1
|
Kundu G, Elangovan S. Investigating the Role of Osteopontin (OPN) in the Progression of Breast, Prostate, Renal and Skin Cancers. Biomedicines 2025; 13:173. [PMID: 39857756 PMCID: PMC11762676 DOI: 10.3390/biomedicines13010173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Cancer is caused by disruptions in the homeostatic state of normal cells, which results in dysregulation of the cell cycle, and uncontrolled growth and proliferation in affected cells to form tumors. Successful development of tumorous cells proceeds through the activation of pathways promoting cell development and functionality, as well as the suppression of immune signaling pathways; thereby providing these cells with proliferative advantages, which subsequently metastasize into surrounding tissues. These effects are primarily caused by the upregulation of oncogenes, of which SPP1 (secreted phosphoprotein 1), a non-collagenous bone matrix protein, is one of the most well-known. Methods: In this study, we conducted a further examination of the transcriptomic expression profile of SPP1 (Osteopontin) during the progression of cancer in four human tissues, breast, prostate, renal and skin, in order to understand the circumstances conducive to its activation and dysregulation, the biological pathways and other mechanisms involved as well as differences in its splicing patterns influencing its expression and functionality. Results: A significant overexpression of SPP1, as well as a set of other highly correlated genes, was seen in most of these tissues, indicating their extensive implication in cancer. Increased expression was observed with higher tumor stages, especially in renal and skin cancer, while applying therapeutic modalities targeting these genes dampened this effect in breast, prostate and skin cancer. Pathway analyses showed gene signatures related to cell growth and development enriched in tumorigenic conditions and earlier cancer stages, while later stages of cancer showed pathways associated with weakened immune response, in all cancers studied. Moreover, the utilization of therapeutic methods showed the activation of immunogenic pathways in breast, prostate and skin cancer, thereby confirming their viability. Further analyses of differential transcript expression levels in these oncogenes showed their exonic regions to be selectively overexpressed similarly in tumorigenic samples in all cancers studied, while also displaying significant differences in exon selectivity between constituent transcripts, providing a basis for their high degree of multifunctionality in cancer. Conclusions: Overall, this study corroborates the entrenched role of SPP1 in the progression of these four types of cancer, as confirmed by its overexpression and activation of related oncogenes, their co-involvement in key cellular pathways, and predisposition to exhibit differential splicing between their transcripts, while the above effects were found to be highly inhibitable through treatment methods, thereby highlighting its promising role in therapeutic development.
Collapse
Affiliation(s)
| | - Selvakumar Elangovan
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar 751024, Odisha, India;
| |
Collapse
|
2
|
Lin EYH, Xi W, Aggarwal N, Shinohara ML. Osteopontin (OPN)/SPP1: from its biochemistry to biological functions in the innate immune system and the central nervous system (CNS). Int Immunol 2023; 35:171-180. [PMID: 36525591 PMCID: PMC10071791 DOI: 10.1093/intimm/dxac060] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Osteopontin (OPN) is a multifunctional protein, initially identified in osteosarcoma cells with its role of mediating osteoblast adhesion. Later studies revealed that OPN is associated with many inflammatory conditions caused by infections, allergic responses, autoimmunity and tissue damage. Many cell types in the peripheral immune system express OPN with various functions, which could be beneficial or detrimental. Also, more recent studies demonstrated that OPN is highly expressed in the central nervous system (CNS), particularly in microglia during CNS diseases and development. However, understanding of mechanisms underlying OPN's functions in the CNS is still limited. In this review, we focus on peripheral myeloid cells and CNS-resident cells to discuss the expression and functions of OPN.
Collapse
Affiliation(s)
- Elliot Yi-Hsin Lin
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Wen Xi
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nupur Aggarwal
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mari L Shinohara
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
3
|
Brzecka A, Martynowicz H, Daroszewski C, Majchrzak M, Ejma M, Misiuk-Hojło M, Somasundaram SG, Kirkland CE, Kosacka M. The Modulation of Adipokines, Adipomyokines, and Sleep Disorders on Carcinogenesis. J Clin Med 2023; 12:jcm12072655. [PMID: 37048738 PMCID: PMC10094938 DOI: 10.3390/jcm12072655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Obesity and sarcopenia, i.e., decreased skeletal muscle mass and function, are global health challenges. Moreover, people with obesity and sedentary lifestyles often have sleep disorders. Despite the potential associations, metabolic disturbances linking obesity, sarcopenia, and sleep disorders with cancer are neither well-defined nor understood fully. Abnormal levels of adipokines and adipomyokines originating from both adipose tissue and skeletal muscles are observed in some patients with obesity, sarcopenia and sleep disorders, as well as in cancer patients. This warrants investigation with respect to carcinogenesis. Adipokines and adipomyokines may exert either pro-carcinogenic or anti-carcinogenic effects. These factors, acting independently or together, may significantly modulate the incidence and progression of cancer. This review indicates that one of the possible pathways influencing the development of cancer may be the mutual relationship between obesity and/or sarcopenia, sleep quantity and quality, and adipokines/adipomyokines excretion. Taking into account the high proportion of persons with obesity and sedentary lifestyles, as well as the associations of these conditions with sleep disturbances, more attention should be paid to the individual and combined effects on cancer pathophysiology.
Collapse
Affiliation(s)
- Anna Brzecka
- Department of Pulmonology and Lung Oncology, Wroclaw Medical University, Grabiszyńska 105, 53-439 Wroclaw, Poland
| | - Helena Martynowicz
- Department of Internal and Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Cyryl Daroszewski
- Department of Pulmonology and Lung Oncology, Wroclaw Medical University, Grabiszyńska 105, 53-439 Wroclaw, Poland
| | - Maciej Majchrzak
- Department of Thoracic Surgery, Wroclaw Medical University, Ludwika Pasteura 1, Grabiszyńska105, 53-439 Wroclaw, Poland
| | - Maria Ejma
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Marta Misiuk-Hojło
- Department of Ophthalmology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Siva G. Somasundaram
- Department of Biological Sciences, Salem University, 223 West Main Street, Salem, WV 26426, USA
| | - Cecil E. Kirkland
- Department of Biological Sciences, Salem University, 223 West Main Street, Salem, WV 26426, USA
| | - Monika Kosacka
- Department of Pulmonology and Lung Oncology, Wroclaw Medical University, Grabiszyńska 105, 53-439 Wroclaw, Poland
| |
Collapse
|
4
|
OPN Promotes Cell Proliferation and Invasion through NF- κB in Human Esophageal Squamous Cell Carcinoma. Genet Res (Camb) 2022; 2022:3154827. [PMID: 36619897 PMCID: PMC9779994 DOI: 10.1155/2022/3154827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022] Open
Abstract
Background Osteopontin (OPN) is a phosphorylated glycoprotein. There is increasing evidence that the OPN gene played a major role in the progression of solid organ tumors. However, few studies have clarified how OPN regulated the functional role of human esophageal squamous cell carcinoma (ESCC). This study was designed to investigate the effect of OPN in esophageal squamous cell carcinoma. Methods First, we screened Eca-109 and KYSE-510 cells to construct OPN silencing and overexpression models. Endogenous OPN of Eca-109 and KYSE-510 were knocked down or overexpressed using small interfering RNAs. QRT-PCR, Western blot, flow cytometry, and CCK-8 were used to detect the function of Eca-109 and KYSE-510 cells. Tumor formation in nude mice was used to measure tumor growth after OPN inhibition. Results Eca-109 and KYSE-510 cells contain the si-OPN arrest cell cycle in the S-phase and increase apoptosis. These changes were OPN downregulation of the NF-κB pathway that significantly reduced the protein levels of TNF-α, IL-1β, and p-p65. However, the activity of Eca-109 and KYSE-510 cells was enhanced in OPN overexpressing cells. Then, the in vivo tumor formation experiment in nude mice showed that the tumor volume and weight of nude mice after silencing OPN were significantly reduced. Conclusion This study contributed to understanding the vital role of OPN in ESCC development and progression. This could be a promising molecular target for developing new ESCC diagnostic and therapeutic strategies.
Collapse
|
5
|
Jia Q, Huang Z, Wang G, Sun X, Wu Y, Yang B, Yang T, Liu J, Li P, Li J. Osteopontin: An important protein in the formation of kidney stones. Front Pharmacol 2022; 13:1036423. [PMID: 36452224 PMCID: PMC9703462 DOI: 10.3389/fphar.2022.1036423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/26/2022] [Indexed: 09/10/2024] Open
Abstract
The incidence of kidney stones averages 10%, and the recurrence rate of kidney stones is approximately 10% at 1 year, 35% at 5 years, 50% at 10 years, and 75% at 20 years. However, there is currently a lack of good medicines for the prevention and treatment of kidney stones. Osteopontin (OPN) is an important protein in kidney stone formation, but its role is controversial, with some studies suggesting that it inhibits stone formation, while other studies suggest that it can promote stone formation. OPN is a highly phosphorylated protein, and with the deepening of research, there is growing evidence that it promotes stone formation, and the phosphorylated protein is believed to have adhesion effect, promote stone aggregation and nucleation. In addition, OPN is closely related to immune cell infiltration, such as OPN as a pro-inflammatory factor, which can activate mast cells (degranulate to release various inflammatory factors), macrophages (differentiated into M1 macrophages), and T cells (differentiated into T1 cells) etc., and these inflammatory cells play a role in kidney damage and stone formation. In short, OPN mainly exists in the phosphorylated form in kidney stones, plays an important role in the formation of stones, and may be an important target for drug therapy of kidney stones.
Collapse
Affiliation(s)
- Qingxia Jia
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Ziye Huang
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Guang Wang
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xia Sun
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yuyun Wu
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Bowei Yang
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Tongxin Yang
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jianhe Liu
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Pei Li
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jiongming Li
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
6
|
Yim A, Smith C, Brown AM. Osteopontin/secreted phosphoprotein-1 harnesses glial-, immune-, and neuronal cell ligand-receptor interactions to sense and regulate acute and chronic neuroinflammation. Immunol Rev 2022; 311:224-233. [PMID: 35451082 PMCID: PMC9790650 DOI: 10.1111/imr.13081] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/31/2022]
Abstract
Osteopontin (OPN) also known by its official gene designation secreted phosphoprotein-1 (SPP1) is a fascinating, multifunctional protein expressed in a number of cell types that functions not only in intercellular communication, but also in the extracellular matrix (ECM). OPN/SPP1 possesses cytokine, chemokine, and signal transduction functions by virtue of modular structural motifs that provide interaction surfaces for integrins and CD44-variant receptors. In humans, there are three experimentally verified splice variants of OPN/SPP1 and CD44's ten exons are also alternatively spiced in a cell/tissue-specific manner, although very little is known about how this is regulated in the central nervous system (CNS). Post-translational modifications of phosphorylation, glycosylation, and localized cleavage by specific proteases in the cells and tissues where OPN/SPP1 functions, provides additional layers of specificity. However, the former make elucidating the exact molecular mechanisms of OPN/SPP1 function more complex. Flexibility in OPN/SPP1 structure and its engagement with integrins having the ability to transmit signals in inside-out and outside-in direction, is likely why OPN/SPP1 can serve as an early detector of inflammation and ongoing tissue damage in response to cancer, stroke, traumatic brain injury, pathogenic infection, and neurodegeneration, processes that impair tissue homeostasis. This review will focus on what is currently known about OPN/SPP1 function in the brain.
Collapse
Affiliation(s)
- Ashley Yim
- NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Christian Smith
- NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Amanda M. Brown
- NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
7
|
Huang Z, Wang G, Yang B, Li P, Yang T, Wu Y, Yang X, Liu J, Li J. Mechanism of ketotifen fumarate inhibiting renal calcium oxalate stone formation in SD rats. Biomed Pharmacother 2022; 151:113147. [PMID: 35643070 DOI: 10.1016/j.biopha.2022.113147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/02/2022] [Accepted: 05/15/2022] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVES To investigate the inhibitory effect of ketotifen fumarate (KFA), a mast cell membrane stabilizer, on renal calcium oxalate stone (CaOx) formation and its possible molecular mechanism. METHODS We used the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database for functional and pathway enrichment analyses of osteopontin (OPN), CD44 and fibronectin (FN). Blood biochemistry, reactive oxygen species ratio (ROS), mast cells, proteins (CD44, OPN and FN) and OPN receptor integrin family genes were detected by ELISA, flow cytometry, immunohistochemistry and RT-QPCR, respectively. RESULTS The crystal area of CaOx in the KFA and Control group was significantly smaller than that in the Model group. The number of activated mast cells, the expression levels of OPN and CD44 in the Control and KFA groups were significantly lower than those in the Model group, and the percentage of ROS in the KFA group was also significantly lower than that in the Model group. The mRNA expression levels of ITGB1, ITGA9, ITGAV and ITGA4 genes in the prominent OPN receptor integrin family increased significantly in the Model group. CONCLUSIONS Ketotifen can effectively inhibit the crystal formation of CaOx and reduce the inflammatory response of tissue in SD rats. The mechanism may be to reduce the infiltration and activation of mast cells in renal tissue and down-regulate the expression of OPN, CD44 and FN in renal tubules and renal interstitium. And affect the synthesis of integrins (ITGA9, ITGA4, ITGAV, ITGB1, ITGB3 and ITGB5) and ROS.
Collapse
Affiliation(s)
- Ziye Huang
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dian-Mian Avenue, Kunming, Yunnan 650101, PR China
| | - Guang Wang
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dian-Mian Avenue, Kunming, Yunnan 650101, PR China
| | - Bowei Yang
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dian-Mian Avenue, Kunming, Yunnan 650101, PR China
| | - Pei Li
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dian-Mian Avenue, Kunming, Yunnan 650101, PR China
| | - Tongxin Yang
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dian-Mian Avenue, Kunming, Yunnan 650101, PR China
| | - Yuyun Wu
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dian-Mian Avenue, Kunming, Yunnan 650101, PR China
| | - Xing Yang
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dian-Mian Avenue, Kunming, Yunnan 650101, PR China
| | - Jianhe Liu
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dian-Mian Avenue, Kunming, Yunnan 650101, PR China.
| | - Jiongming Li
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dian-Mian Avenue, Kunming, Yunnan 650101, PR China.
| |
Collapse
|
8
|
Zhang H, Cai YH, Ding Y, Zhang G, Liu Y, Sun J, Yang Y, Zhan Z, Iliuk A, Gu Z, Gu Y, Tao WA. Proteomics, Phosphoproteomics and Mirna Analysis of Circulating Extracellular Vesicles through Automated and High-Throughput Isolation. Cells 2022; 11:2070. [PMID: 35805153 PMCID: PMC9265938 DOI: 10.3390/cells11132070] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 12/28/2022] Open
Abstract
Extracellular vesicles (EVs) play an important role in the diagnosis and treatment of diseases because of their rich molecular contents involved in intercellular communication, regulation, and other functions. With increasing efforts to move the field of EVs to clinical applications, the lack of a practical EV isolation method from circulating biofluids with high throughput and good reproducibility has become one of the biggest barriers. Here, we introduce a magnetic bead-based EV enrichment approach (EVrich) for automated and high-throughput processing of urine samples. Parallel enrichments can be performed in 96-well plates for downstream cargo analysis, including EV characterization, miRNA, proteomics, and phosphoproteomics analysis. We applied the instrument to a cohort of clinical urine samples to achieve reproducible identification of an average of 17,000 unique EV peptides and an average of 2800 EV proteins in each 1 mL urine sample. Quantitative phosphoproteomics revealed 186 unique phosphopeptides corresponding to 48 proteins that were significantly elevated in prostate cancer patients. Among them, multiple phosphoproteins were previously reported to associate with prostate cancer. Together, EVrich represents a universal, scalable, and simple platform for EV isolation, enabling downstream EV cargo analyses for a broad range of research and clinical applications.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; (H.Z.); (Y.-H.C.); (Y.D.); (G.Z.); (Y.L.); (J.S.); (Z.Z.); (Z.G.)
- EVLiXiR Biotech, Nanjing 210032, China
| | - Yu-Han Cai
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; (H.Z.); (Y.-H.C.); (Y.D.); (G.Z.); (Y.L.); (J.S.); (Z.Z.); (Z.G.)
| | - Yajie Ding
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; (H.Z.); (Y.-H.C.); (Y.D.); (G.Z.); (Y.L.); (J.S.); (Z.Z.); (Z.G.)
| | - Guiyuan Zhang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; (H.Z.); (Y.-H.C.); (Y.D.); (G.Z.); (Y.L.); (J.S.); (Z.Z.); (Z.G.)
- Bell Mountain Molecular MedTech Institute, Nanjing 210032, China
| | - Yufeng Liu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; (H.Z.); (Y.-H.C.); (Y.D.); (G.Z.); (Y.L.); (J.S.); (Z.Z.); (Z.G.)
- Bell Mountain Molecular MedTech Institute, Nanjing 210032, China
| | - Jie Sun
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; (H.Z.); (Y.-H.C.); (Y.D.); (G.Z.); (Y.L.); (J.S.); (Z.Z.); (Z.G.)
| | - Yuchen Yang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China; (Y.Y.); (Y.G.)
| | - Zhen Zhan
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; (H.Z.); (Y.-H.C.); (Y.D.); (G.Z.); (Y.L.); (J.S.); (Z.Z.); (Z.G.)
| | - Anton Iliuk
- Tymora Analytical Operations, West Lafayette, IN 47906, USA;
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; (H.Z.); (Y.-H.C.); (Y.D.); (G.Z.); (Y.L.); (J.S.); (Z.Z.); (Z.G.)
| | - Yanhong Gu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China; (Y.Y.); (Y.G.)
| | - W. Andy Tao
- Tymora Analytical Operations, West Lafayette, IN 47906, USA;
- Department of Chemistry and Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|