in EVs was superior to that of eosinophils in terms of diagnostic capability and detection of airway obstruction. In rhinosinusitis patients, 1752 and 8413 proteins were identified from EVs and tissues, respectively. Among 11 BMs identified in EVs and tissues from patients with chronic rhinosinusitis with nasal polyps, 5 (including Gal10 and eosinophil peroxidase) showed significant correlations between EVs and tissues. Gal10 release from EVs was implicated in eosinophil extracellular trapped cell death in vitro and in vivo. CONCLUSION Novel BMs such as Gal10 from serum EVs reflect disease pathophysiology in BA and may represent a new target for liquid biopsy approaches.
Collapse
Affiliation(s)
- Hanako Yoshimura
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshito Takeda
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | - Yuya Shirai
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Makoto Yamamoto
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Daisuke Nakatsubo
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Saori Amiya
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takatoshi Enomoto
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Reina Hara
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuichi Adachi
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Ryuya Edahiro
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Moto Yaga
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kentaro Masuhiro
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Taro Koba
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Miho Itoh-Takahashi
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Mana Nakayama
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - So Takata
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuki Hosono
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Sho Obata
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masayuki Nishide
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Akinori Hata
- Department of Radiology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masahiro Yanagawa
- Department of Radiology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Satoko Namba
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka, Japan
| | - Michio Iwata
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka, Japan
| | - Momoko Hamano
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka, Japan
| | - Haruhiko Hirata
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shohei Koyama
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kota Iwahori
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Izumi Nagatomo
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yasuhiko Suga
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kotaro Miyake
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takayuki Shiroyama
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kiyoharu Fukushima
- Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Osaka, Japan
| | - Shinji Futami
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yujiro Naito
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takahiro Kawasaki
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Osaka, Japan
| | - Kenji Mizuguchi
- Laboratory of Bioinformatics, Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan; Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Yusuke Kawashima
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Yoshihiro Yamanishi
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka, Japan; Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Nagoya, Aichi, Japan
| | - Jun Adachi
- Laboratory of Proteomics for Drug Discovery Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Mari Nogami-Itoh
- Laboratory of Bioinformatics, Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Shigeharu Ueki
- Department of General Internal Medicine and Clinical Laboratory Medicine, University Graduate School of Medicine, Hondo, Akita, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Osaka, Japan; Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan; Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan; Center for Advanced Modalities and DDS (CAMaD), Osaka University, Suita, Osaka, Japan
| |
Collapse
|
13
|
Perez-Moreno E, Oyanadel C, de la Peña A, Hernández R, Pérez-Molina F, Metz C, González A, Soza A. Galectins in epithelial-mesenchymal transition: roles and mechanisms contributing to tissue repair, fibrosis and cancer metastasis. Biol Res 2024; 57:14. [PMID: 38570874 PMCID: PMC10993482 DOI: 10.1186/s40659-024-00490-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/12/2024] [Indexed: 04/05/2024] Open
Abstract
Galectins are soluble glycan-binding proteins that interact with a wide range of glycoproteins and glycolipids and modulate a broad spectrum of physiological and pathological processes. The expression and subcellular localization of different galectins vary among tissues and cell types and change during processes of tissue repair, fibrosis and cancer where epithelial cells loss differentiation while acquiring migratory mesenchymal phenotypes. The epithelial-mesenchymal transition (EMT) that occurs in the context of these processes can include modifications of glycosylation patterns of glycolipids and glycoproteins affecting their interactions with galectins. Moreover, overexpression of certain galectins has been involved in the development and different outcomes of EMT. This review focuses on the roles and mechanisms of Galectin-1 (Gal-1), Gal-3, Gal-4, Gal-7 and Gal-8, which have been involved in physiologic and pathogenic EMT contexts.
Collapse
Affiliation(s)
- Elisa Perez-Moreno
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia (CCTE) Ciencia y Vida, Santiago, Chile
| | - Claudia Oyanadel
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Departamento de Ciencias Biológicas y Químicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Adely de la Peña
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia (CCTE) Ciencia y Vida, Santiago, Chile
| | - Ronny Hernández
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Francisca Pérez-Molina
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Claudia Metz
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Alfonso González
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
- Centro Científico y Tecnológico de Excelencia (CCTE) Ciencia y Vida, Santiago, Chile.
| | - Andrea Soza
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
- Centro Científico y Tecnológico de Excelencia (CCTE) Ciencia y Vida, Santiago, Chile.
| |
Collapse
|
14
|
Sharma JR, Dubey A, Yadav UCS. Cigarette smoke-induced galectin-3 as a diagnostic biomarker and therapeutic target in lung tissue remodeling. Life Sci 2024; 339:122433. [PMID: 38237765 DOI: 10.1016/j.lfs.2024.122433] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
Galectin-3 (Gal-3), a multifunctional carbohydrate-binding lectin, has emerged as a key player in various biological processes including inflammation, cancer, cardiovascular diseases and fibrotic disorders, however it remains unclear if Gal-3 is a bystander or drives lung tissue remodeling (LTR). Persistent exposure to cigarette smoke (CS) is the leading cause of oxidative and inflammatory damage to the lung tissues. CS-induced pathological increase in Gal-3 expression has been implicated in the pathogenesis of various respiratory conditions, such as chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and lung cancer. We and others have reported that CS induces Gal-3 synthesis and secretion, which modulates the pathological signaling pathways in lung epithelial cells implicating Gal-3 as a novel diagnostic marker and a factor driving LTR in CS-exposed lungs. Therefore, pharmacological interventions targeting Gal-3 and its upstream and downstream signaling pathways can help combat CS-induced LTR. Excitingly, preclinical models have demonstrated the efficacy of interventions such as Gal-3 expression inhibition, Gal-3 receptor blockade, and signaling pathways modulation open up promising avenues for future therapeutic interventions. Furthermore, targeting extracellular vesicles-mediated Gal-3 release and the potential of microRNA-based therapy are emerging as novel therapeutic approaches in CS-induced LTR and have been discussed in this article.
Collapse
Affiliation(s)
- Jiten R Sharma
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Anupama Dubey
- Special Center for Systems Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Umesh C S Yadav
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India; Special Center for Systems Medicine, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
15
|
Huang M, Lou X, Tao T, Li H, Guo Y, Yuan Z, Yang S, Fei H. Largemouth bass galectin, MsGal-9: Mediating various functions as a pattern recognition receptor and a potential damage-associated molecular pattern. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109348. [PMID: 38163493 DOI: 10.1016/j.fsi.2023.109348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Galectins are lectins that bind to β-galactose and are widely expressed in immune system tissues, playing pivotal roles in innate immunity through their conserved carbohydrate-recognition domains (CRDs). In this present investigation, a tandem-repeat galectin was discovered in the largemouth bass, Micropterus salmoides (designated as MsGal-9). The open reading frame of MsGal-9 encodes two CRDs, each containing two consensus motifs that are essential for ligand binding. MsGal-9 is expressed in various tissues of the largemouth bass, with particularly high expression levels in the liver and spleen. The full-length form of MsGal-9, as well as the N-terminal (MsGal-9-N) and C-terminal (MsGal-9-C) CRDs, were individually recombined. Their ability for nonself recognition was studied. The three recombinant proteins were able to bind to glucan (GLU), peptidoglycan (PGN), and lipopolysaccharide (LPS), with MsGal-9 displaying the highest binding activity. Furthermore, rMsGal-9-N exhibited higher binding activity towards GLU in comparison to rMsGal-9-C. Further investigations revealed that the full-length rMsGal-9 could significantly bind to Gram-positive bacteria, Gram-negative bacteria, and fungi, while rMsGal-9-C specifically bound to Escherichia coli. However, rMsGal-9-N did not exhibit significant binding activity towards any microbes. These findings indicate that MsGal-9 requires both CRDs to cooperate in order to fulfill its nonself recognition function. All three recombinant proteins demonstrated agglutination activity towards various microbes, with MsGal-9 and MsGal-9-N displaying a similar broad binding spectrum, while MsGal-9-C agglutinated three types of bacteria. Moreover, both MsGal-9 and MsGal-9-N were capable of coagulating largemouth bass red blood cells, whereas MsGal-9-C lacked this ability. However, MsGal-9-C played a significant role in enhancing the encapsulation of leukocytes in comparison to MsGal-9-N. All three proteins acted as potential damage-associated molecular patterns (DAMPs), inducing apoptosis in leukocytes.
Collapse
Affiliation(s)
- Mengmeng Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiaocong Lou
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Tao Tao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Haoyuan Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yang Guo
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhenzhen Yuan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Shun Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Hui Fei
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
16
|
Warnakula WADLR, Udayantha HMV, Liyanage DS, Omeka WKM, Lim C, Kim G, Sirisena DMKP, Jayamali BPMV, Wan Q, Lee J. Galectin 9 restricts viral replication in teleost via autophagy-antiviral pathway and polarizes M2 macrophages for anti-inflammatory response: New insights into functional properties of fish Galectin-9 from Planiliza haematocheilus. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109172. [PMID: 37858785 DOI: 10.1016/j.fsi.2023.109172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/27/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Galectin 9 (Gal9) is a tandem repeat type ß-galactoside-binding galectin that mediates various cellular biochemical and immunological functions. Many studies have investigated the functional properties of Gal9 in mammals; however, knowledge of fish Gal9 is limited to antibacterial studies. In this context, our aim was to clone Gal9 from Planiliza haematocheilus (PhGal9) and investigate its structural and functional characteristics. We discovered the PhGal9 open reading frame, which was 969 base pairs long and encoded a 322 amino acid protein. PhGal9 had a projected molecular weight of 35.385 kDa but no signal peptide sequence. PhGal9 mRNA was ubiquitously produced in all investigated tissues but was predominant in the intestine, spleen, and brain. Its mRNA expression was increased in response to stimulation by Poly(I:C), LPS, and L. garvieae. The rPhGal9 exhibited a dose-dependent agglutination potential toward gram-positive and gram-negative bacteria at a minimum concentration of 50 μg/mL. Overexpression of PhGal9 promoted M2-like phenotype changes in mouse macrophages, and RT-qPCR analysis of M1 and M2 marker genes confirmed M2 polarization with upregulation of M2 marker genes. In the antiviral assay, the expression levels of Viral Hemorrhagic Septicemia Virus (VHSV) glycoproteins, phosphoproteins, nucleoproteins, non-virion proteins, matrix proteins, and RNA polymerase were significantly reduced in PhGal9-overexpressed cells. Furthermore, the mRNA expression of autophagic genes (sqstm1, tax1bp1b, rnf13, lc3, and atg5) and antiviral genes (viperin) were upregulated in PhGal9 overexpressed cells. For the first time in teleosts, our study demonstrated that PhGal9 promotes M2 macrophage polarization by upregulating M2-associated genes (egr2 and cmyc) and suppressing M1-associated genes (iNOS and IL-6). Furthermore, our results show that exogenous and endogenous PhGal9 prevented VHSV attachment and replication by neutralizing virion and autophagy, respectively. Gal9 may be a potent modulator of the antimicrobial immune response in teleost fish.
Collapse
Affiliation(s)
- W A D L R Warnakula
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - H M V Udayantha
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju, 63333, Republic of Korea
| | - D S Liyanage
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju, 63333, Republic of Korea
| | - W K M Omeka
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju, 63333, Republic of Korea
| | - Chaehyeon Lim
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Gaeun Kim
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - D M K P Sirisena
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - B P M Vileka Jayamali
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Qiang Wan
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju, 63333, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju, 63333, Republic of Korea.
| |
Collapse
|
17
|
Shekari N, Shanehbandi D, Kazemi T, Zarredar H, Baradaran B, Jalali SA. VISTA and its ligands: the next generation of promising therapeutic targets in immunotherapy. Cancer Cell Int 2023; 23:265. [PMID: 37936192 PMCID: PMC10631023 DOI: 10.1186/s12935-023-03116-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/27/2023] [Indexed: 11/09/2023] Open
Abstract
V-domain immunoglobulin suppressor of T cell activation (VISTA) is a novel negative checkpoint receptor (NCR) primarily involved in maintaining immune tolerance. It has a role in the pathogenesis of autoimmune disorders and cancer and has shown promising results as a therapeutic target. However, there is still some ambiguity regarding the ligands of VISTA and their interactions with each other. While V-Set and Immunoglobulin domain containing 3 (VSIG-3) and P-selectin glycoprotein ligand-1(PSGL-1) have been extensively studied as ligands for VISTA, the others have received less attention. It seems that investigating VISTA ligands, reviewing their functions and roles, as well as outcomes related to their interactions, may allow an understanding of their full functionality and effects within the cell or the microenvironment. It could also help discover alternative approaches to target the VISTA pathway without causing related side effects. In this regard, we summarize current evidence about VISTA, its related ligands, their interactions and effects, as well as their preclinical and clinical targeting agents.
Collapse
Affiliation(s)
- Najibeh Shekari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Habib Zarredar
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Seyed Amir Jalali
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Lin FJ, Huang YH, Tsao CH, Hsieh WC, Lo YH, Zouboulis CC, Chen HL, Liu FT. Galectin-12 Regulates Immune Responses in the Skin through Sebaceous Glands. J Invest Dermatol 2023; 143:2120-2131.e7. [PMID: 37207806 DOI: 10.1016/j.jid.2023.03.1684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/17/2023] [Accepted: 03/31/2023] [Indexed: 05/21/2023]
Abstract
Sebaceous glands (SGs) are holocrine glands that produce sebum, which primarily contains lipids that help to maintain the barrier function of the skin. Dysregulated lipid production contributes to the progression of some diseases characterized by dry skin, including atopic dermatitis. Although the lipid production of SGs has been well-studied, few studies have assessed their role in skin immune responses. We found that SGs and sebocytes expressed IL-4 receptor and produced high levels of T helper 2-associated inflammatory mediators after IL-4 treatment, suggesting immunomodulatory effects. Galectin-12 is a lipogenic factor expressed in sebocytes that affects their differentiation and proliferation. Using galectin-12-knockdown sebocytes, we showed that galectin-12 regulated the immune response in cells exposed to IL-4 and promoted CCL26 expression by upregulating peroxisome proliferator-activated receptor-γ. Moreover, galectin-12 suppressed the expression of endoplasmic reticulum stress-response molecules, and CCL26 upregulation by IL-4 was reversed after sebocyte treatment with inducers of endoplasmic reticulum stress, suggesting that galectin-12 controls IL-4 signaling by suppressing endoplasmic reticulum stress. Using galectin-12-knockout mice, we showed that galectin-12 positively regulated the IL-4-induced enlargement of SGs and the development of an atopic dermatitis-like phenotype. Thus, galectin-12 regulates the skin immune response by promoting peroxisome proliferator-activated receptor-γ expression and suppressing endoplasmic reticulum stress in SGs.
Collapse
Affiliation(s)
- Feng-Jen Lin
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yun-Hsi Huang
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ching-Han Tsao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Ph.D. Program in Translational Medicine, Jointly Offered by Kaohsiung Medical University and Academia Sinica, Taipei, Taiwan
| | - Wei-Chen Hsieh
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yuan-Hsin Lo
- Department of Dermatology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan; School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Christos C Zouboulis
- Department of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany
| | - Hung-Lin Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Fu-Tong Liu
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Department of Dermatology, University of California Davis, Davis, California, USA.
| |
Collapse
|
19
|
Lv Y, Ma X, Ma Y, Du Y, Feng J. A new emerging target in cancer immunotherapy: Galectin-9 (LGALS9). Genes Dis 2023; 10:2366-2382. [PMID: 37554219 PMCID: PMC10404877 DOI: 10.1016/j.gendis.2022.05.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 05/09/2022] [Accepted: 05/14/2022] [Indexed: 11/20/2022] Open
Abstract
Over the past few decades, advances in immunological knowledge have led to the identification of novel immune checkpoints, reinvigorating cancer immunotherapy. Immunotherapy, represented by immune checkpoint inhibitors, has become the leader in the precision treatment of cancer, bringing a new dawn to the treatment of most cancer patients. Galectin-9 (LGALS9), a member of the galectin family, is a widely expressed protein involved in immune regulation and tumor pathogenesis, and affects the prognosis of various types of cancer. Galectin-9 regulates immune homeostasis and tumor cell survival through its interaction with its receptor Tim-3. In the review, based on a brief description of the signaling mechanisms and immunomodulatory activities of galectin-9 and Tim-3, we summarize the targeted expression patterns of galectin-9 in a variety of malignancies and the promising mechanisms of anti-galectin-9 therapy in stimulating anti-tumor immune responses.
Collapse
Affiliation(s)
- Yan Lv
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210009, China
| | - Xiao Ma
- Department of General Surgery, The Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu 210009, China
| | - Yuxin Ma
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210009, China
| | - Yuxin Du
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210009, China
| | - Jifeng Feng
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210009, China
| |
Collapse
|
20
|
Rivera-Cuevas Y, Clough B, Frickel EM. Human guanylate-binding proteins in intracellular pathogen detection, destruction, and host cell death induction. Curr Opin Immunol 2023; 84:102373. [PMID: 37536111 DOI: 10.1016/j.coi.2023.102373] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023]
Abstract
Cell-intrinsic defense is an essential part of the immune response against intracellular pathogens regulated by cytokine-induced proteins and pathways. One of the most upregulated families of proteins in this defense system are the guanylate-binding proteins (GBPs), large GTPases of the dynamin family, induced in response to interferon gamma. Human GBPs (hGBPs) exert their antimicrobial activity through detection of pathogen-associated molecular patterns and/or damage-associated molecular patterns to execute control mechanisms directed at the pathogen itself as well as the vacuolar compartments in which it resides. Consequently, hGBPs are also inducers of canonical and noncanonical inflammasome responses leading to host cell death. The mechanisms are both cell-type and pathogen-dependent with hGBP1 acting as a pioneer sensor for intracellular invaders. This review focuses on the most recent functional roles of hGBPs in pathways of pathogen detection, destruction, and host cell death induction.
Collapse
Affiliation(s)
- Yolanda Rivera-Cuevas
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Barbara Clough
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Eva-Maria Frickel
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom.
| |
Collapse
|
21
|
Ezhilarasan D. Unraveling the pathophysiologic role of galectin-3 in chronically injured liver. J Cell Physiol 2023; 238:673-686. [PMID: 36745560 DOI: 10.1002/jcp.30956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 02/07/2023]
Abstract
Galectin-3 (Gal-3) previously referred to as S-type lectins, is a soluble protein that specifically binds to β-galactoside carbohydrates with high specificity. Gal-3 plays a pivotal role in a variety of pathophysiological processes such as cell proliferation, inflammation, differentiation, angiogenesis, transformation and apoptosis, pre-mRNA splicing, metabolic syndromes, fibrosis, and host defense. The role of Gal-3 has also been implicated in liver diseases. Gal-3 is activated upon a hepatotoxic insult to the liver and its level has been shown to be upregulated in fatty liver diseases, inflammation, nonalcoholic steatohepatitis, fibrosis, cholangitis, cirrhosis, and hepatocellular carcinoma (HCC). Gal-3 directly interacts with the NOD-like receptor family, pyrin domain containing 3, and activates the inflammasome in macrophages of the liver. In the chronically injured liver, Gal-3 secreted by injured hepatocytes and immune cells, activates hepatic stellate cells (HSCs) in a paracrine fashion to acquire a myofibroblast like collagen-producing phenotype. Activated HSCs in the fibrotic liver secrete Gal-3 which acts via autocrine signaling to exacerbate extracellular matrix synthesis and fibrogenesis. In the stromal microenvironment, Gal-3 activates cancer cell proliferation, migration, invasiveness, and metastasis. Clinically, increased serum levels and Gal-3 expression were observed in the liver tissue of nonalcoholic steatohepatitis, fibrotic/cirrhotic, and HCC patients. The pathological role of Gal-3 has been experimentally and clinically reported in the progression of chronic liver disease. Therefore, this review discusses the pathological role of Gal-3 in the progression of chronic liver diseases.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Molecular Medicine and Toxicology Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| |
Collapse
|
22
|
Kruk L, Braun A, Cosset E, Gudermann T, Mammadova-Bach E. Galectin functions in cancer-associated inflammation and thrombosis. Front Cardiovasc Med 2023; 10:1052959. [PMID: 36873388 PMCID: PMC9981828 DOI: 10.3389/fcvm.2023.1052959] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/12/2023] [Indexed: 02/19/2023] Open
Abstract
Galectins are carbohydrate-binding proteins that regulate many cellular functions including proliferation, adhesion, migration, and phagocytosis. Increasing experimental and clinical evidence indicates that galectins influence many steps of cancer development by inducing the recruitment of immune cells to the inflammatory sites and modulating the effector function of neutrophils, monocytes, and lymphocytes. Recent studies described that different isoforms of galectins can induce platelet adhesion, aggregation, and granule release through the interaction with platelet-specific glycoproteins and integrins. Patients with cancer and/or deep-venous thrombosis have increased levels of galectins in the vasculature, suggesting that these proteins could be important contributors to cancer-associated inflammation and thrombosis. In this review, we summarize the pathological role of galectins in inflammatory and thrombotic events, influencing tumor progression and metastasis. We also discuss the potential of anti-cancer therapies targeting galectins in the pathological context of cancer-associated inflammation and thrombosis.
Collapse
Affiliation(s)
- Linus Kruk
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Erika Cosset
- CRCL, UMR INSERM 1052, CNRS 5286, Centre Léon Bérard, Lyon, France
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,German Center for Lung Research (DZL), Munich, Germany
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| |
Collapse
|
23
|
Galectin-2 in Health and Diseases. Int J Mol Sci 2022; 24:ijms24010341. [PMID: 36613785 PMCID: PMC9820181 DOI: 10.3390/ijms24010341] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Galectin-2 is a prototype member of the galactoside-binding galectin family. It is predominately expressed in the gastrointestinal tract but is also detected in several other tissues such as the placenta and in the cardiovascular system. Galectin-2 expression and secretion by epithelial cells has been reported to contribute to the strength of the mucus layer, protect the integrity of epithelia. A number of studies have also suggested the involvement of galectin-2 in tissue inflammation, immune response and cell apoptosis. Alteration of galectin-2 expression occurs in inflammatory bowel disease, coronary artery diseases, rheumatoid arthritis, cancer, and pregnancy disorders and has been shown to be involved in disease pathogenesis. This review discusses our current understanding of the role and actions of galectin-2 in regulation of these pathophysiological conditions.
Collapse
|
24
|
Ayechu-Muruzabal V, de Boer M, Blokhuis B, Berends AJ, Garssen J, Kraneveld AD, van’t Land B, Willemsen LEM. Epithelial-derived galectin-9 containing exosomes contribute to the immunomodulatory effects promoted by 2'-fucosyllactose and short-chain galacto- and long-chain fructo-oligosaccharides. Front Immunol 2022; 13:1026031. [PMID: 36685520 PMCID: PMC9846635 DOI: 10.3389/fimmu.2022.1026031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Early life exposure to non-digestible oligosaccharides (NDO) or microbial components is known to affect immune development. NDO in combination with a TLR9 agonist mimicking bacterial triggers (CpG) promoted the secretion of galectins through unknown pathways. We aimed to study the contribution of exosomes in epithelial galectin secretion and subsequent immunoregulation upon exposure to a mixture of NDO by inhibiting exosome biogenesis. Methods Human intestinal epithelial cells (IEC) (FHs 74 Int or HT-29) were apically exposed to 2'-fucosyllactose (2'FL) and short-chain galacto- and long-chain fructo-oligosaccharides (GF), alone or with CpG. Basolaterally, non-activated or αCD3/CD28-activated peripheral blood mononuclear cells (PBMC) were added. After 24 h incubation, IEC were washed and incubated in fresh medium to analyze epithelial-derived galectin secretion. Additionally, before exposure to NDO and CpG, IEC were exposed to GW4869 to inhibit exosome biogenesis. After 24 h of incubation, IEC were washed and incubated for additional 24 h in the presence of GW4869, after which epithelial-derived galectin secretion was studied. Also, epithelial-derived exosomes were isolated to study the presence of galectins within the exosomes. Results Compared to CpG alone, exposure to 2'FL/GF mixture and CpG, significantly enhanced Th1-type IFNγ, and regulatory IEC-derived galectin-9 secretion in the HT-29/PBMC model. Similarly, in the FHs 74 Int/PBMC co-culture, 2'FL/GF induced immunomodulatory effects in the absence of CpG. Interestingly, galectin-9 and -4 were present in CD63-expressing exosomes isolated from HT-29 supernatants after IEC/PBMC co-culture. Exposure to GW4869 suppressed 2'FL/GF and CpG induced epithelial-derived galectin-9 secretion, which subsequently prevented the rise in IL-10 and reduction in IL-13 secretion observed in the HT-29/PBMC co-culture model upon exposure to 2'FL/GF and CpG. Discussion Exposure to 2'FL/GF and CpG or 2'FL/GF promoted Th1-type regulatory effects in HT-29/PBMC or FHs 74 Int/PBMC co-culture respectively, while Th2-type IL-13 was reduced in association with increased galectin-9 release. Galectin-9 and -4 were present in exosomes from HT-29 and the inhibition of exosome biogenesis inhibited epithelial-derived galectin secretion. This, also affected immunomodulatory effects in IEC/PBMC co-culture suggesting a key role of galectin expressing IEC-derived exosomes in the mucosal immune regulation induced by NDO.
Collapse
Affiliation(s)
- Veronica Ayechu-Muruzabal
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, Netherlands
| | - Merel de Boer
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, Netherlands
| | - Bart Blokhuis
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, Netherlands
| | - Alinda J. Berends
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, Netherlands
- Danone Nutricia Research, Utrecht, Netherlands
| | - Aletta D. Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, Netherlands
| | - Belinda van’t Land
- Danone Nutricia Research, Utrecht, Netherlands
- Center for Translational Immunology, The Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Linette E. M. Willemsen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, Netherlands
| |
Collapse
|
25
|
Liegertová M, Semerádtová A, Kocholatá M, Průšová M, Němcová L, Štofik M, Kříženecká S, Malý J, Janoušková O. Mucus-derived exosome-like vesicles from the Spanish slug (Arion vulgaris): taking advantage of invasive pest species in biotechnology. Sci Rep 2022; 12:21768. [PMID: 36526668 PMCID: PMC9870906 DOI: 10.1038/s41598-022-26335-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The slug Arion vulgaris has attracted major attention as one of the worst invasive herbivore pests in Europe and is renowned for the stiff mucus it secretes for locomotion. In this study we focused on the isolation and characterisation of extracellular vesicles, specifically exosomes and exosome-like vesicles, from Arion secretions. We developed a method for slug mucus collection and subsequent vesicle isolation by ultracentrifugation. The isolated vesicles with an average diameter of ~ 100 nm carry abundant proteins and short RNAs, as well as adhesion molecules similar to mammalian galectins. We demonstrated that the slug extracellular vesicles are internalised by plant cells and human cancer cells in in vitro assays and are loadable by bioactive compounds, which makes them an interesting tool for utilisation in biotechnology.
Collapse
Affiliation(s)
- Michaela Liegertová
- grid.424917.d0000 0001 1379 0994Centre of Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Ústí nad Labem, Czech Republic ,grid.424917.d0000 0001 1379 0994Department of Biology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Ústí nad Labem, Czech Republic
| | - Alena Semerádtová
- grid.424917.d0000 0001 1379 0994Centre of Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Ústí nad Labem, Czech Republic
| | - Michaela Kocholatá
- grid.424917.d0000 0001 1379 0994Centre of Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Ústí nad Labem, Czech Republic
| | - Michaela Průšová
- grid.424917.d0000 0001 1379 0994Centre of Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Ústí nad Labem, Czech Republic
| | - Lenka Němcová
- grid.424917.d0000 0001 1379 0994Department of Biology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Ústí nad Labem, Czech Republic
| | - Marcel Štofik
- grid.424917.d0000 0001 1379 0994Centre of Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Ústí nad Labem, Czech Republic
| | - Sylvie Kříženecká
- grid.424917.d0000 0001 1379 0994Department of Environmental Chemistry and Technology, Faculty of Environment, Jan Evangelista Purkyně University in Ústí nad Labem, Ústí nad Labem, Czech Republic
| | - Jan Malý
- grid.424917.d0000 0001 1379 0994Centre of Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Ústí nad Labem, Czech Republic
| | - Olga Janoušková
- grid.424917.d0000 0001 1379 0994Centre of Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Ústí nad Labem, Czech Republic
| |
Collapse
|
26
|
McTague A, Tazhitdinova R, Timoshenko AV. O-GlcNAc-Mediated Regulation of Galectin Expression and Secretion in Human Promyelocytic HL-60 Cells Undergoing Neutrophilic Differentiation. Biomolecules 2022; 12:biom12121763. [PMID: 36551191 PMCID: PMC9776088 DOI: 10.3390/biom12121763] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/15/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
In this study, we have tested the hypothesis that the expression and secretion of galectins are driven through mechanisms globally impacted by homeostatic regulation involving the post-translational modification of intracellular proteins with O-linked N-acetylglucosamine (O-GlcNAc). We showed that neutrophilic differentiation of HL-60 cells induced by all-trans retinoic acid (ATRA) and 6-diazo-5-oxo-L-norleucine (DON) was associated with a significant drop of cellular O-GlcNAc levels in serum-contained and serum-free cell culture media. Galectin gene and protein expression profiles in HL-60 cells were specifically modified by ATRA and by inhibitors of O-GlcNAc cycle enzymes, however overall trends for each drug were similar between cells growing in the presence or absence of serum except for LGALS9 and LGALS12. The secretion of four galectins (-1, -3, -9, and -10) by HL-60 cells in a serum-free medium was stimulated by O-GlcNAc-reducing ATRA and DON while O-GlcNAc-elevating thiamet G (O-GlcNAcase inhibitor) failed to change the basal levels of extracellular galectins. Taken together, these results demonstrate that O-GlcNAc homeostasis is essential not only for regulation of galectin expression in cells but also for the secretion of multiple members of this protein family, which can be an important novel aspect of unconventional secretion mechanisms.
Collapse
|
27
|
Mansour AA, Krautter F, Zhi Z, Iqbal AJ, Recio C. The interplay of galectins-1, -3, and -9 in the immune-inflammatory response underlying cardiovascular and metabolic disease. Cardiovasc Diabetol 2022; 21:253. [PMID: 36403025 PMCID: PMC9675972 DOI: 10.1186/s12933-022-01690-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022] Open
Abstract
Galectins are β-galactoside-binding proteins that bind and crosslink molecules via their sugar moieties, forming signaling and adhesion networks involved in cellular communication, differentiation, migration, and survival. Galectins are expressed ubiquitously across immune cells, and their function varies with their tissue-specific and subcellular location. Particularly galectin-1, -3, and -9 are highly expressed by inflammatory cells and are involved in the modulation of several innate and adaptive immune responses. Modulation in the expression of these proteins accompany major processes in cardiovascular diseases and metabolic disorders, such as atherosclerosis, thrombosis, obesity, and diabetes, making them attractive therapeutic targets. In this review we consider the broad cellular activities ascribed to galectin-1, -3, and -9, highlighting those linked to the progression of different inflammatory driven pathologies in the context of cardiovascular and metabolic disease, to better understand their mechanism of action and provide new insights into the design of novel therapeutic strategies.
Collapse
Affiliation(s)
- Adel Abo Mansour
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Franziska Krautter
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Zhaogong Zhi
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Asif Jilani Iqbal
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| | - Carlota Recio
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional -BIOPharm, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Las Palmas, Spain.
| |
Collapse
|
28
|
Alfonso-Pérez T, Baonza G, Herranz G, Martín-Belmonte F. Deciphering the interplay between autophagy and polarity in epithelial tubulogenesis. Semin Cell Dev Biol 2022; 131:160-172. [PMID: 35641407 DOI: 10.1016/j.semcdb.2022.05.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/14/2022]
Abstract
The Metazoan complexity arises from a primary building block, the epithelium, which comprises a layer of polarized cells that divide the organism into compartments. Most of these body compartments are organs formed by epithelial tubes that enclose an internal hollow space or lumen. Over the last decades, multiple studies have unmasked the paramount events required to form this lumen de novo. In epithelial cells, these events mainly involve recognizing external clues, establishing and maintaining apicobasal polarity, endo-lysosomal trafficking, and expanding the created lumen. Although canonical autophagy has been classically considered a catabolic process needed for cell survival, multiple studies have also emphasized its crucial role in epithelial polarity, morphogenesis and cellular homeostasis. Furthermore, non-canonical autophagy pathways have been recently discovered as atypical secretory routes. Both canonical and non-canonical pathways play essential roles in epithelial polarity and lumen formation. This review addresses how the molecular machinery for epithelial polarity and autophagy interplay in different processes and how autophagy functions influence lumenogenesis, emphasizing its role in the lumen formation key events.
Collapse
Affiliation(s)
- Tatiana Alfonso-Pérez
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo, Ochoa", CSIC-UAM, Madrid 28049, Spain; Ramon & Cajal Health Research Institute (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid 28034, Spain
| | - Gabriel Baonza
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo, Ochoa", CSIC-UAM, Madrid 28049, Spain
| | - Gonzalo Herranz
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo, Ochoa", CSIC-UAM, Madrid 28049, Spain; Ramon & Cajal Health Research Institute (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid 28034, Spain
| | - Fernando Martín-Belmonte
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo, Ochoa", CSIC-UAM, Madrid 28049, Spain; Ramon & Cajal Health Research Institute (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid 28034, Spain.
| |
Collapse
|
29
|
Carrillo-Rodríguez P, Robles-Guirado JÁ, Cruz-Palomares A, Palacios-Pedrero MÁ, González-Paredes E, Más-Ciurana A, Franco-Herrera C, Ruiz-de-Castroviejo-Teba PA, Lario A, Longobardo V, Montosa-Hidalgo L, Pérez-Sánchez-Cañete MM, Corzo-Corbera MM, Redondo-Sánchez S, Jodar AB, Blanco FJ, Zumaquero E, Merino R, Sancho J, Zubiaur M. Extracellular vesicles from pristane-treated CD38-deficient mice express an anti-inflammatory neutrophil protein signature, which reflects the mild lupus severity elicited in these mice. Front Immunol 2022; 13:1013236. [DOI: 10.3389/fimmu.2022.1013236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
In CD38-deficient (Cd38-/-) mice intraperitoneal injection of pristane induces a lupus-like disease, which is milder than that induced in WT mice, showing significant differences in the inflammatory and autoimmune processes triggered by pristane. Extracellular vesicles (EV) are present in all body fluids. Shed by cells, their molecular make-up reflects that of their cell of origin and/or tissue pathological situation. The aim of this study was to analyze the protein composition, protein abundance, and functional clustering of EV released by peritoneal exudate cells (PECs) in the pristane experimental lupus model, to identify predictive or diagnostic biomarkers that might discriminate the autoimmune process in lupus from inflammatory reactions and/or normal physiological processes. In this study, thanks to an extensive proteomic analysis and powerful bioinformatics software, distinct EV subtypes were identified in the peritoneal exudates of pristane-treated mice: 1) small EV enriched in the tetraspanin CD63 and CD9, which are likely of exosomal origin; 2) small EV enriched in CD47 and CD9, which are also enriched in plasma-membrane, membrane-associated proteins, with an ectosomal origin; 3) small EV enriched in keratins, ECM proteins, complement/coagulation proteins, fibrin clot formation proteins, and endopetidase inhibitor proteins. This enrichment may have an inflammation-mediated mesothelial-to-mesenchymal transition origin, representing a protein corona on the surface of peritoneal exudate EV; 4) HDL-enriched lipoprotein particles. Quantitative proteomic analysis allowed us to identify an anti-inflammatory, Annexin A1-enriched pro-resolving, neutrophil protein signature, which was more prominent in EV from pristane-treated Cd38-/- mice, and quantitative differences in the protein cargo of the ECM-enriched EV from Cd38-/- vs WT mice. These differences are likely to be related with the distinct inflammatory outcome shown by Cd38-/- vs WT mice in response to pristane treatment. Our results demonstrate the power of a hypothesis-free and data-driven approach to transform the heterogeneity of the peritoneal exudate EV from pristane-treated mice in valuable information about the relative proportion of different EV in a given sample and to identify potential protein markers specific for the different small EV subtypes, in particular those proteins defining EV involved in the resolution phase of chronic inflammation.
Collapse
|
30
|
Loghry HJ, Sondjaja NA, Minkler SJ, Kimber MJ. Secreted filarial nematode galectins modulate host immune cells. Front Immunol 2022; 13:952104. [PMID: 36032131 PMCID: PMC9402972 DOI: 10.3389/fimmu.2022.952104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022] Open
Abstract
Lymphatic filariasis (LF) is a mosquito-borne disease caused by filarial nematodes including Brugia malayi. Over 860 million people worldwide are infected or at risk of infection in 72 endemic countries. The absence of a protective vaccine means that current control strategies rely on mass drug administration programs that utilize inadequate drugs that cannot effectively kill adult parasites, thus established infections are incurable. Progress to address deficiencies in the approach to LF control is hindered by a poor mechanistic understanding of host-parasite interactions, including mechanisms of host immunomodulation by the parasite, a critical adaptation for establishing and maintaining infections. The canonical type 2 host response to helminth infection characterized by anti-inflammatory and regulatory immune phenotypes is modified by filarial nematodes during chronic LF. Current efforts at identifying parasite-derived factors driving this modification focus on parasite excretory-secretory products (ESP), including extracellular vesicles (EVs). We have previously profiled the cargo of B. malayi EVs and identified B. malayi galectin-1 and galectin-2 as among the most abundant EV proteins. In this study we further investigated the function of these proteins. Sequence analysis of the parasite galectins revealed highest homology to mammalian galectin-9 and functional characterization identified similar substrate affinities consistent with this designation. Immunological assays showed that Bma-LEC-2 is a bioactive protein that can polarize macrophages to an alternatively activated phenotype and selectively induce apoptosis in Th1 cells. Our data shows that an abundantly secreted parasite galectin is immunomodulatory and induces phenotypes consistent with the modified type 2 response characteristic of chronic LF infection.
Collapse
|
31
|
Chen JL, Chen Y, Xu DX, Chen DZ. Possible important roles of galectins in the healing of human fetal membranes. Front Endocrinol (Lausanne) 2022; 13:941029. [PMID: 36017312 PMCID: PMC9395672 DOI: 10.3389/fendo.2022.941029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
The fetal membranes healing is a complex and dynamic process of replacing devitalized and missing cellular structures and tissue layers. Multiple cells and extracellular matrices, and cell differentiation, migration and proliferation may participate in restoring the integrity of damaged tissue, however this process still remains unclear. Therefore, there is a need to identify and integrate new ideas and methods to design a more effective dressing to accelerate fetal membrane healing. This review explores the function and role of galectins in the inflammatory, epithelial mesenchymal transition, proliferative migration, and remodeling phases of fetal membrane healing. In conclusion, the preliminary findings are promising. Research on amnion regeneration is expected to provide insight into potential treatment strategies for premature rupture of membranes.
Collapse
Affiliation(s)
- Jia-Le Chen
- The School of Public Health, Anhui Medical University, Hefei, China
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Yu Chen
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - De-Xiang Xu
- The School of Public Health, Anhui Medical University, Hefei, China
| | - Dao-Zhen Chen
- The School of Public Health, Anhui Medical University, Hefei, China
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
- Department of Laboratory, Haidong No.2 People’s Hospital, Haidong, China
| |
Collapse
|
32
|
Galectin-9 and Interferon-Gamma Are Released by Natural Killer Cells upon Activation with Interferon-Alpha and Orchestrate the Suppression of Hepatitis C Virus Infection. Viruses 2022; 14:v14071538. [PMID: 35891518 PMCID: PMC9317111 DOI: 10.3390/v14071538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Natural killer (NK) cells mount an immune response against hepatitis C virus (HCV) infection and can be activated by several cytokines, including interleukin-2 (IL-2), IL-15, and interferon-alpha (IFN-α). By exploiting the Huh7.5 hepatoma cell line infected with the HCV JFH1 genome, we provide novel insights into the antiviral effector functions of human primary NK cells after cytokine stimulation. NK cells activated with IFN-α (IFNα-NKs) had enhanced contact-dependent and -independent responses as compared with NK cells activated with IL-2/IL-15 (IL2/IL15-NKs) and could inhibit HCV replication both in vitro and in vivo. Importantly, IFN-α, but not IL-2/IL-15, protected NK cells from the functional inhibition exerted by HCV. By performing flow cytometry, multiplex cytokine profiling, and mass-spectrometry-based proteomics, we discovered that IFNα-NKs secreted high levels of galectin-9 and interferon-gamma (IFN-γ), and by conducting neutralization assays, we confirmed the major role of these molecules in HCV suppression. We speculated that galectin-9 might act extracellularly to inhibit HCV binding to host cells and downstream infection. In silico approaches predicted the binding of HCV envelope protein E2 to galectin-9 carbohydrate-recognition domains, and co-immunoprecipitation assays confirmed physical interaction. IFN-γ, on the other hand, triggered the intracellular expressions of two antiviral gate-keepers in target cells, namely, myxovirus-1 (MX1) and interferon-induced protein with tetratricopeptide repeats 1 (IFIT1). Collectively, our data add more complexity to the antiviral innate response mediated by NK cells and highlight galectin-9 as a key molecule that might be exploited to neutralize productive viral infection.
Collapse
|
33
|
Michalak M, Golde V, Helm D, Kaltner H, Gebert J, Kopitz J. Combining Recombinase-Mediated Cassette Exchange Strategy with Quantitative Proteomic and Phosphoproteomic Analyses to Inspect Intracellular Functions of the Tumor Suppressor Galectin-4 in Colorectal Cancer Cells. Int J Mol Sci 2022; 23:ijms23126414. [PMID: 35742860 PMCID: PMC9223697 DOI: 10.3390/ijms23126414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 12/18/2022] Open
Abstract
Galectin-4 (Gal4) has been suggested to function as a tumor suppressor in colorectal cancer (CRC). In order to systematically explore its function in CRC, we established a CRC cell line where Gal4 expression can be regulated via the doxycycline (dox)-inducible expression of a single copy wildtype LGALS4 transgene generated by recombinase-mediated cassette exchange (RMCE). Using this model and applying in-depth proteomic and phosphoproteomic analyses, we systematically screened for intracellular changes induced by Gal4 expression. Overall, 3083 cellular proteins and 2071 phosphosites were identified and quantified, of which 1603 could be matched and normalized to their protein expression levels. A bioinformatic analysis revealed that most of the regulated proteins and phosphosites can be localized in the nucleus and are categorized as nucleic acid-binding proteins. The top candidates whose expression was modulated by Gal4 are PURB, MAPKAPK3, BTF3 and BCAR1, while the prime candidates with altered phosphorylation included ZBTB7A, FOXK1, PURB and CK2beta. In order to validate the (phospho)proteomic data, we confirmed these candidates by a radiometric metabolic-labelling and immunoprecipitation strategy. All candidates exert functions in the transcriptional or translational control, indicating that Gal4 might be involved in these processes by affecting the expression or activity of these proteins.
Collapse
Affiliation(s)
- Malwina Michalak
- Department of Applied Tumor Biology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany; (M.M.); (V.G.); (J.K.)
- Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Viola Golde
- Department of Applied Tumor Biology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany; (M.M.); (V.G.); (J.K.)
| | - Dominik Helm
- Proteomics Core Facility, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany;
| | - Herbert Kaltner
- Veterinary Faculty, Institute of Physiological Chemistry, Ludwig-Maximilians-University, 80539 München, Germany;
| | - Johannes Gebert
- Department of Applied Tumor Biology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany; (M.M.); (V.G.); (J.K.)
- Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Correspondence:
| | - Jürgen Kopitz
- Department of Applied Tumor Biology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany; (M.M.); (V.G.); (J.K.)
- Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
34
|
Shi Y, Tang D, Li X, Xie X, Ye Y, Wang L. Galectin Family Members: Emerging Novel Targets for Lymphoma Therapy? Front Oncol 2022; 12:889034. [PMID: 35677161 PMCID: PMC9168125 DOI: 10.3389/fonc.2022.889034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
The galectin family of proteins has high affinity with β-galactoside-containing glycans. These proteins participate in cell growth and differentiation, cell adhesion, cell signal transduction, cell apoptosis, and other cellular activities. In recent years, a large number of studies have described the expression and correlation of galectins in different tumors. Each member of the family plays a vital role in tumor growth, progression, angiogenesis, adhesion, and tumor immune escape. Studies on the roles of galectins in lymphoma have mainly involved galectin-1, -3, -7, and -9. The results suggest that galectins may become novel targets for precise tumor treatment. This article reviews current research progress regarding galectins in lymphoma and provides new ideas for exploring them as novel targets for treating lymphoma and other important medical issues.
Collapse
Affiliation(s)
- Yuanwei Shi
- School of Clinical Medicine, Weifang Medical University, Weifang, China
- Central Laboratory, Linyi People’s Hospital, Linyi, China
| | - Danting Tang
- School of Clinical Medicine, Weifang Medical University, Weifang, China
- Central Laboratory, Linyi People’s Hospital, Linyi, China
| | - Xiaoqi Li
- School of Clinical Medicine, Weifang Medical University, Weifang, China
- Central Laboratory, Linyi People’s Hospital, Linyi, China
| | - Xiaoli Xie
- Central Laboratory, Linyi People’s Hospital, Linyi, China
| | - Yufu Ye
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lijuan Wang
- Central Laboratory, Linyi People’s Hospital, Linyi, China
- Linyi Key Laboratory of Tumor Biology, Linyi, China
| |
Collapse
|
35
|
Ferreira T, Kulkarni A, Bretscher C, Nazarov PV, Hossain JA, Ystaas LAR, Miletic H, Röth R, Niesler B, Marchini A. Oncolytic H-1 Parvovirus Hijacks Galectin-1 to Enter Cancer Cells. Viruses 2022; 14:1018. [PMID: 35632759 PMCID: PMC9146882 DOI: 10.3390/v14051018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 11/16/2022] Open
Abstract
Clinical studies in glioblastoma and pancreatic carcinoma patients strongly support the further development of H-1 protoparvovirus (H-1PV)-based anticancer therapies. The identification of cellular factors involved in the H-1PV life cycle may provide the knowledge to improve H-1PV anticancer potential. Recently, we showed that sialylated laminins mediate H-1PV attachment at the cell membrane. In this study, we revealed that H-1PV also interacts at the cell surface with galectin-1 and uses this glycoprotein to enter cancer cells. Indeed, knockdown/out of LGALS1, the gene encoding galectin-1, strongly decreases the ability of H-1PV to infect and kill cancer cells. This ability is rescued by the re-introduction of LGALS1 into cancer cells. Pre-treatment with lactose, which is able to bind to galectins and modulate their cellular functions, decreased H-1PV infectivity in a dose dependent manner. In silico analysis reveals that LGALS1 is overexpressed in various tumours including glioblastoma and pancreatic carcinoma. We show by immunohistochemistry analysis of 122 glioblastoma biopsies that galectin-1 protein levels vary between tumours, with levels in recurrent glioblastoma higher than those in primary tumours or normal tissues. We also find a direct correlation between LGALS1 transcript levels and H-1PV oncolytic activity in 53 cancer cell lines from different tumour origins. Strikingly, the addition of purified galectin-1 sensitises poorly susceptible GBM cell lines to H-1PV killing activity by rescuing cell entry. Together, these findings demonstrate that galectin-1 is a crucial determinant of the H-1PV life cycle.
Collapse
Affiliation(s)
- Tiago Ferreira
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Centre, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany; (T.F.); (C.B.)
| | - Amit Kulkarni
- Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, 84 Val Fleuri, L-1526 Luxembourg, Luxembourg;
| | - Clemens Bretscher
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Centre, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany; (T.F.); (C.B.)
| | - Petr V. Nazarov
- Bioinformatics Platform and Multiomics Data Science Research Group, Department of Cancer Research, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg;
| | - Jubayer A. Hossain
- Department of Biomedicine, University of Bergen, 5007 Bergen, Norway; (J.A.H.); (L.A.R.Y.); (H.M.)
| | - Lars A. R. Ystaas
- Department of Biomedicine, University of Bergen, 5007 Bergen, Norway; (J.A.H.); (L.A.R.Y.); (H.M.)
| | - Hrvoje Miletic
- Department of Biomedicine, University of Bergen, 5007 Bergen, Norway; (J.A.H.); (L.A.R.Y.); (H.M.)
- Department of Pathology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Ralph Röth
- nCounter Core Facility, Institute of Human Genetics, University of Heidelberg, 69120 Heidelberg, Germany; (R.R.); (B.N.)
- Department of Human Molecular Genetics, University of Heidelberg, 69120 Heidelberg, Germany
| | - Beate Niesler
- nCounter Core Facility, Institute of Human Genetics, University of Heidelberg, 69120 Heidelberg, Germany; (R.R.); (B.N.)
- Department of Human Molecular Genetics, University of Heidelberg, 69120 Heidelberg, Germany
| | - Antonio Marchini
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Centre, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany; (T.F.); (C.B.)
- Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, 84 Val Fleuri, L-1526 Luxembourg, Luxembourg;
| |
Collapse
|
36
|
Menkhorst E, Than NG, Jeschke U, Barrientos G, Szereday L, Dveksler G, Blois SM. Medawar's PostEra: Galectins Emerged as Key Players During Fetal-Maternal Glycoimmune Adaptation. Front Immunol 2022; 12:784473. [PMID: 34975875 PMCID: PMC8715898 DOI: 10.3389/fimmu.2021.784473] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Lectin-glycan interactions, in particular those mediated by the galectin family, regulate many processes required for a successful pregnancy. Over the past decades, increasing evidence gathered from in vitro and in vivo experiments indicate that members of the galectin family specifically bind to both intracellular and membrane bound carbohydrate ligands regulating angiogenesis, immune-cell adaptations required to tolerate the fetal semi-allograft and mammalian embryogenesis. Therefore, galectins play important roles in fetal development and placentation contributing to maternal and fetal health. This review discusses the expression and role of galectins during the course of pregnancy, with an emphasis on maternal immune adaptions and galectin-glycan interactions uncovered in the recent years. In addition, we summarize the galectin fingerprints associated with pathological gestation with particular focus on preeclampsia.
Collapse
Affiliation(s)
- Ellen Menkhorst
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia.,Gynaecological Research Centre, The Women's Hospital, Melbourne, VIC, Australia
| | - Nandor Gabor Than
- Systems Biology of Reproduction Research Group, Institute of Enyzmology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Augsburg, Germany
| | - Gabriela Barrientos
- Laboratorio de Medicina Experimental, Hospital Alemán-Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Laszlo Szereday
- Medical School, Department of Medical Microbiology and Immunology, University of Pecs, Pecs, Hungary
| | - Gabriela Dveksler
- Department of Pathology, Uniformed Services University, Bethesda, MD, United States
| | - Sandra M Blois
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
37
|
Burbidge K, Rademacher DJ, Mattick J, Zack S, Grillini A, Bousset L, Kwon O, Kubicki K, Simon A, Melki R, Campbell EM. LGALS3 (galectin 3) mediates an unconventional secretion of SNCA/α-synuclein in response to lysosomal membrane damage by the autophagic-lysosomal pathway in human midbrain dopamine neurons. Autophagy 2021; 18:1020-1048. [PMID: 34612142 PMCID: PMC9196737 DOI: 10.1080/15548627.2021.1967615] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Numerous lines of evidence support the premise that the misfolding and subsequent accumulation of SNCA/α-synuclein (synuclein alpha) is responsible for the underlying neuronal pathology observed in Parkinson disease (PD) and other synucleinopathies. Moreover, the cell-to-cell transfer of these misfolded SNCA species is thought to be responsible for disease progression and the spread of cellular pathology throughout the brain. Previous work has shown that when exogenous, misfolded SNCA fibrils enter cells through endocytosis, they can damage and rupture the membranes of their endocytotic vesicles in which they are trafficked. Rupture of these vesicular membranes exposes intralumenal glycans leading to galectin protein binding, subsequent autophagic protein recruitment, and, ultimately, their introduction into the autophagic-lysosomal pathway. Increasing evidence indicates that both pathological and non-pathological SNCA species undergo autophagy-dependent unconventional secretion. While other proteins have also been shown to be secreted from cells by autophagy, what triggers this release process and how these specific proteins are recruited to a secretory autophagic pathway is largely unknown. Here, we use a human midbrain dopamine (mDA) neuronal culture model to provide evidence in support of a cellular mechanism that explains the cell-to-cell transfer of pathological forms of SNCA that are observed in PD. We demonstrate that LGALS3 (galectin 3) mediates the release of SNCA following vesicular damage. SNCA release is also dependent on TRIM16 (tripartite motif containing 16) and ATG16L1 (autophagy related 16 like 1), providing evidence that secretion of SNCA is mediated by an autophagic secretory pathway.
Collapse
Affiliation(s)
- Kevin Burbidge
- Graduate Program in Neuroscience, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - David J Rademacher
- Core Imaging Facility and Department of Microbiology and Immunology, Loyola University of Chicago, Maywood, Illinois, USA
| | - Jessica Mattick
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University, Chicago, Maywood, Illinois, USA
| | - Stephanie Zack
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University, Chicago, Maywood, Illinois, USA
| | - Andrea Grillini
- Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Luc Bousset
- Institut Francois Jacob (Mircen), Cea and Laboratory of Neurodegenerative Diseases, Cnrs, Fontenay-Aux-Roses Cedex, France
| | - Ochan Kwon
- Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Konrad Kubicki
- Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Alexander Simon
- Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Ronald Melki
- Institut Francois Jacob (Mircen), Cea and Laboratory of Neurodegenerative Diseases, Cnrs, Fontenay-Aux-Roses Cedex, France
| | - Edward M Campbell
- Graduate Program in Neuroscience, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA.,Core Imaging Facility and Department of Microbiology and Immunology, Loyola University of Chicago, Maywood, Illinois, USA
| |
Collapse
|
38
|
Naito T, Jingushi K, Ueda K, Tsujikawa K. Azurocidin is loaded into small extracellular vesicles via its N-linked glycosylation and promotes intravasation of renal cell carcinoma cells. FEBS Lett 2021; 595:2522-2532. [PMID: 34418081 DOI: 10.1002/1873-3468.14183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 01/10/2023]
Abstract
Azurocidin (AZU1) is an antimicrobial protein secreted by neutrophils that acts as a chemoattractant for monocytes and macrophages and a permeabilizer of vascular endothelial cells. We previously identified AZU1 to be specifically present in extracellular vesicles (EVs) obtained from renal cell carcinoma (RCC) tissues. Here, we examined the relationship between N-linked glycosylation and AZU1 loading into small EVs (SEVs). Inhibition of N-linked glycosylation by introducing mutations in three glycosylation sites inhibited AZU1 loading into SEVs. Furthermore, SEVs released from AZU1-wild-type cells increased the Ca2+ concentration in endothelial cells and the endothelial permeability, whereas SEVs released from AZU1-mutant cells had no significant effect. Anti-AZU1 antibodies diminished the effect of SEVs on endothelial cell sheets. Collectively, we found that N-linked glycosylation of AZU1 directs its loading into SEVs, thereby enabling AZU1-positive SEVs to function as potent permeabilizers of endothelial cells and leading to enhanced transendothelial migration of RCC cells.
Collapse
Affiliation(s)
- Takuya Naito
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Kentaro Jingushi
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Koji Ueda
- Project for Personalized Cancer Medicine, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| |
Collapse
|
39
|
Herrera M, Kim J, Eygeris Y, Jozic A, Sahay G. Illuminating endosomal escape of polymorphic lipid nanoparticles that boost mRNA delivery. Biomater Sci 2021; 9:4289-4300. [PMID: 33586742 PMCID: PMC8769212 DOI: 10.1039/d0bm01947j] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Lipid-based nanoparticles (LNPs) for the delivery of mRNA have jumped to the forefront of non-viral gene delivery. Despite this exciting development, poor endosomal escape after LNP cell entry remains an unsolved, rate-limiting bottleneck. Here we report the use of a galectin 8-GFP (Gal8-GFP) cell reporter system to visualize the endosomal escape capabilities of LNP-encapsulated mRNA. LNPs substituted with phytosterols in place of cholesterol exhibited various levels of Gal8 recruitment in the Gal8-GFP reporter system. In live-cell imaging, LNPs containing β-sitosterol (LNP-Sito) showed a 10-fold increase in detectable endosomal perturbation events when compared to the standard cholesterol LNPs (LNP-Chol), suggesting the superior capability of LNP-Sito to escape from endosomal entrapment. Trafficking studies of these LNPs showed strong localization with late endosomes. This highly sensitive and robust Gal8-GFP reporter system can be a valuable tool to elucidate intricacies of LNP trafficking and ephemeral endosomal escape events, enabling advancements in gene delivery.
Collapse
Affiliation(s)
- Marco Herrera
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, Oregon 97201, USA
| | - Jeonghwan Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, Oregon 97201, USA
| | - Yulia Eygeris
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, Oregon 97201, USA
| | - Antony Jozic
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, Oregon 97201, USA
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, Oregon 97201, USA and Department of Biomedical Engineering, Robertson Life Sciences Building, Oregon Health & Science University, Portland, Oregon 97201, USA. and Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
| |
Collapse
|
40
|
Macedo-da-Silva J, Santiago VF, Rosa-Fernandes L, Marinho CRF, Palmisano G. Protein glycosylation in extracellular vesicles: Structural characterization and biological functions. Mol Immunol 2021; 135:226-246. [PMID: 33933815 DOI: 10.1016/j.molimm.2021.04.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/13/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs) are lipid bilayer-enclosed particles involved in intercellular communication, delivery of biomolecules from donor to recipient cells, cellular disposal and homeostasis, potential biomarkers and drug carriers. The content of EVs includes DNA, lipids, metabolites, proteins, and microRNA, which have been studied in various diseases, such as cancer, diabetes, pregnancy, neurodegenerative, and cardiovascular disorders. EVs are enriched in glycoconjugates and exhibit specific glycosignatures. Protein glycosylation is a co- and post-translational modification (PTM) that plays an important role in the expression and function of exosomal proteins. N- and O-linked protein glycosylation has been mapped in exosomal proteins. The purpose of this review is to highlight the importance of glycosylation in EVs proteins. Initially, we describe the main PTMs in EVs with a focus on glycosylation. Then, we explore glycan-binding proteins describing the main findings of studies that investigated the glycosylation of EVs in cancer, pregnancy, infectious diseases, diabetes, mental disorders, and animal fluids. We have highlighted studies that have developed innovative methods for studying the content of EVs. In addition, we present works related to lipid glycosylation. We explored the content of studies deposited in public databases, such as Exocarta and Vesiclepedia. Finally, we discuss analytical methods for structural characterization of glycoconjugates and present an overview of the critical points of the study of glycosylation EVs, as well as perspectives in this field.
Collapse
Affiliation(s)
- Janaina Macedo-da-Silva
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Verônica F Santiago
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Livia Rosa-Fernandes
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Claudio R F Marinho
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Giuseppe Palmisano
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil.
| |
Collapse
|
41
|
Porębska N, Poźniak M, Matynia A, Żukowska D, Zakrzewska M, Otlewski J, Opaliński Ł. Galectins as modulators of receptor tyrosine kinases signaling in health and disease. Cytokine Growth Factor Rev 2021; 60:89-106. [PMID: 33863623 DOI: 10.1016/j.cytogfr.2021.03.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/11/2022]
Abstract
Receptor tyrosine kinases (RTKs) constitute a large group of cell surface proteins that mediate communication of cells with extracellular environment. RTKs recognize external signals and transfer information to the cell interior, modulating key cellular activities, like metabolism, proliferation, motility, or death. To ensure balanced stream of signals the activity of RTKs is tightly regulated by numerous mechanisms, including receptor expression and degradation, ligand specificity and availability, engagement of co-receptors, cellular trafficking of the receptors or their post-translational modifications. One of the most widespread post-translational modifications of RTKs is glycosylation of their extracellular domains. The sugar chains attached to RTKs form a new layer of information, so called glyco-code that is read by galectins, carbohydrate binding proteins. Galectins are family of fifteen lectins implicated in immune response, inflammation, cell division, motility and death. The versatility of cellular activities attributed to galectins is a result of their high abundance and diversity of their cellular targets. A various sugar specificity of galectins and the differential ability of galectin family members to form oligomers affect the spatial distribution and the function of their cellular targets. Importantly, galectins and RTKs are tightly linked to the development, progression and metastasis of various cancers. A growing number of studies points on the close cooperation between RTKs and galectins in eliciting specific cellular responses. This review focuses on the identified complexes between galectins and RTK members and discusses their relevance for the cell physiology both in healthy tissues and in cancer.
Collapse
Affiliation(s)
- Natalia Porębska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Marta Poźniak
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Aleksandra Matynia
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Dominika Żukowska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Małgorzata Zakrzewska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Jacek Otlewski
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Łukasz Opaliński
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland.
| |
Collapse
|
42
|
Munson MJ, O'Driscoll G, Silva AM, Lázaro-Ibáñez E, Gallud A, Wilson JT, Collén A, Esbjörner EK, Sabirsh A. A high-throughput Galectin-9 imaging assay for quantifying nanoparticle uptake, endosomal escape and functional RNA delivery. Commun Biol 2021; 4:211. [PMID: 33594247 PMCID: PMC7887203 DOI: 10.1038/s42003-021-01728-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
RNA-based therapies have great potential to treat many undruggable human diseases. However, their efficacy, in particular for mRNA, remains hampered by poor cellular delivery and limited endosomal escape. Development and optimisation of delivery vectors, such as lipid nanoparticles (LNPs), are impeded by limited screening methods to probe the intracellular processing of LNPs in sufficient detail. We have developed a high-throughput imaging-based endosomal escape assay utilising a Galectin-9 reporter and fluorescently labelled mRNA to probe correlations between nanoparticle-mediated uptake, endosomal escape frequency, and mRNA translation. Furthermore, this assay has been integrated within a screening platform for optimisation of lipid nanoparticle formulations. We show that Galectin-9 recruitment is a robust, quantitative reporter of endosomal escape events induced by different mRNA delivery nanoparticles and small molecules. We identify nanoparticles with superior escape properties and demonstrate cell line variances in endosomal escape response, highlighting the need for fine-tuning of delivery formulations for specific applications.
Collapse
Affiliation(s)
- Michael J Munson
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| | - Gwen O'Driscoll
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Andreia M Silva
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Elisa Lázaro-Ibáñez
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Audrey Gallud
- Division of Chemical and Biomolecular Engineering, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - John T Wilson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Anna Collén
- Projects, Research and Early Development, Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Elin K Esbjörner
- Division of Chemical and Biomolecular Engineering, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Alan Sabirsh
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
43
|
Moar P, Tandon R. Galectin-9 as a biomarker of disease severity. Cell Immunol 2021; 361:104287. [PMID: 33494007 DOI: 10.1016/j.cellimm.2021.104287] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/26/2020] [Accepted: 01/09/2021] [Indexed: 12/16/2022]
Abstract
Galectin-9 (Gal-9) is a β-galactoside binding lectin known for its immunomodulatory role in various microbial infections. Gal-9 is expressed in all organ systems and localized in the nucleus, cell surface, cytoplasm and the extracellular matrix. It mediates host-pathogen interactions and regulates cell signalling via binding to its receptors. Gal-9 is involved in many physiological functions such as cell growth, differentiation, adhesion, communication and death. However, recent studies have emphasized on the elevated levels of Gal-9 in autoimmune disorders, viral infections, parasitic invasion, cancer, acute liver failure, atopic dermatitis, chronic kidney disease, type-2 diabetes, coronary artery disease, atherosclerosis and benign infertility-related gynecological disorders. In this paper we have reviewed the potential of Gal-9 as a reliable, sensitive and non-invasive biomarker of disease severity. Tracking changes in Gal-9 levels and its implementation as a biomarker in clinical practice will be an important tool to monitor disease activity and facilitate personalized treatment decisions.
Collapse
Affiliation(s)
- Preeti Moar
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| | - Ravi Tandon
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|