1
|
Tewolde S, Rosenberg SB, Estrada JAG, Jimenez MP, Scott A, Higgins A, Rubenstein E. Epidemiology of Alzheimer Disease and Related Dementia Among Medicare and Medicaid Enrolled Autistic Adults, 2011-2019. Autism Res 2025. [PMID: 40166852 DOI: 10.1002/aur.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/13/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
Alzheimer's disease and related dementias (ADRD) are burdensome and lethal conditions that have been hypothesized to be related to autism through shared genetic etiologies and environmental risk factors. Our objective was to use longitudinal Medicaid and Medicare data to describe the epidemiology of ADRD in publicly insured autistic adults. We used all claims and encounters from 2011 to 2019 to identify autism and ADRD. We calculated prevalence, incidence, age at onset, and created survival curves. There were 90,229 autistic adults ≥ 30 years of age and enrolled for at least 1 year in Medicaid and/or Medicare and 267 ADRD cases. Prevalence of ADRD was 2.09% (95% CI: 1.99%, 2.20%) in 2011 and 8.11% (95% CI: 7.92%, 8.30%) in 2019. Mean age at ADRD onset was 59.3 years (SD: 14.2). Mean age among men was 58.3 years (SD: 13.8) and 61.0 years among females. Incidence of ADRD was higher in autistic adults with intellectual disability with no difference by sex. ADRD is a prevalent condition in middle- and older-aged adults identified with autism in the Medicaid and Medicare system. Understanding the diagnostic process and phenotype of ADRD will be important to improve identification and treatment.
Collapse
Affiliation(s)
- Salina Tewolde
- Boston University School of Public Health, Boston, Massachusetts, USA
| | | | | | | | - Ashley Scott
- Boston University School of Public Health, Boston, Massachusetts, USA
| | - Alianna Higgins
- Boston University School of Public Health, Boston, Massachusetts, USA
| | - Eric Rubenstein
- Boston University School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Zhang H, Liu Y, Huang Y, Zhao K, Yu T, Wu Y, Yin Z, Li M, Li D, Fan L, Xu X, Hu C, Wang S. Abamectin Causes Neurotoxicity in Zebrafish Embryos. Int J Mol Sci 2025; 26:349. [PMID: 39796206 PMCID: PMC11719719 DOI: 10.3390/ijms26010349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/27/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
Abamectin is an insecticide, miticide and nematicide that has been extensively used in agriculture for many years. The excessive use of abamectin inevitably pollutes water and soil and might even cause adverse effects on aquatic biota. However, it is currently unclear how abamectin exposure causes neurotoxicity in aquatic organisms. Herein, the early neural system development was assessed in zebrafish embryos following abamectin exposure. After treatment with a concentration gradient of abamectin (0.055, 0.0825, 0.11 mg/L), the survival rate, average heart rate, pericardial edema area and yolk sac edema were all documented in zebrafish embryos (96 hpf). It was found that after abamectin exposure, embryonic brain development was impaired, and motor behaviors were also affected. The fluorescence intensity was reduced in the transgenic embryos (Eno2: GFP). The activities of acetylcholinesterase (AChE) and ATPase were decreased, and the expression of neurodevelopment-related genes, such as sox10, gap43, grin1b, abat, gad1b, grin2b, nestin and glsa, were all inhibited in zebrafish embryo treatment with abamectin. Furthermore, the reactive oxygen species (ROS) were triggered upon exposure to abamectin in zebrafish embryos along with the accumulation of ROS, eventually resulting in neuroapoptosis in the developing embryonic brain. In conclusion, neurodevelopmental toxicity was caused by oxidative stress-induced apoptosis in zebrafish embryos following abamectin exposure.
Collapse
Affiliation(s)
- Hongying Zhang
- School of Life Science, Nanchang University, Nanchang 330031, China (Y.H.)
| | - Yulong Liu
- School of Life Science, Nanchang University, Nanchang 330031, China (Y.H.)
| | - Yukun Huang
- School of Life Science, Nanchang University, Nanchang 330031, China (Y.H.)
| | - Kaiwen Zhao
- School of Life Science, Nanchang University, Nanchang 330031, China (Y.H.)
| | - Tingting Yu
- School of Life Science, Nanchang University, Nanchang 330031, China (Y.H.)
| | - Youjuan Wu
- School of Life Science, Nanchang University, Nanchang 330031, China (Y.H.)
| | - Zijia Yin
- School of Life Science, Nanchang University, Nanchang 330031, China (Y.H.)
| | - Meifeng Li
- Institute of Pathogenic Microorganism, College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Dongming Li
- Fuzhou Medical College, Nanchang University, Fuzhou 344000, China;
| | - Lihua Fan
- School of Life Science, Nanchang University, Nanchang 330031, China (Y.H.)
| | - Xiaowen Xu
- School of Life Science, Nanchang University, Nanchang 330031, China (Y.H.)
- Chongqing Research Institute of Nanchang University, Chongqing 402660, China
| | - Chengyu Hu
- School of Life Science, Nanchang University, Nanchang 330031, China (Y.H.)
| | - Shanghong Wang
- School of Life Science, Nanchang University, Nanchang 330031, China (Y.H.)
| |
Collapse
|
3
|
Khan A, Ghasemi AR, Ingram KK, Ay A. Machine learning uncovers novel sex-specific dementia biomarkers linked to autism and eye diseases. J Alzheimers Dis Rep 2025; 9:25424823251317177. [PMID: 40034518 PMCID: PMC11864256 DOI: 10.1177/25424823251317177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/27/2024] [Indexed: 03/05/2025] Open
Abstract
Background Recently, microRNAs (miRNAs) have attracted significant interest as predictive biomarkers for various types of dementia, including Alzheimer's disease (AD), vascular dementia (VaD), dementia with Lewy bodies (DLB), normal pressure hydrocephalus (NPH), and mild cognitive impairment (MCI). Machine learning (ML) methods enable the integration of miRNAs into highly accurate predictive models of dementia. Objective To investigate the differential expression of miRNAs across dementia subtypes compared to normal controls (NC) and analyze their enriched biological and disease pathways. Additionally, to evaluate the use of these miRNAs in binary and multiclass ML models for dementia prediction in both overall and sex-specific datasets. Methods Using data comprising 1685 Japanese individuals (GSE120584 and GSE167559), we performed differential expression analysis to identify miRNAs associated with five dementia groups in both overall and sex-specific datasets. Pathway enrichment analyses were conducted to further analyze these miRNAs. ML classifiers were used to create predictive models of dementia. Results We identified novel differentially expressed miRNA biomarkers distinguishing NC from five dementia subtypes. Incorporating these miRNAs into ML classifiers resulted in up to a 27% improvement in dementia risk prediction. Pathway analysis highlighted neuronal and eye disease pathways associated with dementia risk. Sex-specific analyses revealed unique biomarkers for males and females, with miR-128-1-5 as a protective factor for males in AD, VaD, and DLB, and miR-4488 as a risk factor for female AD, highlighting distinct pathways and potential therapeutic targets for each sex. Conclusions Our findings support existing dementia etiology research and introduce new potential and sex-specific miRNA biomarkers.
Collapse
Affiliation(s)
- Ayub Khan
- Department of Computer Science, Colgate University, Hamilton, NY, USA
- Department of Biology, Colgate University, Hamilton, NY, USA
| | - Ali R Ghasemi
- Department of Computer Science, Colgate University, Hamilton, NY, USA
| | - Krista K Ingram
- Department of Biology, Colgate University, Hamilton, NY, USA
| | - Ahmet Ay
- Department of Biology, Colgate University, Hamilton, NY, USA
- Department of Mathematics, Colgate University, Hamilton, NY, USA
| |
Collapse
|
4
|
Kwon KJ, Kim HY, Han SH, Shin CY. Future Therapeutic Strategies for Alzheimer's Disease: Focus on Behavioral and Psychological Symptoms. Int J Mol Sci 2024; 25:11338. [PMID: 39518892 PMCID: PMC11547068 DOI: 10.3390/ijms252111338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/14/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive, degenerative brain disorder that impairs memory and thinking skills, leading to significant economic and humanistic burdens. It is associated with various neuropsychiatric symptoms (NPS) such as anxiety, agitation, depression, aggression, apathy, and psychosis. NPSs are common in patients with AD, affecting up to 97% of individuals diagnosed with AD. The severity of NPS is linked to disease progression and cognitive decline. NPS in Alzheimer's disease leads to increased morbidity, mortality, caregiver burden, earlier nursing home placement, and higher healthcare costs. Despite their significant impact, clinical research on NPS in AD is limited. In clinical settings, accurately distinguishing and diagnosing NPS related to AD remains a challenge. Additionally, conventional treatments for NPS in AD are often ineffective, highlighting the need for new therapies that target these specific symptoms. Understanding these comorbidities can aid in early diagnosis and better management of AD. In this review, we provide a summary of the various neurological and psychiatric symptoms (NPS) associated with AD and new candidates under development for the treatment of NPS based on their therapeutic targets and mechanisms. On top of the conventional NPS studied so far, this review adds recent advancements in the understanding of social functional impairment in AD. This review also provides information that can contribute to the advancement of studies and translational research in this field by emphasizing therapeutic targets and mechanisms of action focused on AD-related NPS rather than conventional mechanisms targeted in AD drug development. Above all, considering the relative lack of research in this new field despite the importance of clinical, medical, and translational research, it may increase interest in NPS in AD, its pathophysiological mechanisms, and potential therapeutic candidates such as molecules with antioxidant potential.
Collapse
Affiliation(s)
- Kyoung Ja Kwon
- Department of Pharmacology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea;
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (H.Y.K.); (S.-H.H.)
- Department of Neurology, Konkuk Hospital Medical Center, 120-1 Neungdong-ro, Gwangjin-Gu, Seoul 05030, Republic of Korea
| | - Hahn Young Kim
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (H.Y.K.); (S.-H.H.)
- Department of Neurology, Konkuk Hospital Medical Center, 120-1 Neungdong-ro, Gwangjin-Gu, Seoul 05030, Republic of Korea
| | - Seol-Heui Han
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (H.Y.K.); (S.-H.H.)
- Department of Neurology, Konkuk Hospital Medical Center, 120-1 Neungdong-ro, Gwangjin-Gu, Seoul 05030, Republic of Korea
| | - Chan Young Shin
- Department of Pharmacology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea;
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (H.Y.K.); (S.-H.H.)
| |
Collapse
|
5
|
Seneff S, Kyriakopoulos AM, Nigh G. Is autism a PIN1 deficiency syndrome? A proposed etiological role for glyphosate. J Neurochem 2024; 168:2124-2146. [PMID: 38808598 DOI: 10.1111/jnc.16140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
Autism is a neurodevelopmental disorder, the prevalence of which has increased dramatically in the United States over the past two decades. It is characterized by stereotyped behaviors and impairments in social interaction and communication. In this paper, we present evidence that autism can be viewed as a PIN1 deficiency syndrome. Peptidyl-prolyl cis/trans isomerase, NIMA-Interacting 1 (PIN1) is a peptidyl-prolyl cis/trans isomerase, and it has widespread influences in biological organisms. Broadly speaking, PIN1 deficiency is linked to many neurodegenerative diseases, whereas PIN1 over-expression is linked to cancer. Death-associated protein kinase 1 (DAPK1) strongly inhibits PIN1, and the hormone melatonin inhibits DAPK1. Melatonin deficiency is strongly linked to autism. It has recently been shown that glyphosate exposure to rats inhibits melatonin synthesis as a result of increased glutamate release from glial cells and increased expression of metabotropic glutamate receptors. Glyphosate's inhibition of melatonin leads to a reduction in PIN1 availability in neurons. In this paper, we show that PIN1 deficiency can explain many of the unique morphological features of autism, including increased dendritic spine density, missing or thin corpus callosum, and reduced bone density. We show how PIN1 deficiency disrupts the functioning of powerful high-level signaling molecules, such as nuclear factor erythroid 2-related factor 2 (NRF2) and p53. Dysregulation of both of these proteins has been linked to autism. Severe depletion of glutathione in the brain resulting from chronic exposure to oxidative stressors and extracellular glutamate leads to oxidation of the cysteine residue in PIN1, inactivating the protein and further contributing to PIN1 deficiency. Impaired autophagy leads to increased sensitivity of neurons to ferroptosis. It is imperative that further research be conducted to experimentally validate whether the mechanisms described here take place in response to chronic glyphosate exposure and whether this ultimately leads to autism.
Collapse
Affiliation(s)
- Stephanie Seneff
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Greg Nigh
- Immersion Health, Portland, Oregon, USA
| |
Collapse
|
6
|
Fu Y, Xie GM, Liu RQ, Xie JL, Zhang J, Zhang J. From aberrant neurodevelopment to neurodegeneration: Insights into the hub gene associated with autism and alzheimer's disease. Brain Res 2024; 1838:148992. [PMID: 38729333 DOI: 10.1016/j.brainres.2024.148992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/31/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Affiliation(s)
- Yu Fu
- Research Center for Translational Medicine at East Hospital, School of Medicine, Tongji University, Shanghai 200010, China
| | - Guang-Ming Xie
- Research Center for Translational Medicine at East Hospital, School of Medicine, Tongji University, Shanghai 200010, China
| | - Rong-Qi Liu
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai 200010, China
| | - Jun-Ling Xie
- Research Center for Translational Medicine at East Hospital, School of Medicine, Tongji University, Shanghai 200010, China
| | - Jing Zhang
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai 200010, China.
| | - Jun Zhang
- Research Center for Translational Medicine at East Hospital, School of Medicine, Tongji University, Shanghai 200010, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200092, China.
| |
Collapse
|
7
|
Qi W, Guan W. GPR56: A potential therapeutic target for neurological and psychiatric disorders. Biochem Pharmacol 2024; 226:116395. [PMID: 38942087 DOI: 10.1016/j.bcp.2024.116395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
GPR56, also known as GPR56/ADGRG1, is a member of the ADGRG subgroup belonging to adhesion G protein-coupled receptors (aGPCRs). aGPCRs are the second largest subfamily of the GPCR superfamily, which is the largest family of membrane protein receptors in the human genome. Studies in recent years have demonstrated that GPR56 is integral to the normal development of the brain and functions as an important player in cortical development, suggesting that GPR56 is involved in many physiological processes. Indeed, aberrant expression of GPR56 has been implicated in multiple neurological and psychiatric disorders, including bilateral frontoparietal polymicrogyria (BFPP), depression and epilepsy. In a recent study, it was found that upregulated expression of GPR56 reduced depressive-like behaviours in an animal model of depression, indicating that GPR56 plays an important role in the antidepressant response. Given the link of GPR56 with the antidepressant response, the function of GPR56 has become a focus of research. Although GPR56 may be a potential target for the development of antidepressants, the underlying molecular mechanisms remain largely unknown. Therefore, in this review, we will summarize the latest findings of GPR56 function in neurological and psychiatric disorders (depression, epilepsy, autism, and BFPP) and emphasize the mechanisms of GPR56 in activation and signalling in those conditions. After reviewing several studies, attributing to its significant biological functions and exceptionally long extracellular N-terminus that interacts with multiple ligands, we draw a conclusion that GPR56 may serve as an important drug target for neuropsychological diseases.
Collapse
Affiliation(s)
- Wang Qi
- Department of Pharmacology, The First People's Hospital of Yancheng, China
| | - Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, China.
| |
Collapse
|
8
|
Ramazi S, Dadzadi M, Darvazi M, Seddigh N, Allahverdi A. Protein modification in neurodegenerative diseases. MedComm (Beijing) 2024; 5:e674. [PMID: 39105197 PMCID: PMC11298556 DOI: 10.1002/mco2.674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Posttranslational modifications play a crucial role in governing cellular functions and protein behavior. Researchers have implicated dysregulated posttranslational modifications in protein misfolding, which results in cytotoxicity, particularly in neurodegenerative diseases such as Alzheimer disease, Parkinson disease, and Huntington disease. These aberrant posttranslational modifications cause proteins to gather in certain parts of the brain that are linked to the development of the diseases. This leads to neuronal dysfunction and the start of neurodegenerative disease symptoms. Cognitive decline and neurological impairments commonly manifest in neurodegenerative disease patients, underscoring the urgency of comprehending the posttranslational modifications' impact on protein function for targeted therapeutic interventions. This review elucidates the critical link between neurodegenerative diseases and specific posttranslational modifications, focusing on Tau, APP, α-synuclein, Huntingtin protein, Parkin, DJ-1, and Drp1. By delineating the prominent aberrant posttranslational modifications within Alzheimer disease, Parkinson disease, and Huntington disease, the review underscores the significance of understanding the interplay among these modifications. Emphasizing 10 key abnormal posttranslational modifications, this study aims to provide a comprehensive framework for investigating neurodegenerative diseases holistically. The insights presented herein shed light on potential therapeutic avenues aimed at modulating posttranslational modifications to mitigate protein aggregation and retard neurodegenerative disease progression.
Collapse
Affiliation(s)
- Shahin Ramazi
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Maedeh Dadzadi
- Department of BiotechnologyFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mona Darvazi
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Nasrin Seddigh
- Department of BiochemistryFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Abdollah Allahverdi
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| |
Collapse
|
9
|
Hedges DW, Chase M, Farrer TJ, Gale SD. Psychiatric Disease as a Potential Risk Factor for Dementia: A Narrative Review. Brain Sci 2024; 14:722. [PMID: 39061462 PMCID: PMC11274614 DOI: 10.3390/brainsci14070722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Neurodegenerative disease is a major global health problem with 150 million people predicted to have dementia by 2050. Genetic factors, environmental factors, demographics, and some diseases have been associated with dementia. In addition to associations between diseases such as hypertension and cerebrovascular disease and dementia, emerging findings associate some psychiatric disorders with incident dementia. Because of the high and increasing global prevalence of dementia and the high worldwide prevalence of psychiatric disorders, the primary objective of this narrative review was to evaluate published findings that evaluate the association between bipolar disorder, depression, anxiety, post-traumatic stress disorder, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism spectrum disorder, schizophrenia and other psychosis syndromes, and personality disorders and personality traits and incident dementia. Here, we highlight findings indicating possible associations between these psychiatric disorders and subsequent dementia and suggest that some psychiatric disorders may be risk factors for incident dementia. Further research, including more large longitudinal studies and additional meta-analyses, however, is needed to better characterize the associations between psychiatric disorders and incident dementia, to identify possible mechanisms for these putative associations, and to identify risk factors within psychiatric disorders that predispose some people with a psychiatric disorder but not others to subsequent dementia. Additional important questions concern how the treatment of psychiatric disorders might affect the risk of incident dementia.
Collapse
Affiliation(s)
- Dawson W. Hedges
- The Department of Psychology, Brigham Young University, Provo, UT 84602, USA;
- The Neuroscience Center, Brigham Young University, Provo, UT 84602, USA;
| | - Morgan Chase
- The Neuroscience Center, Brigham Young University, Provo, UT 84602, USA;
| | - Thomas J. Farrer
- Idaho WWAMI Medical Education Program, University of Idaho, Moscow, ID 83844, USA;
| | - Shawn D. Gale
- The Department of Psychology, Brigham Young University, Provo, UT 84602, USA;
- The Neuroscience Center, Brigham Young University, Provo, UT 84602, USA;
| |
Collapse
|
10
|
Li X, Fu Q, Zhong M, Long Y, Zhao F, Huang Y, Zhang Z, Wen M, Chen K, Chen R, Ma X. Quantitative proteomics of the miR-301a/SOCS3/STAT3 axis reveals underlying autism and anxiety-like behavior. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102136. [PMID: 38439911 PMCID: PMC10909786 DOI: 10.1016/j.omtn.2024.102136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/30/2024] [Indexed: 03/06/2024]
Abstract
Autism is a widespread neurodevelopmental disorder. Although the research on autism spectrum disorders has been increasing in the past decade, there is still no specific answer to its mechanism of action and treatment. As a pro-inflammatory microRNA, miR-301a is abnormally expressed in various psychiatric diseases including autism. Here, we show that miR-301a deletion and inhibition exhibited two distinct abnormal behavioral phenotypes in mice. We observed that miR-301a deletion in mice impaired learning/memory, and enhanced anxiety. On the contrary, miR-301a inhibition effectively reduced the maternal immune activation (MIA)-induced autism-like behaviors in mice. We further demonstrated that miR-301a bound to the 3'UTR region of the SOCS3, and that inhibition of miR-301a led to the upregulation of SOCS3 in hippocampus. The last result in the reduction of the inflammatory response by inhibiting phosphorylation of AKT and STAT3, and the expression level of IL-17A in poly(I:C)-induced autism-like features in mice. The obtained data revealed the miR-301a as a critical participant in partial behavior phenotypes, which may exhibit a divergent role between gene knockout and knockdown. Our findings ascertain that miR-301a negatively regulates SOCS3 in MIA-induced autism in mice and could present a new therapeutic target for ameliorating the behavioral abnormalities of autism.
Collapse
Affiliation(s)
- Xun Li
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
| | - Qi Fu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Mingtian Zhong
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Yihao Long
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Fengyun Zhao
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Yanni Huang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Zizhu Zhang
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Min Wen
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Kaizhao Chen
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Rongqing Chen
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Xiaodong Ma
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
11
|
Huang W, Liu Z, Li Z, Meng S, Huang Y, Gao M, Zhong N, Zeng S, Wang L, Zhao W. Identification of Immune Infiltration and Iron Metabolism-Related Subgroups in Autism Spectrum Disorder. J Mol Neurosci 2024; 74:12. [PMID: 38236354 DOI: 10.1007/s12031-023-02179-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 11/01/2023] [Indexed: 01/19/2024]
Abstract
Autism spectrum disorder (ASD) is a prevalent neurodevelopmental disorder with a broad spectrum of symptoms and prognoses. Effective therapy requires understanding this variability. ASD children's cognitive and immunological development may depend on iron homoeostasis. This study employs a machine learning model that focuses on iron metabolism hub genes to identify ASD subgroups and describe immune infiltration patterns. A total of 97 control and 148 ASD samples were obtained from the GEO database. Differentially expressed genes (DEGs) and an iron metabolism gene collection achieved the intersection of 25 genes. Unsupervised cluster analysis determined molecular subgroups in individuals with ASD based on 25 genes related to iron metabolism. We assessed gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, gene set variation analysis (GSVA), and immune infiltration analysis to compare iron metabolism subtype effects. We employed machine learning to identify subtype-predicting hub genes and utilized both training and validation sets to assess gene subtype prediction accuracy. ASD can be classified into two iron-metabolizing molecular clusters. Metabolic enrichment pathways differed between clusters. Immune infiltration showed that clusters differed immunologically. Cluster 2 had better immunological scores and more immune cells, indicating a stronger immune response. Machine learning screening identified SELENBP1 and CAND1 as important genes in ASD's iron metabolism signaling pathway. These genes express in the brain and have AUC values over 0.8, implying significant predictive power. The present study introduces iron metabolism signaling pathway indicators to predict ASD subtypes. ASD is linked to immune cell infiltration and iron metabolism disorders.
Collapse
Affiliation(s)
- Wenyan Huang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510080, Guangdong, China
- Department of Pedodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China
| | - Zhenni Liu
- Department of Pedodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China
| | - Ziling Li
- Department of Pedodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China
| | - Si Meng
- Department of Pedodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China
| | - Yuhang Huang
- Department of Pedodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China
| | - Min Gao
- Department of Pedodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China
| | - Ning Zhong
- Department of Pedodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China
| | - Sujuan Zeng
- Department of Pedodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China
| | - Lijing Wang
- Department of Pedodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China
| | - Wanghong Zhao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
12
|
Samra AI, Kamel AS, Abdallah DM, El Fattah MAA, Ahmed KA, El-Abhar HS. Preclinical Evidence for the Role of the Yin/Yang Angiotensin System Components in Autism Spectrum Disorder: A Therapeutic Target of Astaxanthin. Biomedicines 2023; 11:3156. [PMID: 38137376 PMCID: PMC10740500 DOI: 10.3390/biomedicines11123156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 12/24/2023] Open
Abstract
Autism spectrum disorder (ASD) prevalence is emerging with an unclear etiology, hindering effective therapeutic interventions. Recent studies suggest potential renin-angiotensin system (RAS) alterations in different neurological pathologies. However, its implications in ASD are unexplored. This research fulfills the critical gap by investigating dual arms of RAS and their interplay with Notch signaling in ASD, using a valproic acid (VPA) model and assessing astaxanthin's (AST) modulatory impacts. Experimentally, male pups from pregnant rats receiving either saline or VPA on gestation day 12.5 were divided into control and VPA groups, with subsequent AST treatment in a subset (postnatal days 34-58). Behavioral analyses, histopathological investigations, and electron microscopy provided insights into the neurobehavioral and structural changes induced by AST. Molecular investigations of male pups' cortices revealed that AST outweighs the protective RAS elements with the inhibition of the detrimental arm. This established the neuroprotective and anti-inflammatory axes of RAS (ACE2/Ang1-7/MasR) in the ASD context. The results showed that AST's normalization of RAS components and Notch signaling underscore a novel therapeutic avenue in ASD, impacting neuronal integrity and behavioral outcomes. These findings affirm the integral role of RAS in ASD and highlight AST's potential as a promising treatment intervention, inviting further neurological research implications.
Collapse
Affiliation(s)
- Ayat I. Samra
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (A.I.S.); (D.M.A.); (M.A.A.E.F.)
| | - Ahmed S. Kamel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (A.I.S.); (D.M.A.); (M.A.A.E.F.)
| | - Dalaal M. Abdallah
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (A.I.S.); (D.M.A.); (M.A.A.E.F.)
| | - Mai A. Abd El Fattah
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (A.I.S.); (D.M.A.); (M.A.A.E.F.)
| | - Kawkab A. Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Cairo 11562, Egypt;
| | - Hanan S. El-Abhar
- Pharmacology, Toxicology, and Biochemistry Department, Faculty of Pharmacy, Future University in Egypt (FUE), Cairo 11835, Egypt;
| |
Collapse
|
13
|
Harker SA, Al-Hassan L, Huentelman MJ, Braden BB, Lewis CR. APOE ε4-Allele in Middle-Aged and Older Autistic Adults: Associations with Verbal Learning and Memory. Int J Mol Sci 2023; 24:15988. [PMID: 37958971 PMCID: PMC10650864 DOI: 10.3390/ijms242115988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disability and recent evidence suggests that autistic adults are more likely to develop Alzheimer's disease (Alz) and other dementias compared to neurotypical (NT) adults. The ε4-allele of the Apolipoprotein E (APOE) gene is the strongest genetic risk factor for Alz and negatively impacts cognition in middle-aged and older (MA+) adults. This study aimed to determine the impact of the APOE ε4-allele on verbal learning and memory in MA+ autistic adults (ages 40-71 years) compared to matched NT adults. Using the Auditory Verbal Learning Test (AVLT), we found that ε4 carriers performed worse on short-term memory and verbal learning across diagnosis groups, but there was no interaction with diagnosis. In exploratory analyses within sex and diagnosis groups, only autistic men carrying APOE ε4 showed worse verbal learning (p = 0.02), compared to autistic men who were not carriers. Finally, the APOE ε4-allele did not significantly affect long-term memory in this sample. These findings replicate previous work indicating that the APOE ε4-allele negatively impacts short-term memory and verbal learning in MA+ adults and presents new preliminary findings that MA+ autistic men may be vulnerable to the effects of APOE ε4 on verbal learning. Future work with a larger sample is needed to determine if autistic women may also be vulnerable.
Collapse
Affiliation(s)
- Samantha A. Harker
- School of Life Sciences and Psychology, Arizona State University, Tempe, AZ 85287, USA;
- College of Health Solutions, Arizona State University, Tempe, AZ 85287, USA; (L.A.-H.); (B.B.B.)
| | - Lamees Al-Hassan
- College of Health Solutions, Arizona State University, Tempe, AZ 85287, USA; (L.A.-H.); (B.B.B.)
| | - Matthew J. Huentelman
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA;
| | - B. Blair Braden
- College of Health Solutions, Arizona State University, Tempe, AZ 85287, USA; (L.A.-H.); (B.B.B.)
| | - Candace R. Lewis
- School of Life Sciences and Psychology, Arizona State University, Tempe, AZ 85287, USA;
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA;
| |
Collapse
|
14
|
Piergiorge RM, da Silva Francisco Junior R, de Vasconcelos ATR, Santos-Rebouças CB. Multi-layered transcriptomic analysis reveals a pivotal role of FMR1 and other developmental genes in Alzheimer's disease-associated brain ceRNA network. Comput Biol Med 2023; 166:107494. [PMID: 37769462 DOI: 10.1016/j.compbiomed.2023.107494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023]
Abstract
Alzheimer's disease (AD) is an increasingly neurodegenerative disorder that causes progressive cognitive decline and memory impairment. Despite extensive research, the underlying causes of late-onset AD (LOAD) are still in progress. This study aimed to establish a network of competing regulatory interactions involving circular RNAs (circRNAs), microRNAs (miRNAs), RNA-binding proteins (RBPs), and messenger RNAs (mRNAs) connected to LOAD. A systematic analysis of publicly available expression data was conducted to identify integrated differentially expressed genes (DEGs) from the hippocampus of LOAD patients. Subsequently, gene co-expression analysis identified modules comprising highly expressed DEGs that act cooperatively. The competition between co-expressed DEGs and miRNAs/RBPs and the simultaneous interactions between circRNA and miRNA/RBP revealed a complex ceRNA network responsible for post-transcriptional regulation in LOAD. Hippocampal expression data for miRNAs, circRNAs, and RBPs were used to filter relevant relationships for AD. An integrated topological score was used to identify the highly connected hub gene, from which a brain core ceRNA subnetwork was generated. The Fragile X Messenger Ribonucleoprotein 1 (FMR1) coding for the RBP FMRP emerged as the prominent driver gene in this subnetwork. FMRP has been previously related to AD but not in a ceRNA network context. Also, the substantial number of neurodevelopmental genes in the ceRNA subnetwork and their related biological pathways strengthen that AD shares common pathological mechanisms with developmental conditions. Our results enhance the current knowledge about the convergent ceRNA regulatory pathways underlying AD and provide potential targets for identifying early biomarkers and developing novel therapeutic interventions.
Collapse
Affiliation(s)
- Rafael Mina Piergiorge
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Cíntia Barros Santos-Rebouças
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
15
|
Sokol DK, Lahiri DK. Neurodevelopmental disorders and microcephaly: how apoptosis, the cell cycle, tau and amyloid-β precursor protein APPly. Front Mol Neurosci 2023; 16:1201723. [PMID: 37808474 PMCID: PMC10556256 DOI: 10.3389/fnmol.2023.1201723] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/08/2023] [Indexed: 10/10/2023] Open
Abstract
Recent studies promote new interest in the intersectionality between autism spectrum disorder (ASD) and Alzheimer's Disease. We have reported high levels of Amyloid-β Precursor Protein (APP) and secreted APP-alpha (sAPPa ) and low levels of amyloid-beta (Aβ) peptides 1-40 and 1-42 (Aβ40, Aβ42) in plasma and brain tissue from children with ASD. A higher incidence of microcephaly (head circumference less than the 3rd percentile) associates with ASD compared to head size in individuals with typical development. The role of Aβ peptides as contributors to acquired microcephaly in ASD is proposed. Aβ may lead to microcephaly via disruption of neurogenesis, elongation of the G1/S cell cycle, and arrested cell cycle promoting apoptosis. As the APP gene exists on Chromosome 21, excess Aβ peptides occur in Trisomy 21-T21 (Down's Syndrome). Microcephaly and some forms of ASD associate with T21, and therefore potential mechanisms underlying these associations will be examined in this review. Aβ peptides' role in other neurodevelopmental disorders that feature ASD and acquired microcephaly are reviewed, including dup 15q11.2-q13, Angelman and Rett syndrome.
Collapse
Affiliation(s)
- Deborah K. Sokol
- Section of Pediatrics, Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Debomoy K. Lahiri
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
16
|
Mohammadian Rasnani F, Zavieh A, Heidari A, Motamed M. From neurodevelopmental to neurodegenerative disorders: Investigating symptoms of attention deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) in patients with dementia. APPLIED NEUROPSYCHOLOGY. ADULT 2023:1-10. [PMID: 37410670 DOI: 10.1080/23279095.2023.2230507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Dementia is characterized by a progressive cognitive decline that could be caused by several disorders. Autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) are two prevalent neurodevelopmental disorders that might overlap with dementia symptoms. Hence, this study aimed to evaluate the ASD and ADHD symptoms in dementia patients referred to a memory clinic in Iran. We recruited 65 dementia patients and instructed them to fill out the autism quotient (AQ) and the Conners' Adult ADHD Rating Scales (CAARS) questionnaires. Considering the cutoff points of AQ and CAARS questionnaires, 18.5% of participants were at higher risk of ASD, and 35.4% were at higher risk of ADHD. The results indicated that ADHD and ASD symptoms might be common comorbidities in patients with dementia which can increase the disease burden. Specialized ADHD and ASD screening tools in the elderly population with dementia are needed to prevent misdiagnoses due to symptom overlaps.
Collapse
Affiliation(s)
| | - Amir Zavieh
- Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Heidari
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahtab Motamed
- Department of Psychiatry, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Godefroy V, Sezer I, Bouzigues A, Montembeault M, Koban L, Plassmann H, Migliaccio R. Altered delay discounting in neurodegeneration: insight into the underlying mechanisms and perspectives for clinical applications. Neurosci Biobehav Rev 2023; 146:105048. [PMID: 36669749 DOI: 10.1016/j.neubiorev.2023.105048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/12/2022] [Accepted: 01/14/2023] [Indexed: 01/19/2023]
Abstract
Steeper delay discounting (i.e., the extent to which future rewards are perceived as less valuable than immediate ones) has been proposed as a transdiagnostic process across different health conditions, in particular psychiatric disorders. Impulsive decision-making is a hallmark of different neurodegenerative conditions but little is known about delay discounting in the domain of neurodegenerative conditions. We reviewed studies on delay discounting in patients with Parkinson's disease (PD) and in patients with dementia (Alzheimer's disease / AD or frontotemporal dementia / FTD). We proposed that delay discounting could be an early marker of the neurodegenerative process. We developed the idea that altered delay discounting is associated with overlapping but distinct neurocognitive mechanisms across neurodegenerative diseases: dopaminergic-related disorders of reward processing in PD, memory/projection deficits due to medial temporal atrophy in AD, modified reward processing due to orbitofrontal atrophy in FTD. Neurodegeneration could provide a framework to decipher the neuropsychological mechanisms of value-based decision-making. Further, delay discounting could become a marker of interest in clinical practice, in particular for differential diagnosis.
Collapse
Affiliation(s)
- Valérie Godefroy
- FrontLab, INSERM U1127, Institut du cerveau, Hôpital Pitié-Salpêtrière, Paris, France; Marketing Area, INSEAD, Fontainebleau, France; Control-Interoception-Attention Team, Paris Brain Institute (ICM), INSERM U 1127, CNRS UMR 7225, Sorbonne University, Paris, France.
| | - Idil Sezer
- FrontLab, INSERM U1127, Institut du cerveau, Hôpital Pitié-Salpêtrière, Paris, France
| | - Arabella Bouzigues
- FrontLab, INSERM U1127, Institut du cerveau, Hôpital Pitié-Salpêtrière, Paris, France
| | - Maxime Montembeault
- Douglas Research Centre, Montréal, Canada; Department of Psychiatry, McGill University, Montréal, Canada
| | - Leonie Koban
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Bron, France
| | - Hilke Plassmann
- Marketing Area, INSEAD, Fontainebleau, France; Control-Interoception-Attention Team, Paris Brain Institute (ICM), INSERM U 1127, CNRS UMR 7225, Sorbonne University, Paris, France
| | - Raffaella Migliaccio
- FrontLab, INSERM U1127, Institut du cerveau, Hôpital Pitié-Salpêtrière, Paris, France; Centre de Référence des Démences Rares ou Précoces, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France; Institute of Memory and Alzheimer's Disease, Centre of Excellence of Neurodegenerative Disease, Department of Neurology, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France.
| |
Collapse
|
18
|
Hu Z, Wang X, Meng L, Liu W, Wu F, Meng X. Detection of Association Features Based on Gene Eigenvalues and MRI Imaging Using Genetic Weighted Random Forest. Genes (Basel) 2022; 13:2344. [PMID: 36553611 PMCID: PMC9777775 DOI: 10.3390/genes13122344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
In the studies of Alzheimer's disease (AD), jointly analyzing imaging data and genetic data provides an effective method to explore the potential biomarkers of AD. AD can be separated into healthy controls (HC), early mild cognitive impairment (EMCI), late mild cognitive impairment (LMCI) and AD. In the meantime, identifying the important biomarkers of AD progression, and analyzing these biomarkers in AD provide valuable insights into understanding the mechanism of AD. In this paper, we present a novel data fusion method and a genetic weighted random forest method to mine important features. Specifically, we amplify the difference among AD, LMCI, EMCI and HC by introducing eigenvalues calculated from the gene p-value matrix for feature fusion. Furthermore, we construct the genetic weighted random forest using the resulting fused features. Genetic evolution is used to increase the diversity among decision trees and the decision trees generated are weighted by weights. After training, the genetic weighted random forest is analyzed further to detect the significant fused features. The validation experiments highlight the performance and generalization of our proposed model. We analyze the biological significance of the results and identify some significant genes (CSMD1, CDH13, PTPRD, MACROD2 and WWOX). Furthermore, the calcium signaling pathway, arrhythmogenic right ventricular cardiomyopathy and the glutamatergic synapse pathway were identified. The investigational findings demonstrate that our proposed model presents an accurate and efficient approach to identifying significant biomarkers in AD.
Collapse
Affiliation(s)
- Zhixi Hu
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou 213032, China
| | - Xuanyan Wang
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou 213032, China
| | - Li Meng
- School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Wenjie Liu
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou 213032, China
| | - Feng Wu
- School of Electrical & Information Engineering, Changzhou Institute of Technology, Changzhou 213032, China
| | - Xianglian Meng
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou 213032, China
| |
Collapse
|
19
|
Bennison SA, Liu X, Toyo-Oka K. Nuak kinase signaling in development and disease of the central nervous system. Cell Signal 2022; 100:110472. [PMID: 36122883 DOI: 10.1016/j.cellsig.2022.110472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 01/14/2023]
Abstract
Protein kinases represent important signaling hubs for a variety of biological functions. Many kinases are traditionally studied for their roles in cancer cell biology, but recent advances in neuroscience research show repurposed kinase function to be important for nervous system development and function. Two members of the AMP-activated protein kinase (AMPK) related family, NUAK1 and NUAK2, have drawn attention in neuroscience due to their mutations in autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), schizophrenia, and intellectual disability (ID). Furthermore, Nuak kinases have also been implicated in tauopathy and other disorders of aging. This review highlights what is known about the Nuak kinases in nervous system development and disease and explores the possibility of Nuak kinases as targets for therapeutic innovation.
Collapse
Affiliation(s)
- Sarah A Bennison
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Xiaonan Liu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Kazuhito Toyo-Oka
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| |
Collapse
|
20
|
Levine J, Hakim F, Kooy RF, Gozes I. Vineland Adaptive Behavior Scale in a Cohort of Four ADNP Syndrome Patients Implicates Age-Dependent Developmental Delays with Increased Impact of Activities of Daily Living. J Mol Neurosci 2022; 72:1531-1546. [PMID: 35920977 DOI: 10.1007/s12031-022-02048-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 02/07/2023]
Abstract
Activity-dependent neuroprotective protein (ADNP) is one of the lead genes in autism spectrum disorder/intellectual disability. Heterozygous, de novo ADNP mutations cause the ADNP syndrome. Here, to evaluate natural history of the syndrome, mothers of two ADNP syndrome boys aged 6 and a half and two adults aged 27 years (man and woman) were subjected to Vineland III questionnaire assessing adaptive behavior. The boys were assessed again about 2 years after the first measurements. The skill measures, presented as standard scores (SS) included domains of communication, daily living, socialization, motor skills and a sum of adaptive behavior composite. The age equivalent (AE) and growth scale values (GSV) encompassing 11 subdomains assess the age level at which the subject's raw score is found at a norm sample median and the individual temporal progression, respectively. The norm referenced standard scores age-matched, mean 100 ± 15 of the two children showed the lowest outcome in communication (SS: 20-30). Daily living skills presented SS of 50-60, with a possible potential loss of some activities as the child ages, especially in interpersonal relationships with people outside of the immediate family (boy A). In contrast, in socialization, both children were at the SS of 38, with some positive increase to SS of ~ 45 (interpersonal relations with family members and coping skills, depending on the particular individual), 2 years later. Interestingly, there was an apparent large difference in motor skills (gross and fine) at the young age, with subject B showing a relatively higher level of skills (SS: 70), decreasing to subject A level (SS: 40) 2 years later. Together, the adaptive behavior composite suggested a level of SS: 39-48 with B showing a potential increase (SS: 41-44) and A, a substantial decrease (SS: 48-39), suggesting a strong impact of daily living skills. Adults were at SS: 20, which is the lowest possible score. AE showed minor improvements for subject A and B, with all AE values being below 3 years. GSVs for subject A showed some improvement with age, especially in interpersonal, play and leisure, and gross motor subdomains. GSV for subject B showed minor improvements in the various subdomains. Notably, all subjects showed a percentile rank < 1 compared with age-matched norms except for subject B as to motor domain (2nd percentile) at the age of 6 years. In summary, the results, especially comparing SS and AEs between childhood and adulthood, implied a continuous deterioration of activities compared to the general population, encompassing a slower developmental process coupled to possible neurodegeneration, strongly supporting a great need for disease modifying medicinal procedures.
Collapse
Affiliation(s)
- Joseph Levine
- The Elton Laboratory for Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, 6997801, Tel Aviv, Israel.,Psychiatric Division, Ben Gurion University, Beersheba, Israel
| | | | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Illana Gozes
- The Elton Laboratory for Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, 6997801, Tel Aviv, Israel.
| |
Collapse
|
21
|
Liu K, Zhu R, Jiang H, Li B, Geng Q, Li Y, Qi J. Taurine inhibits KDM3a production and microglia activation in lipopolysaccharide-treated mice and BV-2 cells. Mol Cell Neurosci 2022; 122:103759. [PMID: 35901929 DOI: 10.1016/j.mcn.2022.103759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022] Open
Abstract
Microglia activation has been suggested as the key factor in neuro-inflammation and thus participates in neurological diseases. Although taurine exhibits anti-inflammatory and neuro-protective effects, its underlying epigenetic mechanism is unknown. In this study, taurine was administered to lipopolysaccharide (LPS)-treated mice and BV-2 cells. Behavioral test, morphological analyze, detection of microglia activation, and lysine demethylase 3a (KDM3a) measurements were performed to investigate the mechanism by which taurine regulates KDM3a and subsequently antagonizes microglia activation. Taurine improved the sociability of LPS-treated mice, inhibited microglia activation in the hippocampus, and reduced generation of brain inflammatory factors, such as interleukin-6, tumor necrosis factor-α, inducible nitric oxide synthase, and cyclooxygenase-2. Meanwhile, taurine suppressed the LPS-induced increase in microglial KDM3a, and increased the level of mono-, di- or tri-methylation of lysine 9 on histone H3 (H3K9me1/2/3). Furthermore, taurine inhibited the LPS-induced increase in KDM3a, elevated the H3K9me1/2/3 level, and reduced inflammatory factors and reactive oxygen species in a concentration-dependent manner in LPS-stimulated BV-2 cells. In conclusion, taurine inhibited KDM3a and microglia activation, thereby playing an anti-inflammatory role in LPS-treated mice and BV-2 cells.
Collapse
Affiliation(s)
- Kun Liu
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang 050017, Hebei, People's Republic of China; Department of Biochemistry, College of Integrated Chinese and Western Medicine, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang 050017, Hebei, People's Republic of China
| | - Runying Zhu
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang 050017, Hebei, People's Republic of China
| | - Hongwei Jiang
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang 050017, Hebei, People's Republic of China
| | - Bin Li
- Department of Biochemistry, College of Integrated Chinese and Western Medicine, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang 050017, Hebei, People's Republic of China
| | - Qi Geng
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang 050017, Hebei, People's Republic of China
| | - Yanning Li
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang 050017, Hebei, People's Republic of China.
| | - Jinsheng Qi
- Department of Biochemistry, College of Integrated Chinese and Western Medicine, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang 050017, Hebei, People's Republic of China.
| |
Collapse
|
22
|
Passos-Bueno MR, Costa CIS, Zatz M. Dystrophin genetic variants and autism. DISCOVER MENTAL HEALTH 2022; 2:4. [PMID: 37861890 PMCID: PMC10501027 DOI: 10.1007/s44192-022-00008-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/07/2022] [Indexed: 10/21/2023]
Abstract
Loss-of-function variants in the dystrophin gene, a well-known cause of muscular dystrophies, have emerged as a mutational risk mechanism for autism spectrum disorder (ASD), which in turn is a highly prevalent (~ 1%) genetically heterogeneous neurodevelopmental disorder. Although the association of intellectual disability with the dystrophinopathies Duchenne (DMD) and Becker muscular dystrophy (BMD) has been long established, their association with ASD is more recent, and the dystrophin genotype-ASD phenotype correlation is unclear. We therefore present a review of the literature focused on the ASD prevalence among dystrophinopathies, the relevance of the dystrophin isoforms, and most particularly the relevance of the genetic background to the etiology of ASD in these patients. Four families with ASD-DMD/BMD patients are also reported here for the first time. These include a single ASD individual, ASD-discordant and ASD-concordant monozygotic twins, and non-identical ASD triplets. Notably, two unrelated individuals, which were first ascertained because of the ASD phenotype at ages 15 and 5 years respectively, present rare dystrophin variants still poorly characterized, suggesting that some dystrophin variants may compromise the brain more prominently. Whole exome sequencing in these ASD-DMD/BMD individuals together with the literature suggest, although based on preliminary data, a complex and heterogeneous genetic architecture underlying ASD in dystrophinopathies, that include rare variants of large and medium effect. The need for the establishment of a consortia for genomic investigation of ASD-DMD/BMD patients, which may shed light on the genetic architecture of ASD, is discussed.
Collapse
Affiliation(s)
- Maria Rita Passos-Bueno
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Claudia Ismania Samogy Costa
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Mayana Zatz
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
23
|
Eve M, Gandawijaya J, Yang L, Oguro-Ando A. Neuronal Cell Adhesion Molecules May Mediate Neuroinflammation in Autism Spectrum Disorder. Front Psychiatry 2022; 13:842755. [PMID: 35492721 PMCID: PMC9051034 DOI: 10.3389/fpsyt.2022.842755] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/15/2022] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by restrictive and repetitive behaviors, alongside deficits in social interaction and communication. The etiology of ASD is largely unknown but is strongly linked to genetic variants in neuronal cell adhesion molecules (CAMs), cell-surface proteins that have important roles in neurodevelopment. A combination of environmental and genetic factors are believed to contribute to ASD pathogenesis. Inflammation in ASD has been identified as one of these factors, demonstrated through the presence of proinflammatory cytokines, maternal immune activation, and activation of glial cells in ASD brains. Glial cells are the main source of cytokines within the brain and, therefore, their activity is vital in mediating inflammation in the central nervous system. However, it is unclear whether the aforementioned neuronal CAMs are involved in modulating neuroimmune signaling or glial behavior. This review aims to address the largely unexplored role that neuronal CAMs may play in mediating inflammatory cascades that underpin neuroinflammation in ASD, primarily focusing on the Notch, nuclear factor-κB (NF-κB), and mitogen-activated protein kinase (MAPK) cascades. We will also evaluate the available evidence on how neuronal CAMs may influence glial activity associated with inflammation. This is important when considering the impact of environmental factors and inflammatory responses on ASD development. In particular, neural CAM1 (NCAM1) can regulate NF-κB transcription in neurons, directly altering proinflammatory signaling. Additionally, NCAM1 and contactin-1 appear to mediate astrocyte and oligodendrocyte precursor proliferation which can alter the neuroimmune response. Importantly, although this review highlights the limited information available, there is evidence of a neuronal CAM regulatory role in inflammatory signaling. This warrants further investigation into the role other neuronal CAM family members may have in mediating inflammatory cascades and would advance our understanding of how neuroinflammation can contribute to ASD pathology.
Collapse
Affiliation(s)
- Madeline Eve
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Josan Gandawijaya
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Liming Yang
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Asami Oguro-Ando
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
24
|
Nadeem MS, Kazmi I, Ullah I, Muhammad K, Anwar F. Allicin, an Antioxidant and Neuroprotective Agent, Ameliorates Cognitive Impairment. Antioxidants (Basel) 2021; 11:87. [PMID: 35052591 PMCID: PMC8772758 DOI: 10.3390/antiox11010087] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 02/08/2023] Open
Abstract
Allicin (diallylthiosulfinate) is a defense molecule produced by cellular contents of garlic (Allium sativum L.). On tissue damage, the non-proteinogenic amino acid alliin (S-allylcysteine sulfoxide) is converted to allicin in an enzyme-mediated process catalysed by alliinase. Allicin is hydrophobic in nature, can efficiently cross the cellular membranes and behaves as a reactive sulfur species (RSS) inside the cells. It is physiologically active molecule with the ability to oxidise the thiol groups of glutathione and between cysteine residues in proteins. Allicin has shown anticancer, antimicrobial, antioxidant properties and also serves as an efficient therapeutic agent against cardiovascular diseases. In this context, the present review describes allicin as an antioxidant, and neuroprotective molecule that can ameliorate the cognitive abilities in case of neurodegenerative and neuropsychological disorders. As an antioxidant, allicin fights the reactive oxygen species (ROS) by downregulation of NOX (NADPH oxidizing) enzymes, it can directly interact to reduce the cellular levels of different types of ROS produced by a variety of peroxidases. Most of the neuroprotective actions of allicin are mediated via redox-dependent pathways. Allicin inhibits neuroinflammation by suppressing the ROS production, inhibition of TLR4/MyD88/NF-κB, P38 and JNK pathways. As an inhibitor of cholinesterase and (AChE) and butyrylcholinesterase (BuChE) it can be applied to manage the Alzheimer's disease, helps to maintain the balance of neurotransmitters in case of autism spectrum disorder (ASD) and attention deficit hyperactive syndrome (ADHD). In case of acute traumatic spinal cord injury (SCI) allicin protects neuron damage by regulating inflammation, apoptosis and promoting the expression levels of Nrf2 (nuclear factor erythroid 2-related factor 2). Metal induced neurodegeneration can also be attenuated and cognitive abilities of patients suffering from neurological diseases can be ameliorates by allicin administration.
Collapse
Affiliation(s)
- Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; or
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; or
| | - Inam Ullah
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra 21300, Pakistan; (I.U.); (K.M.)
| | - Khushi Muhammad
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra 21300, Pakistan; (I.U.); (K.M.)
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; or
| |
Collapse
|