1
|
Razavi ZS, Aliniay Sharafshadehi S, Yousefi MH, Javaheri F, Rahimi Barghani MR, Afkhami H, Heidari F. Application of novel strategies in chronic wound management with focusing on pressure ulcers: new perspective. Arch Dermatol Res 2025; 317:320. [PMID: 39888392 DOI: 10.1007/s00403-024-03790-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/27/2024] [Accepted: 12/29/2024] [Indexed: 02/01/2025]
Abstract
Invading blood cells, extracellular tissue, and soluble mediators all play important roles in the wound-healing process. There is a substantial global burden of disease and mortality attributable to skin defects that do not heal. About 1% to 2% of the population in industrialized nations suffers from chronic wounds that don't heal, despite healthcare breakthroughs; this condition is very costly, costing about $25 billion each year in the US alone. Amputation, infection (affecting as many as 25% of chronic wounds), sepsis, and dermal replacements are all consequences of conventional therapeutic approaches like growth factor therapy and diabetic foot ulcers account for 85% of lower limb amputations. Despite these obstacles, scientists are constantly looking for new ways to speed healing and close wounds. The unique immunomodulatory capabilities and multipotency of mesenchymal stem cells (MSCs) have made them a potential therapeutic choice in tissue engineering and regenerative medicine. Animal models of wound healing have shown that MSCs can speed up the process by as much as 40% through enhancing angiogenesis, modulating inflammation, and promoting fibroblast migration. Clinical trials provide more evidence of their effectiveness; for instance, one RCT found that, after 12 weeks, patients treated with MSCs had a 72% smaller wound size than those in the control group. This review offers a thorough examination of MSCs by combining the latest research with preclinical evidence. Highlighting their potential to transform treatment paradigms, it delves into their biological properties, how they work during regeneration and healing, and therapeutic usefulness in controlling chronic wounds.
Collapse
Affiliation(s)
- Zahra Sadat Razavi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shahrzad Aliniay Sharafshadehi
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Hasan Yousefi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Fatemeh Javaheri
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | | | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran.
| | - Fatemeh Heidari
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
- Department of Anatomy, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran.
| |
Collapse
|
2
|
Tong Y, Chen Y, Yu Y, Wang F, Lin L, He G, Chen L, Zhuang X, Du W, Mo Y. Study on the relationship among typhoon, weather change and acute ischemic stroke in southern Zhejiang Province of China. BMC Neurol 2025; 25:14. [PMID: 39780064 PMCID: PMC11707993 DOI: 10.1186/s12883-024-04012-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025] Open
Abstract
OBJECTIVE This study aimed to investigate the relationship between the unique weather change and acute ischemic stroke (AIS) in the southern Zhejiang Province of China and to provide evidence for better predicting and preventing stroke. METHODS We retrospectively collected 14,996 ischemic stroke patients data and weather data from January 2019 to December 2021 in the southern Zhejiang Province of China. The correlation and risk between meteorological factors and the number of AIS daily cases were calculated. Wilcoxon rank sum test was used to calculate the difference in the number of cases between typhoon-affected and non-affected periods. A prediction model obeying Poisson regression was established, and the accuracy of the correlation factors in predicting the number of cases was verified. RESULTS In southern Zhejiang Province, the number of AIS was the highest in summer and the lowest in spring. Stroke onset is associated with temperature, water vapor pressure and typhoons (P < 0.05). The presence of typhoon (RR 0.882; 95% CI 0.834 to 0.933, P < 0.001) was a protective factor, while maximum temperature (RR 1.021; 95% CI 1.008 to 1.033, P = 0.043) and the water vapor pressure (RR 1.036; 95% CI 1.006 to 1.067, P = 0.036) were risk factors. The occurrence under the influence of typhoons was lower than that without the influence of typhoons (P < 0.05). The prediction model can predict the occurrence of stroke. CONCLUSION An association was observed between the occurrence of AIS, temperature, water vapor pressure and typhoon in the southern Zhejiang Province of China. Typhoon occurrence was associated with fewer cases. The predictive model may help high-risk populations prevent diseases early and assist hospitals in allocating resources promptly.
Collapse
Affiliation(s)
- Yao Tong
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou, Zhejiang, China
| | - Yating Chen
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou, Zhejiang, China
| | - Yulong Yu
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province, 150 Ximen Street, Gucheng Street, Linhai, Zhejiang, China
| | - Faxing Wang
- Department of Anesthesiology, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | - Lina Lin
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province, 150 Ximen Street, Gucheng Street, Linhai, Zhejiang, China
| | - Gangjian He
- Wenzhou Meteorological Bureau, Wenzhou, Zhejiang, China
| | - Lingyang Chen
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province, 150 Ximen Street, Gucheng Street, Linhai, Zhejiang, China
| | - Xiuxiu Zhuang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou, Zhejiang, China
| | - Wenwen Du
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou, Zhejiang, China
| | - Yunchang Mo
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou, Zhejiang, China.
| |
Collapse
|
3
|
Hajek M, Jor O, Tlapak J, Chmelar D. Hyperbaric Oxygen Therapy in Children with Brain Injury: A Retrospective Case Series. Int J Med Sci 2025; 22:473-481. [PMID: 39898239 PMCID: PMC11783073 DOI: 10.7150/ijms.102884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/21/2024] [Indexed: 02/04/2025] Open
Abstract
Introduction and Importance: Some experimental studies on brain injury associated with traumatic brain injury (TBI) and hypoxic-ischaemic encephalopathy (HIE) reveal a positive effect of hyperbaric oxygen therapy (HBOT). However, in clinical medicine, most of the scientific evidence available in the current literature relates only to TBI. Methods: The primary objective is to empirically assess the efficacy of HBOT in mitigating the symptoms of disability associated with brain injury in children, with a view to elucidating its therapeutic potential and clinical benefits. Outcomes: A total of 21 patients have been treated with HBOT. The mean age was 6±4.6 years. There were 12 cases (57%) of TBI, 8 cases (38%) of HIE and 1 case (5%) of ischaemic stroke. The mean initial Glasgow Coma Scale (GCS) at hospital admission immediately after accident was 3.3±0.9. The mean time from injury to HBOT was 5.2 ± 3.8 weeks. The mean number of HBOT exposures was 10±4.3. The mean GCS pre-HBOT was 10.7±3.7 and 12.3±3.4 (p=0.004) after post-HBOT, respectively. The mean Glasgow Outcome Scale (GOS) was 3.3±0.8 pre-HBOT, and 3.9±1.1 (p<0.001) after post-HBOT, respectively. Eighteen cases were included in response to HBOT assessment. Six cases (33%) were evaluated as large clinically significant response (CSR), 7 cases (39%) were evaluated as partial response with minimally important difference (MID). Five cases (28%) were evaluated as non-response. The results showed better response to HBOT in cases of starting HBOT up to 4 weeks (p=0.02) after the injury. There was no serious HBOT-related complication or injury. Conclusion: Results of our study demonstrate both clinical and statistically significant patient response to HBOT. Our data also suggest that the earlier HBOT started after diagnosis up to 4 weeks, the more pronounced patients' response to HBOT was achieved. The provision of HBOT to pediatric patients is feasible in large regional hyperbaric centers.
Collapse
Affiliation(s)
- Michal Hajek
- Centre of Hyperbaric Medicine, Ostrava City Hospital, Ostrava, Czech Republic
- Institute of Laboratory Medicine, Institute of Microbiology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Centre for Hyperbaric Medicine of Faculty of Medicine University of Ostrava and Ostrava City Hospital, Ostrava, Czech Republic
| | - Ondrej Jor
- Centre for Hyperbaric Medicine of Faculty of Medicine University of Ostrava and Ostrava City Hospital, Ostrava, Czech Republic
- Department of Anaesthesiology, Resuscitation and Intensive Care Medicine, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital of Ostrava, Ostrava, Czech Republic
| | - Jakub Tlapak
- The Institute of Aviation Medicine, Prague, Czech Republic
- Faculty of Biomedical Engineering, Czech Technical University in Prague, Czech Republic
| | - Dittmar Chmelar
- Institute of Laboratory Medicine, Institute of Microbiology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Centre for Hyperbaric Medicine of Faculty of Medicine University of Ostrava and Ostrava City Hospital, Ostrava, Czech Republic
| |
Collapse
|
4
|
Batinac T, Batičić L, Kršek A, Knežević D, Marcucci E, Sotošek V, Ćurko-Cofek B. Endothelial Dysfunction and Cardiovascular Disease: Hyperbaric Oxygen Therapy as an Emerging Therapeutic Modality? J Cardiovasc Dev Dis 2024; 11:408. [PMID: 39728298 DOI: 10.3390/jcdd11120408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Maintaining the physiological function of the vascular endothelium and endothelial glycocalyx is crucial for the prevention of cardiovascular disease, which is one of the leading causes of morbidity and mortality worldwide. Damage to these structures can lead to atherosclerosis, hypertension, and other cardiovascular problems, especially in individuals with risk factors such as diabetes and obesity. Endothelial dysfunction is associated with ischemic disease and has a negative impact on overall cardiovascular health. The aim of this review was to comprehensively summarize the crucial role of the vascular endothelium and glycocalyx in cardiovascular health and associated thrombo-inflammatory conditions. It highlights how endothelial dysfunction, influenced by factors such as diabetes, chronic kidney disease, and obesity, leads to adverse cardiovascular outcomes, including heart failure. Recent evidence suggests that hyperbaric oxygen therapy (HBOT) may offer therapeutic benefits in the treatment of cardiovascular risk factors and disease. This review presents the current evidence on the mechanisms by which HBOT promotes angiogenesis, shows antimicrobial and immunomodulatory effects, enhances antioxidant defenses, and stimulates stem cell activity. The latest findings on important topics will be presented, including the effects of HBOT on endothelial dysfunction, cardiac function, atherosclerosis, plaque stability, and endothelial integrity. In addition, the role of HBOT in alleviating cardiovascular risk factors such as hypertension, aging, obesity, and glucose metabolism regulation is discussed, along with its impact on inflammation in cardiovascular disease and its potential benefit in ischemia-reperfusion injury. While HBOT demonstrates significant therapeutic potential, the review also addresses potential risks associated with excessive oxidative stress and oxygen toxicity. By combining information on the molecular mechanisms of HBOT and its effects on the maintenance of vascular homeostasis, this review provides valuable insights into the development of innovative therapeutic strategies aimed at protecting and restoring endothelial function to prevent and treat cardiovascular diseases.
Collapse
Affiliation(s)
- Tanja Batinac
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 2, 51000 Rijeka, Croatia
- Department of Underwater and Hyperbaric Medicine, Clinical Hospital Center Rijeka, Tome Strižića 3, 51000 Rijeka, Croatia
| | - Lara Batičić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Antea Kršek
- Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Danijel Knežević
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Emanuela Marcucci
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 2, 51000 Rijeka, Croatia
- Department of Underwater and Hyperbaric Medicine, Clinical Hospital Center Rijeka, Tome Strižića 3, 51000 Rijeka, Croatia
| | - Vlatka Sotošek
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 2, 51000 Rijeka, Croatia
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Božena Ćurko-Cofek
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| |
Collapse
|
5
|
Antos Z, Zackiewicz K, Tomaszek N, Modzelewski S, Waszkiewicz N. Beyond Pharmacology: A Narrative Review of Alternative Therapies for Anxiety Disorders. Diseases 2024; 12:216. [PMID: 39329885 PMCID: PMC11431799 DOI: 10.3390/diseases12090216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/01/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Anxiety disorders significantly reduce patients' quality of life. Current pharmacological treatments, primarily benzodiazepines and antidepressants, are associated with numerous side effects. Consequently, there is a continual search for alternative methods to traditional therapies that are less burdensome for patients and broaden their therapeutic options. Our objective was to determine the role of selected alternative methods in the treatment of anxiety disorders. METHODS In this review, we examined recent evidence on alternative treatments for anxiety disorders, including physical activity, mindfulness, virtual reality (VR) technology, biofeedback, herbal remedies, transcranial magnetic stimulation (TMS), cryotherapy, hyperbaric therapy, vagus nerve stimulation (VNS), 3,4-methylenedioxymethamphetamine (MDMA), electroconvulsive therapy (ECT), and eye movement desensitization and reprocessing (EMDR) therapy. For this purpose we reviewed PubMed and after initial search, we excluded works unrelated to our aim, non-orginal data and animal studies. We conducted second search to cover all minor methods. RESULTS We included 116 studies, which data is presented in Tables. We have investigated which methods can support treatment and which can be used as a stand-alone treatment. We assessed the risks to benefits of using alternative treatments. CONCLUSION Alternative treatments significantly expand the options available to patients and clinicians, with many serving as adjuncts to traditional therapies. Among the methods presented, mindfulness has the most significant therapeutic potential.
Collapse
Affiliation(s)
- Zuzanna Antos
- Department of Psychiatry, Medical University of Bialystok, pl. Wołodyjowskiego 2, 15-272 Białystok, Poland
| | - Klaudia Zackiewicz
- Department of Psychiatry, Medical University of Bialystok, pl. Wołodyjowskiego 2, 15-272 Białystok, Poland
| | - Natalia Tomaszek
- Department of Psychiatry, Medical University of Bialystok, pl. Wołodyjowskiego 2, 15-272 Białystok, Poland
| | - Stefan Modzelewski
- Department of Psychiatry, Medical University of Bialystok, pl. Wołodyjowskiego 2, 15-272 Białystok, Poland
| | - Napoleon Waszkiewicz
- Department of Psychiatry, Medical University of Bialystok, pl. Wołodyjowskiego 2, 15-272 Białystok, Poland
| |
Collapse
|
6
|
Guo Y, Liu J, Du X, Qi M, She T, Xue K, Wu X, Xu L, Peng B, Zhang Y, Liu Y, Jiang Z, Li X, Yuan Y. ROS exhaustion reverses the effects of hyperbaric oxygen on hemorrhagic transformation through reactivating microglia in post-stroke hyperglycemic mice. Sci Rep 2024; 14:21410. [PMID: 39271781 PMCID: PMC11399301 DOI: 10.1038/s41598-024-72454-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Acute ischemic stroke (AIS) is a major global health concern due to its high mortality and disability rates. Hemorrhagic transformation, a common complication of AIS, leads to poor prognosis yet lacks effective treatments. Preclinical studies indicate that hyperbaric oxygen (HBO) treatment within 12 h of AIS onset alleviates ischemia/reperfusion injuries, including hemorrhagic transformation. However, clinical trials have yielded conflicting results, suggesting some underlying mechanisms remain unclear. In this study, we confirmed that HBO treatments beginning within 1 h post reperfusion significantly alleviated the haemorrhage and neurological deficits in hyperglycemic transient middle cerebral arterial occlusion (tMCAO) mice, partly due to the inhibition of the NLRP3 inflammasome-mediated pro-inflammatory response in microglia. Notably, reactive oxygen species (ROS) mediate the anti-inflammatory and protective effect of early HBO treatment, as edaravone and N-Acetyl-L-Cysteine (NAC), two commonly used antioxidants, reversed the suppressive effect of HBO treatment on NLRP3 inflammasome-mediated inflammation in microglia. Furthermore, NAC countered the protective effect of early HBO treatment in tMCAO mice with hyperglycemia. These findings support that early HBO treatment is a promising intervention for AIS, however, caution is warranted when combining antioxidants with HBO treatment. Further assessments are needed to clarify the role of antioxidants in HBO therapy for AIS.
Collapse
Affiliation(s)
- Yanan Guo
- Institute of Special Environmental Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
| | - Jiayi Liu
- Institute of Special Environmental Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
- Jiang'an Health Institute of Rugao Municipal Health Commission, Nantong, 226534, China
| | - Xingyue Du
- Institute of Special Environmental Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
| | - Mian Qi
- Institute of Special Environmental Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
| | - Tongping She
- Institute of Special Environmental Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
| | - Ke Xue
- Institute of Special Environmental Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
| | - Xinhe Wu
- The Second People's Hospital of Nantong, Nantong, 226002, China
| | - Lihua Xu
- Institute of Special Environmental Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
| | - Bin Peng
- Institute of Special Environmental Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
| | - Yunfeng Zhang
- Institute of Special Environmental Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
| | - Yufeng Liu
- The Second People's Hospital of Nantong, Nantong, 226002, China
| | - Zhenglin Jiang
- Institute of Special Environmental Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
| | - Xia Li
- Institute of Special Environmental Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China.
| | - Yuan Yuan
- Institute of Special Environmental Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China.
| |
Collapse
|
7
|
Zeng H, Zeng D, Yin X, Zhang W, Wu M, Chen Z. Research progress on high-concentration oxygen therapy after cerebral hemorrhage. Front Neurol 2024; 15:1410525. [PMID: 39139771 PMCID: PMC11320605 DOI: 10.3389/fneur.2024.1410525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024] Open
Abstract
Recently, the role of high-concentration oxygen therapy in cerebral hemorrhage has been extensively discussed. This review describes the research progress in high-concentration oxygen therapy after cerebral hemorrhage. High-concentration oxygen therapy can be classified into two treatment methods: hyperbaric and normobaric high-concentration oxygen therapy. Several studies have reported that high-concentration oxygen therapy uses the pathological mechanisms of secondary ischemia and hypoxia after cerebral hemorrhage as an entry point to improve cerebral oxygenation, metabolic rate, cerebral edema, intracranial pressure, and oxidative stress. We also elucidate the mechanisms by which molecules such as Hypoxia-inducible factor 1-alpha (HIF-1α), vascular endothelial growth factor, and erythropoietin (EPO) may play a role in oxygen therapy. Although people are concerned about the toxicity of hyperoxia, combined with relevant literature, the evidence discussed in this article suggests that as long as the duration, concentration, pressure, and treatment interval of patients with cerebral hemorrhage are properly understood and oxygen is administered within the treatment window, it can be effective to avoid hyperoxic oxygen toxicity. Combined with the latest research, we believe that high-concentration oxygen therapy plays an important positive role in injuries and outcomes after cerebral hemorrhage, and we recommend expanding the use of normal-pressure high-concentration oxygen therapy for cerebral hemorrhage.
Collapse
Affiliation(s)
- He Zeng
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Dakai Zeng
- Department of Anorectal Surgery, Third Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Xiaoping Yin
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Wumiao Zhang
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Moxin Wu
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Zhiying Chen
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| |
Collapse
|
8
|
Wang Y, Ni P, Zhuang D, Zhou P, Zhu F, Yin D, Zhu R, Mei B, Hu S. Early hyperbaric oxygen therapy through regulating the HIF-1α signaling pathway attenuates Neuroinflammation and behavioral deficits in a mouse model of Sepsis-associated encephalopathy. J Neuroimmunol 2024; 391:578367. [PMID: 38735091 DOI: 10.1016/j.jneuroim.2024.578367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/18/2024] [Accepted: 05/05/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) presents a significant clinical challenge, associated with increased mortality and healthcare expenses. Hyperbaric oxygen therapy (HBOT), involving inhaling pure or highly concentrated oxygen under pressures exceeding one atmosphere, has demonstrated neuroprotective effects in various conditions. However, the precise mechanisms underlying its protective actions against sepsis-associated brain injury remain unclear. This study aimed to determine whether HBOT protects against SAE and to elucidate the impact of the hypoxia-inducible factor-1α (HIF-1α) signaling pathway on SAE. METHODS The experiment consisted of two parts. In the first part, C57BL/6 J male mice were divided into five groups using a random number table method: control group, sham surgery group, sepsis group, HBOT + sepsis group, and HBOT + sham surgery group. In the subsequent part, C57BL/6 J male mice were divided into four groups: sepsis group, HBOT + sepsis group, HIF-1α + HBOT + sepsis group, and HIF-1α + sepsis group. Sepsis was induced via cecal ligation and puncture (CLP). Hyperbaric oxygen therapy was administered at 1 h and 4 h post-CLP. After 24 h, blood and hippocampal tissue were collected for cytokine measurements. HIF-1α, TNF-α, IL-1β, and IL-6 expression were assessed via ELISA and western blotting. Microglial expression was determined by immunofluorescence. Blood-brain barrier permeability was quantified using Evans Blue. Barnes maze and fear conditioning were conducted 14 days post-CLP to evaluate learning and memory. RESULTS Our findings reveal that CLP-induced hippocampus-dependent cognitive deficits coincided with elevated HIF-1α and increased TNF-α, IL-1β, and IL-6 levels in both blood and hippocampus. Observable activation of microglial cells in the hippocampus and increased blood-brain barrier (BBB) permeability were also evident. HBOT mitigated HIF-1α, TNF-α, IL-1β, and IL-6 levels, attenuated microglial activation in the hippocampus, and significantly improved learning and memory deficits in CLP-exposed mice. Additionally, these outcomes were corroborated by injecting a lentivirus that overexpressed HIF-1α into the hippocampal region of the mice. CONCLUSION HIF-1α escalation induced peripheral and central inflammatory factors, promoting microglial activation, BBB impairment, and cognitive dysfunction. However, HBOT ameliorated these effects by reducing HIF-1α levels in Sepsis-Associated Encephalopathy.
Collapse
Affiliation(s)
- Yan Wang
- School of Nursing, Anhui Medical University, Hefei, Anhui Province, China; The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Ping Ni
- School of Nursing, Anhui Medical University, Hefei, Anhui Province, China
| | - Dongmei Zhuang
- School of Nursing, Anhui Medical University, Hefei, Anhui Province, China
| | - Peng Zhou
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Furong Zhu
- School of Nursing, Anhui Medical University, Hefei, Anhui Province, China
| | - Danqiao Yin
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Rui Zhu
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Bin Mei
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China.
| | - Shaohua Hu
- Department of Nursing, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China.
| |
Collapse
|
9
|
Ye Q, Zheng D, Chen K, Xu H, Yang Z, Wen J, Hu Y, Wu J. Phase-Change Based Oxygen Carriers Improve Acute Cerebral Hypoxia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309180. [PMID: 38148304 DOI: 10.1002/smll.202309180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/08/2023] [Indexed: 12/28/2023]
Abstract
Stroke is the second leading cause of death worldwide, and hypoxia is a major crisis of the brain after stroke. Therefore, providing oxygen to the brain microenvironment can effectively protect neurons from damage caused by cerebral hypoxia. However, there is a lack of timely and effective means of oxygen delivery clinically to the brain for acute cerebral hypoxia. Here, a phase-change based nano oxygen carrier is reported, which can undergo a phase change in response to increasing temperature in the brain, leading to oxygen release. The nano oxygen carrier demonstrate intracerebral oxygen delivery capacity and is able to release oxygen in the hypoxic and inflammatory region of the brain. In the acute ischemic stroke mouse model, the nano oxygen carrier can effectively reduce the area of cerebral infarction and decrease the level of inflammation triggered by cerebral hypoxia. By taking advantage of the increase in temperature during cerebral hypoxia, phase-change oxygen carrier proposes a new intracerebral oxygen delivery strategy for reducing acute cerebral hypoxia.
Collapse
Affiliation(s)
- Qingsong Ye
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, 210093, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, 210093, China
- Wuxi Xishan NJU Institute of Applied Biotechnology, Anzhen Street, Xishan District, Wuxi, 214101, China
| | - Deyuan Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, 210093, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, 210093, China
- Wuxi Xishan NJU Institute of Applied Biotechnology, Anzhen Street, Xishan District, Wuxi, 214101, China
| | - Kaiyuan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, 210093, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, 210093, China
- Wuxi Xishan NJU Institute of Applied Biotechnology, Anzhen Street, Xishan District, Wuxi, 214101, China
| | - Haiheng Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, 210093, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, 210093, China
- Wuxi Xishan NJU Institute of Applied Biotechnology, Anzhen Street, Xishan District, Wuxi, 214101, China
| | - Zefeng Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, 210093, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, 210093, China
- Wuxi Xishan NJU Institute of Applied Biotechnology, Anzhen Street, Xishan District, Wuxi, 214101, China
| | - Jiqiu Wen
- National Clinical Research Center of Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210093, China
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, 210093, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, 210093, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, 210093, China
- Wuxi Xishan NJU Institute of Applied Biotechnology, Anzhen Street, Xishan District, Wuxi, 214101, China
| |
Collapse
|
10
|
Yin S, Hou J, Li J, Zeng C, Chen S, Zhang H, Tian X. Polydopamine-modified black phosphorus nanosheet drug delivery system for the treatment of ischemic stroke. Regen Biomater 2024; 11:rbae046. [PMID: 38769994 PMCID: PMC11105953 DOI: 10.1093/rb/rbae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024] Open
Abstract
Black phosphorus (BP), as a representative metal-free semiconductor, has been extensively explored. It has a higher drug loading capacity in comparison to conventional materials and also possesses excellent biocompatibility and biodegradability. Furthermore, BP nanosheets can enhance the permeability of the blood-brain barrier (BBB) upon near-infrared (NIR) irradiation, owing to their photothermal effect. However, the inherent instability of BP poses a significant limitation, highlighting the importance of surface modification to enhance its stability. Ischemic stroke (IS) is caused by the occlusion of blood vessels, and its treatment is challenging due to the hindrance caused by the BBB. Therefore, there is an urgent need to identify improved methods for bypassing the BBB for more efficient IS treatment. This research devised a novel drug delivery approach based on pterostilbene (Pte) supported by BP nanosheets, modified with polydopamine (PDA) to form BP-Pte@PDA. This system shows robust stability and traverses the BBB using effective photothermal mechanisms. This enables the release of Pte upon pH and NIR stimuli, offering potential therapeutic advantages for treating IS. In a middle cerebral artery occlusion mouse model, the BP-Pte@PDA delivery system significantly reduced infarct size, and brain water content, improved neurological deficits, reduced the TLR4 inflammatory factor expression, and inhibited cell apoptosis. In summary, the drug delivery system fabricated in this study thus demonstrated good stability, therapeutic efficacy, and biocompatibility, rendering it suitable for clinical application.
Collapse
Affiliation(s)
- Shujiang Yin
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Jing Hou
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Jie Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Caiyun Zeng
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Shuang Chen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Han Zhang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xing Tian
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| |
Collapse
|
11
|
Ma B, Jin G, Mao F, Zhou M, Li Y, Hu W, Cai X. Development of a nomogram to predict the incidence of acute kidney injury among ischemic stroke individuals during ICU hospitalization. Heliyon 2024; 10:e25566. [PMID: 38352771 PMCID: PMC10862667 DOI: 10.1016/j.heliyon.2024.e25566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/26/2023] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
Background Limited clinical prediction models exist to assess the likelihood of acute kidney injury (AKI) occurrence in ischemic stroke individuals. In this retrospective study, our aim was to construct a nomogram that utilizes commonly available clinical features to predict the occurrence of AKI during intensive care unit hospitalization among this patient population. Methods In this study, the MIMIC-IV database was utilized to investigate potential risk factors associated with the incidence of AKI among ischemic stroke individuals. A predictive nomogram was developed based on these identified risk factors. The discriminative performance of the constructed nomogram was assessed. Calibration analysis was utilized to evaluate the calibration performance of the constructed model, assessing the agreement between predicted probabilities and actual outcomes. Furthermore, decision curve analysis (DCA) was employed to assess the clinical net benefit, taking into account the potential risks and benefits associated with different decision thresholds. Results A total of 2089 ischemic stroke individuals were included and randomly allocated into developing (n = 1452) and verification cohorts (n = 637). Risk factors for AKI incidence in ischemic stroke individuals, determined through LASSO and logistic regression. The constructed nomogram had good performance in predicting the occurrence of AKI among ischemic stroke patients and provided significant improvement compared to existing scoring systems. DCA demonstrated satisfactory clinical net benefit of the constructed nomogram in both the validation and development cohorts. Conclusions The developed nomogram exhibits robust predictive performance in forecasting AKI occurrence in ischemic stroke individuals.
Collapse
Affiliation(s)
- Buqing Ma
- Department of Critical Care Medicine, Hangzhou First People's Hospital, Hangzhou, China
| | - Guangyong Jin
- Department of Critical Care Medicine, Hangzhou First People's Hospital, Hangzhou, China
| | - Fengkai Mao
- Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Menglu Zhou
- Department of Neurology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yiwei Li
- Department of Critical Care Medicine, Hangzhou First People's Hospital, Hangzhou, China
| | - Wei Hu
- Department of Critical Care Medicine, Hangzhou First People's Hospital, Hangzhou, China
| | - Xuwen Cai
- Department of Critical Care Medicine, Hangzhou First People's Hospital, Hangzhou, China
| |
Collapse
|
12
|
Li W, Qi Z, Ji X, Liu KJ. Author Response: Normobaric Hyperoxia Combined With Endovascular Treatment for Patients With Acute Ischemic Stroke: A Randomized Controlled Clinical Trial. Neurology 2022; 99:1068. [PMID: 36719734 DOI: 10.1212/wnl.0000000000201588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
13
|
Yin YY, Sun Q, Yan B, Wu D, Yu T. Reader Response: Normobaric Hyperoxia Combined With Endovascular Treatment for Patients With Acute Ischemic Stroke: A Randomized Controlled Clinical Trial. Neurology 2022; 99:1067. [PMID: 36719731 DOI: 10.1212/wnl.0000000000201587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 01/09/2023] Open
|
14
|
Lin X, Li N, Tang H. Recent Advances in Nanomaterials for Diagnosis, Treatments, and Neurorestoration in Ischemic Stroke. Front Cell Neurosci 2022; 16:885190. [PMID: 35836741 PMCID: PMC9274459 DOI: 10.3389/fncel.2022.885190] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Stroke is a major public health issue, corresponding to the second cause of mortality and the first cause of severe disability. Ischemic stroke is the most common type of stroke, accounting for 87% of all strokes, where early detection and clinical intervention are well known to decrease its morbidity and mortality. However, the diagnosis of ischemic stroke has been limited to the late stages, and its therapeutic window is too narrow to provide rational and effective treatment. In addition, clinical thrombolytics suffer from a short half-life, inactivation, allergic reactions, and non-specific tissue targeting. Another problem is the limited ability of current neuroprotective agents to promote recovery of the ischemic brain tissue after stroke, which contributes to the progressive and irreversible nature of ischemic stroke and also the severity of the outcome. Fortunately, because of biomaterials’ inherent biochemical and biophysical properties, including biocompatibility, biodegradability, renewability, nontoxicity, long blood circulation time, and targeting ability. Utilization of them has been pursued as an innovative and promising strategy to tackle these challenges. In this review, special emphasis will be placed on the recent advances in the study of nanomaterials for the diagnosis and therapy of ischemic stroke. Meanwhile, nanomaterials provide much promise for neural tissue salvage and regeneration in brain ischemia, which is also highlighted.
Collapse
Affiliation(s)
- Xinru Lin
- Department of Anesthesiology, Wenzhou Key Laboratory of Perioperative Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Na Li
- Oujiang Laboratory, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
- *Correspondence: Na Li Hongli Tang
| | - Hongli Tang
- Department of Anesthesiology, Wenzhou Key Laboratory of Perioperative Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Na Li Hongli Tang
| |
Collapse
|
15
|
Msigwa SS, Li Y, Cheng XL, Cao F. Combining electroacupuncture and transcranial direct current stimulation as an adjuvant therapy enhances spontaneous conversation and naming in subacute vascular aphasia: A retrospective analysis. JOURNAL OF INTEGRATIVE MEDICINE 2022; 20:244-251. [PMID: 35318944 DOI: 10.1016/j.joim.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVE Emerging evidence shows the effectiveness of speech and language therapy (SLT); however, precise therapeutic parameters remain unclear. Evidence for the use of adjunctive transcranial direct current stimulation (tDCS) to treat post-stroke aphasia (PSA) is promising; however, the utility of combining tDCS and electroacupuncture (EA) has not yet been analyzed. This study assessed the therapeutic consequences of EA and tDCS coupled with SLT in subacute PSA patients who were also undergoing hyperbaric oxygen therapy (HBOT). METHODS A retrospective analysis was conducted on subacute (< 6 months) PSA patients who were divided into three groups: patients who received EA plus tDCS (acupuncture group), patients who underwent tDCS (tDCS group), and patients who experienced conventional therapy (HBOT + SLT). All subjects underwent 21 days of treatment and also received conventional treatment. The aphasia battery of Chinese (ABC) was used to score pre- and post-intervention status. RESULTS The analysis comprised 238 patients. Cerebral infarction was the most frequent stroke type (137 [57.6%]), while motor (66 [27.7%]) and global aphasia (60 [25.2%]) were the most common types of aphasia. After 21 days of intervention, the ABC scores of all patients were improved. The acupuncture group had the highest ABC scores, but only repetition, naming, and spontaneous speech were statistically improved (P < 0.01). Post-hoc tests revealed significant improvement in word retrieval in the acupuncture and tDCS groups (P < 0.01, P = 0.037), while the acupuncture group had additional significant improvement in spontaneous conversation (P < 0.01). CONCLUSION Combining acupuncture and tDCS as an adjuvant therapy for subacute PSA led to significant spontaneous speech and word retrieval improvements. Future prospective, multi-ethnic, multi-center trials are warranted.
Collapse
Affiliation(s)
- Samwel Sylvester Msigwa
- Department of Neurology, the Clinical Medicine School of Yangtze University, the First Affiliated Hospital of Yangtze University, Jingzhou 424023, Hubei Province, China; Department of Research and Training, Mirembe National Mental Health Hospital, P. O. Box 910, Dodoma, Tanzania
| | - Yan Li
- Department of Neurology, the Clinical Medicine School of Yangtze University, the First Affiliated Hospital of Yangtze University, Jingzhou 424023, Hubei Province, China
| | - Xiang-Lin Cheng
- Department of Neurology, the Clinical Medicine School of Yangtze University, the First Affiliated Hospital of Yangtze University, Jingzhou 424023, Hubei Province, China; Department of Rehabilitation, The First Affiliated Hospital of Yangtze University, Jingzhou 424023, Hubei Province, China.
| | - Fen Cao
- Department of Neurology, the Clinical Medicine School of Yangtze University, the First Affiliated Hospital of Yangtze University, Jingzhou 424023, Hubei Province, China; Department of Rehabilitation, The First Affiliated Hospital of Yangtze University, Jingzhou 424023, Hubei Province, China.
| |
Collapse
|
16
|
RŮŽIČKA J, DEJMEK J, BOLEK L, BENEŠ J, KUNCOVÁ J. Hyperbaric oxygen influences chronic wound healing – a cellular level review. Physiol Res 2021; 70:S261-S273. [DOI: 10.33549/physiolres.934822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chronic wound is a serious medical issue due to its high prevalence and complications; hyperbaric oxygen therapy (HBOT) is also considered in comprehensive treatment. Clinical trials, including large meta-analyses bring inconsistent results about HBOT efficacy. This review is summarizing the possible effect of HBOT on the healing of chronic wound models at the cellular level. HBOT undoubtedly escalates the production of reactive oxygen and nitrogen radicals (ROS and RNS), which underlie both the therapeutic and toxic effects of HBOT on certain tissues. HBOT paradoxically elevates the concentration of Hypoxia inducible factor (HIF) 1 by diverting the HIF-1 degradation to pathways that are independent of the oxygen concentration. Elevated HIF-1 stimulates the production of different growth factors, boosting the healing process. HBOT supports synthesis of Heat shock proteins (HSP), which are serving as chaperones of HIF-1. HBOT has antimicrobial effect, increases the effectiveness of some antibiotics, stimulates fibroblasts growth, collagen synthesis and suppresses the activity of proteolytic enzymes like matrix metalloproteinases. All effects of HBOT were investigated on cell cultures and animal models, the limitation of their translation is discussed at the end of this revie
Collapse
Affiliation(s)
- J RŮŽIČKA
- Biomedical Centre, Faculty of Medicine in Plzeň, Charles University, Plzeň, Czech Republic
| | - J DEJMEK
- Biomedical Centre, Faculty of Medicine in Plzeň, Charles University, Plzeň, Czech Republic
| | - L BOLEK
- Biomedical Centre, Faculty of Medicine in Plzeň, Charles University, Plzeň, Czech Republic
| | - J BENEŠ
- Biomedical Centre, Faculty of Medicine in Plzeň, Charles University, Plzeň, Czech Republic
| | - J KUNCOVÁ
- Biomedical Centre, Faculty of Medicine in Plzeň, Charles University, Plzeň, Czech Republic
| |
Collapse
|
17
|
Possible Applications of Hyperbaric Oxygen Therapy-Narrative Review. POLISH HYPERBARIC RESEARCH 2021. [DOI: 10.2478/phr-2021-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Abstract
Hyperbaric oxygen therapy is a method supporting the treatment of many diseases. Oxygen therapy treatments are conducted in hyperbaric chambers, in which patients breathe pure, 100% oxygen with higher than atmospheric pressure. This allows to increase the amount of oxygen supplied to all cells of the body many times over. The treatment with hyperbaric oxygen therapy enables the patient to recover faster and be fully active, and also reduces the costs of standard treatment.
The aim of the study was to summarize the possible applications of hyperbaric oxygen therapy. The available literature in the PUBMED database was reviewed in September 2022 with the use of the phrases ‘hyperbaric oxygen therapy’, ‘therapeutic applications’. The indications for therapy in a hyperbaric chamber are all kinds of diseases, both acute and chronic. The method supports the nourishment and regeneration of cells and tissues of the organism, and also slows down the aging process. However, due to the possible side effects of such therapy, patients should be qualified for its use after a careful analysis of their clinical condition and coexisting diseases. To sum up: hyperbaric oxygen therapy is most often used in the treatment of skin diseases and injuries, burns, and peripheral vascular diseases.
Collapse
|
18
|
Gottfried I, Schottlender N, Ashery U. Hyperbaric Oxygen Treatment-From Mechanisms to Cognitive Improvement. Biomolecules 2021; 11:biom11101520. [PMID: 34680155 PMCID: PMC8533945 DOI: 10.3390/biom11101520] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/06/2021] [Accepted: 10/13/2021] [Indexed: 12/19/2022] Open
Abstract
Hyperbaric oxygen treatment (HBOT)—the medical use of oxygen at environmental pressure greater than one atmosphere absolute—is a very effective therapy for several approved clinical situations, such as carbon monoxide intoxication, incurable diabetes or radiation-injury wounds, and smoke inhalation. In recent years, it has also been used to improve cognition, neuro-wellness, and quality of life following brain trauma and stroke. This opens new avenues for the elderly, including the treatment of neurological and neurodegenerative diseases and improvement of cognition and brain metabolism in cases of mild cognitive impairment. Alongside its integration into clinics, basic research studies have elucidated HBOT’s mechanisms of action and its effects on cellular processes, transcription factors, mitochondrial function, oxidative stress, and inflammation. Therefore, HBOT is becoming a major player in 21st century research and clinical treatments. The following review will discuss the basic mechanisms of HBOT, and its effects on cellular processes, cognition, and brain disorders.
Collapse
Affiliation(s)
- Irit Gottfried
- School of Neurobiology, Biochemistry and Biophysics, Life Sciences Faculty, Tel Aviv University, Tel Aviv 6997801, Israel; (I.G.); (N.S.)
| | - Nofar Schottlender
- School of Neurobiology, Biochemistry and Biophysics, Life Sciences Faculty, Tel Aviv University, Tel Aviv 6997801, Israel; (I.G.); (N.S.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Uri Ashery
- School of Neurobiology, Biochemistry and Biophysics, Life Sciences Faculty, Tel Aviv University, Tel Aviv 6997801, Israel; (I.G.); (N.S.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Correspondence: ; Tel.: +972-3-6409827
| |
Collapse
|
19
|
Li J, Meng X, Li F, Liu J, Ma M, Chen W. Huperzine A combined with hyperbaric oxygen on the effect on cognitive function and serum hypoxia-inducible factor-1α Level in elderly patients with vascular dementia. Am J Transl Res 2021; 13:6897-6904. [PMID: 34306441 PMCID: PMC8290829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/20/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE To explore the clinical effect of huperzine A combined with hyperbaric oxygen on cognitive function and serum hypoxia-inducible factor-1α (HIF-1α) level in elderly patients with vascular dementia (VD). METHODS 120 elderly VD patients admitted to our hospital from February 2018 to March 2020 were selected and divided into two groups according to the treatment method (n = 60 each). They were administered for huperzine A and huperzine A combined with hyperbaric oxygen, respectively. The comparison of disease control rate (DCR), mini-mental state examination (MMSE) score, revised hasegawa's dementia scale (HDS-R) score and serum index were conducted. RESULTS At 2 and 4 weeks after treatment, the HDS-R and MMSE scores were reported to be higher in the observation group than those in the control group (P < 0.05), and the vascular endothelial growth factor (VEGF), anti-apoptotic factor (Livin), and HIF-1α showed a higher level of improvement as compared with the control group (P < 0.05). Moreover, the DCR in the observation group was much higher than that in the control group (P < 0.05). CONCLUSION Huperzine A combined with hyperbaric oxygen is remarkably effective in the treatment of elderly VD patients. It can improve the serum HIF-1α level and speed up the recovery of cognitive function.
Collapse
Affiliation(s)
- Jiajun Li
- Guangxi University of Chinese MedicineGuangxi, China
| | - Xiangen Meng
- Department of Hyperbric Oxygen, The Sixth Medical Center of PLA General Hospital10048, China
| | - Fang Li
- Shandong Province Liaocheng Third People’s HospitalLiaocheng, China
| | - Jiamin Liu
- Guangxi University of Chinese MedicineGuangxi, China
| | - Mingyang Ma
- Guangxi University of Chinese MedicineGuangxi, China
| | - Wangkun Chen
- Encephalopathy Department, Wuxi No. 2 Chinese Medicine HospitalChina
| |
Collapse
|
20
|
Zerimech S, Nguyen H, Baltan S. Mitochondria as the memory of preconditioning. CONDITIONING MEDICINE 2021; 4:151-160. [PMID: 36128004 PMCID: PMC9484407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Preconditioning is such a paradigm that a stimulus below the threshold of causing harm makes the brain stronger and resilient to subsequent injury. Preconditioning affords a vigorous tolerance to the brain against neurodegeneration. Numerous efforts have tried to identify the molecular targets involved in preconditioning-induced protective responses and interestingly many of those diverse mechanisms posit mitochondria as a master regulator of preconditioning. Therefore, in this review, we will critically discuss recent and emerging evidence for the involvement of mitochondria within the preconditioning paradigm. We will introduce the crucial targets and signaling cascades by which mitochondria exert preconditioning with a focus on white matter mitochondria and whether and how mechanisms for preconditioning differ in neurons and glial cells. In this aspect, we will evaluate the role of mitochondrial shaping proteins to establish structure-function interdependence for fusion-fission balance, motility, ATP production, Ca+2, and ROS scavenging. We will also discuss how aging impacts mitochondria and the consequences of mitochondrial aging on preconditioning mechanisms. We will concentrate on the regulation of mitochondrial DNA content and quantification specifically for its value as a biomarker to monitor disease conditions. The identification of these mitochondrial preconditioning mechanisms can be translated to potential pharmacological interventions to increase intrinsic resilience of the brain to injury and to develop novel approaches to neurodegenerative diseases. Moreover, mitochondria dynamics can be used as a memory or biomarker of preconditioning.
Collapse
Affiliation(s)
- Sarah Zerimech
- Anesthesiology and Peri-Operative Medicine (APOM), Oregon Health and Science University, Portland, Oregon 97239
| | - Hung Nguyen
- Anesthesiology and Peri-Operative Medicine (APOM), Oregon Health and Science University, Portland, Oregon 97239
| | - Selva Baltan
- Anesthesiology and Peri-Operative Medicine (APOM), Oregon Health and Science University, Portland, Oregon 97239
| |
Collapse
|
21
|
Heat Shock Proteins in Oxidative Stress and Ischemia/Reperfusion Injury and Benefits from Physical Exercises: A Review to the Current Knowledge. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6678457. [PMID: 33603951 PMCID: PMC7868165 DOI: 10.1155/2021/6678457] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
Heat shock proteins (HSPs) are molecular chaperones produced in response to oxidative stress (OS). These proteins are involved in the folding of newly synthesized proteins and refolding of damaged or misfolded proteins. Recent studies have been focused on the regulatory role of HSPs in OS and ischemia/reperfusion injury (I/R) where reactive oxygen species (ROS) play a major role. ROS perform many functions, including cell signaling. Unfortunately, they are also the cause of pathological processes leading to various diseases. Biological pathways such as p38 MAPK, HSP70 and Akt/GSK-3β/eNOS, HSP70, JAK2/STAT3 or PI3K/Akt/HSP70, and HSF1/Nrf2-Keap1 are considered in the relationship between HSP and OS. New pathophysiological mechanisms involving ROS are being discovered and described the protein network of HSP interactions. Understanding of the mechanisms involved, e.g., in I/R, is important to the development of treatment methods. HSPs are multifunctional proteins because they closely interact with the antioxidant and the nitric oxide generation systems, such as HSP70/HSP90/NOS. A deficiency or excess of antioxidants modulates the activation of HSF and subsequent HSP biosynthesis. It is well known that HSPs are involved in the regulation of several redox processes and play an important role in protein-protein interactions. The latest research focuses on determining the role of HSPs in OS, their antioxidant activity, and the possibility of using HSPs in the treatment of I/R consequences. Physical exercises are important in patients with cardiovascular diseases, as they affect the expression of HSPs and the development of OS.
Collapse
|
22
|
Chen CA, Huang YC, Lo JJ, Wang SH, Huang SH, Wu SH. Hyperbaric Oxygen Therapy Attenuates Burn-Induced Denervated Muscle Atrophy. Int J Med Sci 2021; 18:3821-3830. [PMID: 34790058 PMCID: PMC8579280 DOI: 10.7150/ijms.65976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/07/2021] [Indexed: 11/14/2022] Open
Abstract
Background: Neuronal apoptosis and inflammation in the ventral horn of the spinal cord contribute to denervated muscle atrophy post-burn. Hyperbaric oxygen therapy (HBOT) exerts anti-inflammation and neuroprotection. Furthermore, hypoxia-inducible factor (HIF)-1α has been reported to promote inflammation and apoptosis. We investigated the therapeutic potential of HBOT and the role of HIF-1α post-burn. Methods: Sprague-Dawley rats were divided into three groups: a control group, an untreated burn group receiving burn and sham treatment, and a HBOT group receiving burn injury and HBOT. The burn injury was induced with 75ºC ± 5ºC at the right hindpaw. HBOT (100% oxygen at 2.5 atmosphere, 90 min/day) and sham HBOT (21% oxygen at 1 atmosphere, 90 min/day) was started on day 28 after burn injury and continued for 14 treatments (days 28-41). Incapacitance (hind limb weight bearing) testing was conducted before burn and weekly after burn. At day 42 post-burn, the gastrocnemius muscle and the spinal cord ventral horn were analyzed. Results: HBOT improved burn-induced weight bearing imbalance. At day 42 post-burn, less gastrocnemius muscle atrophy and fibrosis were noted in the HBOT group than in the untreated burn group. In the ventral horn, HBOT attenuated the neuronal apoptosis and glial activation post-burn. The increases in phosphorylated AKT/mTOR post-burn were reduced after HBOT. HBOT also inhibited HIF-1α signaling, as determined by immunofluorescence and western blot. Conclusions: HBOT reduces burn-induced neuronal apoptosis in the ventral horn, possibly through HIF-1α signaling.
Collapse
Affiliation(s)
- Chin-An Chen
- Department of Anesthesiology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan.,Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung, Kaohsiung Medical University, Taiwan
| | - Yi-Chen Huang
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jing-Jou Lo
- Department of General Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Hung Wang
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Hung Huang
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Hyperbaric Oxygen Therapy Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sheng-Hua Wu
- Department of Anesthesiology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan.,Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung, Kaohsiung Medical University, Taiwan.,Department of Anesthesiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|