1
|
Cheng G, Wusiman L, Song D, Zhang W. Silencing PPP2R1A inhibits the progression of gastric cancer cells. J Cancer Res Clin Oncol 2025; 151:142. [PMID: 40251453 PMCID: PMC12008071 DOI: 10.1007/s00432-025-06177-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 03/17/2025] [Indexed: 04/20/2025]
Abstract
BACKGROUND Protein phosphatase 2 regulatory subunit A alpha (PPP2R1A) is the most common scaffold protein in the PP2A complex and has known tumor-suppressive functions. However, its role in gastric cancer (GC) is still unclear. This study aims to elucidate the potential regulatory role of PPP2R1A in the biological functions of GC. METHODS The mutation status and expression levels of PPP2R1A in GC were assessed through bioinformatics analysis, the correlation between PPP2R1A levels and patient survival rates was examined, and its potential functional network was analyzed. Stable AGS and MGC803 cell lines were set up for overexpressing and silencing PPP2R1A. The effects on cell proliferation, migration, invasion, and apoptosis were assessed through CCK-8 assays, scratch assays, Transwell assays, and flow cytometry. RESULTS The expression of PPP2R1A is significantly elevated in GC samples (P < 0.001) and is not caused by mutations in PPP2R1A (P > 0.05). Patients with high levels of PPP2R1A have a poorer 5-year survival rate (P < 0.001). Silencing PPP2R1A significantly inhibits the proliferation, migration, and invasion of GC cells while promoting apoptosis (P < 0.01). In contrast, overexpression of PPP2R1A does not have a significant impact on these cellular functions (P > 0.05). CONCLUSION PPP2R1A has potential oncogenic properties in the progression of GC, and knocking down the expression of PPP2R1A can inhibit the tumor progression of GC cells. This suggests that PPP2R1A may serve as a potential prognostic marker and therapeutic target for GC.
Collapse
Affiliation(s)
- Gengming Cheng
- Gastrointestinal Surgery Department, Xinjiang Medical University Affiliated Cancer Hospital, Xinjiang Uygur Autonomous Region, Urumqi, 830011, People's Republic of China
| | - Laibijiang Wusiman
- Gastrointestinal Surgery Department, Xinjiang Medical University Affiliated Cancer Hospital, Xinjiang Uygur Autonomous Region, Urumqi, 830011, People's Republic of China
| | - Dingding Song
- Gastrointestinal Surgery Department, Xinjiang Medical University Affiliated Cancer Hospital, Xinjiang Uygur Autonomous Region, Urumqi, 830011, People's Republic of China
| | - Wenbin Zhang
- Gastrointestinal Surgery Department, Xinjiang Medical University Affiliated Cancer Hospital, Xinjiang Uygur Autonomous Region, Urumqi, 830011, People's Republic of China.
| |
Collapse
|
2
|
Qiu Z, Sigh D, Liu Y, Prasad CB, Bean N, Yan C, Li Z, Zhang X, Narla G, DiFeo A, Wang QE, Zhang J. Low PPP2R2A expression promotes sensitivity to CHK1 inhibition in high-grade serous ovarian cancer. Theranostics 2024; 14:7450-7469. [PMID: 39659585 PMCID: PMC11626944 DOI: 10.7150/thno.96879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/06/2024] [Indexed: 12/12/2024] Open
Abstract
Rationale: High-grade serous ovarian cancer (HGSOC), the most lethal epithelial ovarian cancer subtype, faces persistent challenges despite advances in the therapeutic use of PARP inhibitors. Thus, innovative strategies are urgently needed to improve survival rates for this deadly disease. Checkpoint kinase 1 (CHK1) is pivotal in regulating cell survival during oncogene-induced replication stress (RS). While CHK1 inhibitors (CHK1i's) show promise as monotherapy for ovarian cancer, a crucial biomarker for effective stratification in clinical trials is lacking, hindering efficacy improvement and toxicity reduction. PP2A B55α, encoded by PPP2R2A, is a regulatory subunit of the serine/threonine protein phosphatase 2 (PP2A) that influences CHK1 sensitivity in non-small cell lung cancer (NSCLC). Given the complexity of PP2A B55α function in different types of cancer, here we sought to identify whether PPP2R2A deficiency enhances the sensitivity of HGSOC to CHK1 inhibition. Methods: To determine whether PPP2R2A deficiency affects the sensitivity of HGSOC to CHK1 inhibition, we treated PPP2R2A knockdown (KD) HGSOC cells or HGSOC cells with naturally low PPP2R2A expression with a CHK1 inhibitor, then assessed cell growth in in vitro and in vivo assays. Additionally, we investigated the mechanisms contributing to the increased RS and the enhanced sensitivity to the CHK1 inhibitor in PPP2R2A-KD or deficient cells using various molecular biology assays, including western blotting, immunofluorescence, and DNA fiber assays. Results: Our study suggests that PPP2R2A-KD elevates c-Myc-induced RS via upregulation of replication initiation, rendering HGSOC cells reliant on CHK1 for survival, including those resistant to PARP inhibitors. Conclusion: Combined, these results identify PPP2R2A/PP2A B55α as a potential predictive biomarker for CHK1i sensitivity in HGSOC, as well as suggesting it as a therapeutic target to overcome PARP resistance.
Collapse
Affiliation(s)
- Zhaojun Qiu
- Department of Radiation Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio-43210, United States
| | - Deepika Sigh
- Department of Radiation Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio-43210, United States
| | - Yujie Liu
- Department of Radiation Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio-43210, United States
| | - Chandra B. Prasad
- Department of Radiation Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio-43210, United States
| | - Nichalos Bean
- Department of Radiation Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio-43210, United States
| | - Chunhong Yan
- Georgia Cancer Center, Augusta University Medical College, 1410 Laney Walker Blvd., CN-2134, Augusta, Georgia-30912, United States
| | - Zaibo Li
- Department of Pathology, The Ohio State University Wexner Medical Center, College of Medicine, Columbus, Ohio-43210, United States
| | - Xiaoli Zhang
- Department of Biomedical Informatics, Wexner Medical Center, College of Medicine, The Ohio State University, Ohio-43210, United States
| | - Goutham Narla
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI-48109, United States
| | - Analisa DiFeo
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI-48109, United States
| | - Qi-En Wang
- Department of Radiation Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio-43210, United States
| | - Junran Zhang
- Department of Radiation Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio-43210, United States
- The James Comprehensive Cancer Center, Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, Ohio-43210, United States
- The James Comprehensive Cancer Center, Center for metabolism, The Ohio State University, Columbus, Ohio-43210, United States
| |
Collapse
|
3
|
Kruse T, Garvanska DH, Varga JK, Garland W, McEwan BC, Hein JB, Weisser MB, Benavides-Puy I, Chan CB, Sotelo-Parrilla P, Mendez BL, Jeyaprakash AA, Schueler-Furman O, Jensen TH, Kettenbach AN, Nilsson J. Substrate recognition principles for the PP2A-B55 protein phosphatase. SCIENCE ADVANCES 2024; 10:eadp5491. [PMID: 39356758 PMCID: PMC11446282 DOI: 10.1126/sciadv.adp5491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024]
Abstract
The PP2A-B55 phosphatase regulates a plethora of signaling pathways throughout eukaryotes. How PP2A-B55 selects its substrates presents a severe knowledge gap. By integrating AlphaFold modeling with comprehensive high-resolution mutational scanning, we show that α helices in substrates bind B55 through an evolutionary conserved mechanism. Despite a large diversity in sequence and composition, these α helices share key amino acid determinants that engage discrete hydrophobic and electrostatic patches. Using deep learning protein design, we generate a specific and potent competitive peptide inhibitor of PP2A-B55 substrate interactions. With this inhibitor, we uncover that PP2A-B55 regulates the nuclear exosome targeting (NEXT) complex by binding to an α-helical recruitment module in the RNA binding protein 7 (RBM7), a component of the NEXT complex. Collectively, our findings provide a framework for the understanding and interrogation of PP2A-B55 function in health and disease.
Collapse
Affiliation(s)
- Thomas Kruse
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Dimitriya H. Garvanska
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Julia K. Varga
- Department of Microbiology and Molecular Genetics, Institute for Biomedical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - William Garland
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, Aarhus, Denmark
| | - Brennan C. McEwan
- Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Jamin B. Hein
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Melanie Bianca Weisser
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Iker Benavides-Puy
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Camilla Bachman Chan
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | | | - Blanca Lopez Mendez
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - A. Arockia Jeyaprakash
- Gene Center Munich, Ludwig-Maximilians–Universität München, Munich 81377, Germany
- Wellcome Centre for Cell Biology, University of Edinburg, Edinburgh EH9 3BF, UK
| | - Ora Schueler-Furman
- Department of Microbiology and Molecular Genetics, Institute for Biomedical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, Aarhus, Denmark
| | - Arminja N. Kettenbach
- Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Jakob Nilsson
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| |
Collapse
|
4
|
Glavy JS. The yin and yang of nuclear envelope breakdown through the activity of phosphatase holoenzyme PP2A-B55 SUR-6. Trends Cell Biol 2024; 34:272-273. [PMID: 38302392 DOI: 10.1016/j.tcb.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 02/03/2024]
Abstract
Cell division is a highly regulated and guardedly orchestrated process including nuclear envelope breakdown (NEBD). A recent study from Kapoor, Adhikary, and Kotak identifies the symphonic role of a phosphatase holoenzyme in NEBD.
Collapse
Affiliation(s)
- Joseph S Glavy
- Department of Pharmaceutical Sciences, Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, TX 75799, USA.
| |
Collapse
|
5
|
Nadel G, Yao Z, Hacohen-Lev-Ran A, Wainstein E, Maik-Rachline G, Ziv T, Naor Z, Admon A, Seger R. Phosphorylation of PP2Ac by PKC is a key regulatory step in the PP2A-switch-dependent AKT dephosphorylation that leads to apoptosis. Cell Commun Signal 2024; 22:154. [PMID: 38419089 PMCID: PMC10900696 DOI: 10.1186/s12964-024-01536-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 02/17/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Although GqPCR activation often leads to cell survival by activating the PI3K/AKT pathway, it was previously shown that in several cell types AKT activity is reduced and leads to JNK activation and apoptosis. The mechanism of AKT inactivation in these cells involves an IGBP1-coupled PP2Ac switch that induces the dephosphorylation and inactivation of both PI3K and AKT. However, the machinery involved in the initiation of PP2A switch is not known. METHODS We used phospho-mass spectrometry to identify the phosphorylation site of PP2Ac, and raised specific antibodies to follow the regulation of this phosphorylation. Other phosphorylations were monitored by commercial antibodies. In addition, we used coimmunoprecipitation and proximity ligation assays to follow protein-protein interactions. Apoptosis was detected by a TUNEL assay as well as PARP1 cleavage using SDS-PAGE and Western blotting. RESULTS We identified Ser24 as a phosphorylation site in PP2Ac. The phosphorylation is mediated mainly by classical PKCs (PKCα and PKCβ) but not by novel PKCs (PKCδ and PKCε). By replacing the phosphorylated residue with either unphosphorylatable or phosphomimetic residues (S24A and S24E), we found that this phosphorylation event is necessary and sufficient to mediate the PP2A switch, which ultimately induces AKT inactivation, and a robust JNK-dependent apoptosis. CONCLUSION Our results show that the PP2A switch is induced by PKC-mediated phosphorylation of Ser24-PP2Ac and that this phosphorylation leads to apoptosis upon GqPCR induction of various cells. We propose that this mechanism may provide an unexpected way to treat some cancer types or problems in the endocrine machinery.
Collapse
Affiliation(s)
- Guy Nadel
- Department of Immunology and Regenerative Biology, the Weizmann Institute of Science, Rehovot, Israel
| | - Zhong Yao
- Department of Immunology and Regenerative Biology, the Weizmann Institute of Science, Rehovot, Israel
| | - Avital Hacohen-Lev-Ran
- Department of Immunology and Regenerative Biology, the Weizmann Institute of Science, Rehovot, Israel
| | - Ehud Wainstein
- Department of Immunology and Regenerative Biology, the Weizmann Institute of Science, Rehovot, Israel
| | - Galia Maik-Rachline
- Department of Immunology and Regenerative Biology, the Weizmann Institute of Science, Rehovot, Israel
| | - Tamar Ziv
- Smoler Proteomic Center, Technion-Israel Institute of Technology, Haifa, Israel
| | - Zvi Naor
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Arie Admon
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Rony Seger
- Department of Immunology and Regenerative Biology, the Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
6
|
Kruse T, Garvanska DH, Varga J, Garland W, McEwan B, Hein JB, Weisser MB, Puy IB, Chan CB, Parrila PS, Mendez BL, Arulanandam J, Schueler-Furman O, Jensen TH, Kettenbach A, Nilsson J. Substrate recognition principles for the PP2A-B55 protein phosphatase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.10.579793. [PMID: 38370611 PMCID: PMC10871369 DOI: 10.1101/2024.02.10.579793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The PP2A-B55 phosphatase regulates a plethora of signaling pathways throughout eukaryotes. How PP2A-B55 selects its substrates presents a severe knowledge gap. By integrating AlphaFold modelling with comprehensive high resolution mutational scanning, we show that α-helices in substrates bind B55 through an evolutionary conserved mechanism. Despite a large diversity in sequence and composition, these α-helices share key amino acid determinants that engage discrete hydrophobic and electrostatic patches. Using deep learning protein design, we generate a specific and potent competitive peptide inhibitor of PP2A-B55 substrate interactions. With this inhibitor, we uncover that PP2A-B55 regulates the nuclear exosome targeting complex by binding to an α-helical recruitment module in RBM7. Collectively, our findings provide a framework for the understanding and interrogation of PP2A-B55 in health and disease.
Collapse
Affiliation(s)
- Thomas Kruse
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Dimitriya H Garvanska
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Julia Varga
- Department of Microbiology and Molecular Genetics, Institute for Biomedical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112001, Israel
| | - William Garland
- Department of Molecular Biology and Genetics, Universitetsbyen 81, Aarhus University, Aarhus, Denmark
| | - Brennan McEwan
- Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Jamin B Hein
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- Current address: Amgen Research Copenhagen, Rønnegade 8, 5, 2100 Copenhagen, Denmark
| | - Melanie Bianca Weisser
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Iker Benavides Puy
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Camilla Bachman Chan
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Paula Sotelo Parrila
- Gene Center Munich, Ludwig-Maximilians- Universität München, Munich, 81377, Germany
| | - Blanca Lopez Mendez
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Jeyaprakash Arulanandam
- Gene Center Munich, Ludwig-Maximilians- Universität München, Munich, 81377, Germany
- Wellcome Centre for Cell Biology, University of Edinburg, Edinburgh, EH9 3BF, UK
| | - Ora Schueler-Furman
- Department of Microbiology and Molecular Genetics, Institute for Biomedical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112001, Israel
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Universitetsbyen 81, Aarhus University, Aarhus, Denmark
| | - Arminja Kettenbach
- Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Jakob Nilsson
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| |
Collapse
|
7
|
Peris I, Romero-Murillo S, Vicente C, Narla G, Odero MD. Regulation and role of the PP2A-B56 holoenzyme family in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188953. [PMID: 37437699 DOI: 10.1016/j.bbcan.2023.188953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Protein phosphatase 2A (PP2A) inactivation is common in cancer, leading to sustained activation of pro-survival and growth-promoting pathways. PP2A consists of a scaffolding A-subunit, a catalytic C-subunit, and a regulatory B-subunit. The functional complexity of PP2A holoenzymes arises mainly through the vast repertoire of regulatory B-subunits, which determine both their substrate specificity and their subcellular localization. Therefore, a major challenge for developing more effective therapeutic strategies for cancer is to identify the specific PP2A complexes to be targeted. Of note, the development of small molecules specifically directed at PP2A-B56α has opened new therapeutic avenues in both solid and hematological tumors. Here, we focus on the B56/PR61 family of PP2A regulatory subunits, which have a central role in directing PP2A tumor suppressor activity. We provide an overview of the mechanisms controlling the formation and regulation of these complexes, the pathways they control, and the mechanisms underlying their deregulation in cancer.
Collapse
Affiliation(s)
- Irene Peris
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain; Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| | - Silvia Romero-Murillo
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain; Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain
| | - Carmen Vicente
- Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Maria D Odero
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain; Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
8
|
Fang YZ, Jiang L, He Q, Cao J, Yang B. Commentary: Deubiquitination complex platform: a plausible mechanism for regulating the substrate specificity of deubiquitinating enzymes. Acta Pharm Sin B 2023. [PMID: 37521861 PMCID: PMC10372820 DOI: 10.1016/j.apsb.2023.02.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
Deubiquitinating enzymes (DUBs) or deubiquitinases facilitate the escape of multiple proteins from ubiquitin‒proteasome degradation and are critical for regulating protein expression levels in vivo. Therefore, dissecting the underlying mechanism of DUB recognition is needed to advance the development of drugs related to DUB signaling pathways. To data, extensive studies on the ubiquitin chain specificity of DUBs have been reported, but substrate protein recognition is still not clearly understood. As a breakthrough, the scaffolding role may be significant to substrate protein selectivity. From this perspective, we systematically characterized the scaffolding proteins and complexes contributing to DUB substrate selectivity. Furthermore, we proposed a deubiquitination complex platform (DCP) as a potentially generic mechanism for DUB substrate recognition based on known examples, which might fill the gaps in the understanding of DUB substrate specificity.
Collapse
|
9
|
Cai Z, Zhang W, Zhou R, Wang Y, Feng Y. Protein Phosphatase 2a Inhibits Gastric Cancer Cell Glycolysis by Reducing MYC Signaling. Cell Biochem Biophys 2023; 81:59-68. [PMID: 36324030 DOI: 10.1007/s12013-022-01112-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022]
Abstract
Aerobic glycolysis, also known as the Warburg effect, has emerged as a hallmark of cancer and is associated with tumor progression and unfavorable clinical outcomes in cancer patients. PP2A is a highly conserved eukaryotic serine/threonine protein phosphatase that functions as a tumor suppressor in a variety of human cancers. However, the relationship between PP2A and the Warburg effect in gastric cancer has yet to be fully understood. In this study, the expression profile of two endogenous inhibitors of PP2A, SET and CIP2A, in gastric cancer, were analyzed by real-time quantitative polymerase chain reaction. Loss-of-function and gain-of-function studies were performed to investigate the roles of PP2A in gastric cancer cell proliferation and glycolysis. Cell biological, molecular, and biochemical approaches were employed to uncover the underlying mechanisms. The results showed that SET and CIP2A were overexpressed in gastric cancer and associated with a decreased PP2A activity. Pharmacological activation of PP2A with FTY-720 and DT-061 in two gastric cancer cell lines significantly reduced gastric cancer cell proliferation and glycolytic ability. Importantly, inhibition of PP2A activity by genetic silencing of PPP2R5A resulted in a growth advantage, which can be largely compromised by the addition of the glycolysis inhibitor 2-Deoxy-D-glucose, suggesting a glycolysis-dependent effect of PP2A in gastric cancer. Mechanistically, the well-known transcription factor and glycolysis regulator c-Myc was discovered as the functional mediator of PP2A in regulating cell glycolysis. Ectopic expression of a phosphorylation-mutant c-Myc resistant to PP2A (MycT58A) restored the inhibitory effect of FTY-720 and DT-061 on lactate production and glucose uptake. Furthermore, there was a close association between SET and CIP2A expression and c-Myc gene signatures in gastric cancer samples. Collectively, this study provides strong evidence of the involvement of PP2A in the Warburg effect and indicates that it could be a novel antitumor strategy to target tumor metabolism in gastric cancer.
Collapse
Affiliation(s)
- Zhenhua Cai
- Department of Operating Room, Handan Central Hospital, Handan, 056001, Hebei Province, China
| | - Wei Zhang
- Department of General Surgery Clinic 7, Handan Central Hospital, Handan, 056001, Hebei Province, China.
| | - Ruiqing Zhou
- Handan Hanshan District Center for Disease Control and Prevention, Handan, 056001, Hebei Province, China
| | - Yuhong Wang
- Department of General Surgery Clinic 7, Handan Central Hospital, Handan, 056001, Hebei Province, China
| | - Yunzhang Feng
- Department of General Surgery Clinic 7, Handan Central Hospital, Handan, 056001, Hebei Province, China
| |
Collapse
|
10
|
Haanen TJ, O'Connor CM, Narla G. Biased holoenzyme assembly of protein phosphatase 2A (PP2A): From cancer to small molecules. J Biol Chem 2022; 298:102656. [PMID: 36328247 PMCID: PMC9707111 DOI: 10.1016/j.jbc.2022.102656] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is a family of serine threonine phosphatases responsible for regulating protein phosphorylation, thus opposing the activity of cellular kinases. PP2A is composed of a catalytic subunit (PP2A Cα/β) and scaffolding subunit (PP2A Aα/β) and various substrate-directing B regulatory subunits. PP2A biogenesis is regulated at multiple levels. For example, the sequestration of the free catalytic subunit during the process of biogenesis avoids promiscuous phosphatase activity. Posttranslational modifications of PP2A C direct PP2A heterotrimeric formation. Additionally, PP2A functions as a haploinsufficient tumor suppressor, where attenuated PP2A enzymatic activity creates a permissive environment for oncogenic transformation. Recent work studying PP2A in cancer showed that its role in tumorigenesis is more nuanced, with some holoenzymes being tumor suppressive, while others are required for oncogenic transformation. In cancer biology, PP2A function is modulated through various mechanisms including the displacement of specific B regulatory subunits by DNA tumor viral antigens, by recurrent mutations, and through loss of carboxymethyl-sensitive heterotrimeric complexes. In aggregate, these alterations bias PP2A activity away from its tumor suppressive functions and toward oncogenic ones. From a therapeutic perspective, molecular glues and disruptors present opportunities for both the selective stabilization of tumor-suppressive holoenzymes and disruption of holoenzymes that are pro-oncogenic. Collectively, these approaches represent an attractive cancer therapy for a wide range of tumor types. This review will discuss the mechanisms by which PP2A holoenzyme formation is dysregulated in cancer and the current therapies that are aimed at biasing heterotrimer formation of PP2A for the treatment of cancer.
Collapse
Affiliation(s)
- Terrance J Haanen
- Division of Genetic Medicine, Department of Internal Medicine, The University of Michigan, Ann Arbor, Michigan, USA
| | - Caitlin M O'Connor
- Division of Genetic Medicine, Department of Internal Medicine, The University of Michigan, Ann Arbor, Michigan, USA
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, The University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
11
|
Protein Phosphorylation in Cancer: Unraveling the Signaling Pathways. Biomolecules 2022; 12:biom12081036. [PMID: 36008930 PMCID: PMC9405957 DOI: 10.3390/biom12081036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
|
12
|
Do HA, Baek KH. Protein phosphatase 2A regulated by USP7 is polyubiquitinated and polyneddylated. Oncol Rep 2022; 48:124. [PMID: 35593311 DOI: 10.3892/or.2022.8335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/14/2022] [Indexed: 11/05/2022] Open
Abstract
Ubiquitin‑specific protease 7 (USP7) participates in the ubiquitin‑proteasome system (UPS), and is considered an essential regulator of substrate stability in cancers. In a previous study, the substrates that bind to USP7 were separated through two‑dimensional electrophoresis (2‑DE), which resulted in the identification of protein phosphatase 2A (PP2A) through matrix‑assisted laser desorption‑ionization time‑of‑flight mass spectrometry (MALDI‑TOF/MS) analysis. In the present study, GST pull‑down assay was performed to determine whether USP7 and PP2A directly bind to each other. Immunocytochemistry assay confirmed that USP7 co‑localizes with PP2A in the cytoplasm and nucleus of HeLa cells. Moreover, western blotting and immunoprecipitation were performed to determine whether polyubiquitination and polyneddylation of PP2A were formed. The results of the present study demonstrated that USP7 was a deubiquitinating enzyme of PP2A, and regulated the ubiquitination and stability of PP2A through the K48‑linked polyubiquitin chains. Consequently, the knockdown of USP7 reduced the expression of PP2A. The data of the present study revealed the cellular association between USP7 and PP2A, a new substrate of USP7.
Collapse
Affiliation(s)
- Hyeon-Ah Do
- Department of Biomedical Science, CHA University, Seongnam‑si, Gyeonggi‑do 13488, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, Seongnam‑si, Gyeonggi‑do 13488, Republic of Korea
| |
Collapse
|
13
|
Akopian D, McGourty CA, Rapé M. Co-adaptor driven assembly of a CUL3 E3 ligase complex. Mol Cell 2022; 82:585-597.e11. [PMID: 35120648 PMCID: PMC8884472 DOI: 10.1016/j.molcel.2022.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/16/2021] [Accepted: 01/06/2022] [Indexed: 02/05/2023]
Abstract
Cullin-RING E3 ligases (CRLs) are essential ubiquitylation enzymes that combine a catalytic core built around cullin scaffolds with ∼300 exchangeable substrate adaptors. To ensure robust signal transduction, cells must constantly form new CRLs by pairing substrate-bound adaptors with their cullins, but how this occurs at the right time and place is still poorly understood. Here, we show that formation of individual CRL complexes is a tightly regulated process. Using CUL3KLHL12 as a model, we found that its co-adaptor PEF1-ALG2 initiates CRL3 formation by releasing KLHL12 from an assembly inhibitor at the endoplasmic reticulum, before co-adaptor monoubiquitylation stabilizes the enzyme for substrate modification. As the co-adaptor also helps recruit substrates, its role in CRL assembly couples target recognition to ubiquitylation. We propose that regulators dedicated to specific CRLs, such as assembly inhibitors or co-adaptors, cooperate with target-agnostic adaptor exchange mechanisms to establish E3 ligase complexes that control metazoan development.
Collapse
Affiliation(s)
- David Akopian
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley CA 94720
| | - Colleen A. McGourty
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley CA 94720
| | - Michael Rapé
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley CA 94720,Howard Hughes Medical Institute, University of California at Berkeley, Berkeley CA 94720,Quantitative Biosciences Institute, QB3, University of California at Berkeley, Berkeley CA 94720,lead contact,to whom correspondence should be addressed:
| |
Collapse
|
14
|
Larouche M, Kachaner D, Wang P, Normandin K, Garrido D, Yao C, Cormier M, Johansen KM, Johansen J, Archambault V. Spatiotemporal coordination of Greatwall-Endos-PP2A promotes mitotic progression. J Cell Biol 2021; 220:211965. [PMID: 33836042 PMCID: PMC8042607 DOI: 10.1083/jcb.202008145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 02/17/2021] [Accepted: 03/08/2021] [Indexed: 12/31/2022] Open
Abstract
Mitotic entry involves inhibition of protein phosphatase 2A bound to its B55/Tws regulatory subunit (PP2A-B55/Tws), which dephosphorylates substrates of mitotic kinases. This inhibition is induced when Greatwall phosphorylates Endos, turning it into an inhibitor of PP2A-Tws. How this mechanism operates spatiotemporally in the cell is incompletely understood. We previously reported that the nuclear export of Greatwall in prophase promotes mitotic progression. Here, we examine the importance of the localized activities of PP2A-Tws and Endos for mitotic regulation. We find that Tws shuttles through the nucleus via a conserved nuclear localization signal (NLS), but expression of Tws in the cytoplasm and not in the nucleus rescues the development of tws mutants. Moreover, we show that Endos must be in the cytoplasm before nuclear envelope breakdown (NEBD) to be efficiently phosphorylated by Greatwall and to bind and inhibit PP2A-Tws. Disrupting the cytoplasmic function of Endos before NEBD results in subsequent mitotic defects. Evidence suggests that this spatiotemporal regulation is conserved in humans.
Collapse
Affiliation(s)
- Myreille Larouche
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - David Kachaner
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Peng Wang
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Karine Normandin
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
| | - Damien Garrido
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Changfu Yao
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA
| | - Maxime Cormier
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
| | - Kristen M Johansen
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA
| | - Jørgen Johansen
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA
| | - Vincent Archambault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|