1
|
Han X, Wang X, Yan J, Song P, Wang Y, Kang Y, Rauf A, Zhang H. Multifunctional biosynthesized magnetosome for multimodal imaging and combined therapy of tumor. Mater Today Bio 2025; 30:101429. [PMID: 39839492 PMCID: PMC11750283 DOI: 10.1016/j.mtbio.2024.101429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/23/2025] Open
Abstract
The large recruitment of tumor-associated macrophages and low exposure of tumor-associated antigens in tumor microenvironment have severely suppress the efficacy of anti-tumor immunotherapy. Herein, biosynthesized magnetosome (Mag) from bacteria was loaded with photothermal/photodynamic agent/near infrared (NIR) fluorescence dye (IR780) and further modified with lipid-PEG-c(RGDyK) through biomembrane, forming IMagRGD for fluorescence imaging, magnetic resonance imaging, immunotherapy and photodynamic/photothermal therapy. After intravenous injection into B16F10 tumor-bearing mice, IMagRGD could efficiently accumulate in tumor tissues based on near infrared (NIR) fluorescence and magnetic resonance dual-modality imaging, and repolarize tumor-associated macrophages (TAMs) from M2 phenotype to M1 phenotype, significantly improving the effect of tumor immunotherapy. Moreover, photothermal and photodynamic effect of IR780 could kill tumor cells and elicit immunogenic cell death to mediate anti-tumor immunity, promoting dendritic cells (DCs) maturation and then activating specific effector T cells to further eliminate tumor cells. This study provides a new approach for reversing the activity of tumor immunosuppressive microenvironment and strengthening the efficiency of tumor photoimmunotherapy.
Collapse
Affiliation(s)
- Xiaoqing Han
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xingbo Wang
- School of Biomedical Engineering & The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jiao Yan
- School of Biomedical Engineering & The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Panpan Song
- School of Biomedical Engineering & The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yanjing Wang
- School of Biomedical Engineering & The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yaqing Kang
- School of Biomedical Engineering & The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Ambar, 23430, Pakistan
| | - Haiyuan Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Biomedical Engineering & The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| |
Collapse
|
2
|
Chuang AEY, Tao YK, Dong SW, Nguyen HT, Liu CH. Polypyrrole/iron-glycol chitosan nanozymes mediate M1 macrophages to enhance the X-ray-triggered photodynamic therapy for bladder cancer by promoting antitumor immunity. Int J Biol Macromol 2024; 280:135608. [PMID: 39276877 DOI: 10.1016/j.ijbiomac.2024.135608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/02/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
X-ray Photodynamic Therapy (XPDT) is an emerging, deeply penetrating, and non-invasive tumor treatment that stimulates robust antitumor immune responses. However, its efficacy is often limited by low therapeutic delivery and immunosuppressant within the tumor microenvironment. This challenge can potentially be addressed by utilizing X-ray responsive iron-glycol chitosan-polypyrrole nanozymes (GCS-I-PPy NZs), which activate M1 macrophages. These nanozymes increase tumor infiltration and enhance the macrophages' intrinsic immune response and their ability to stimulate adaptive immunity. Authors have designed biocompatible, photosensitizer-containing GCS-I-PPy NZs using oxidation/reduction reactions. These nanozymes were internalized by M1 macrophages to form RAW-GCS-I-PPy NZs. Authors' results demonstrated that these engineered macrophages effectively delivered the nanozymes with potentially high tumor accumulation. Within the tumor microenvironment, the accumulated GCS-I-PPy NZs underwent X-ray irradiation, generating reactive oxygen species (ROS). This ROS augmentation significantly enhanced the therapeutic effect of XPDT and synergistically promoted T cell infiltration into the tumor. These findings suggest that nano-engineered M1 macrophages can effectively boost the immune effects of XPDT, providing a promising strategy for enhancing cancer immunotherapy. The ability of GCS-I-PPy NZs to mediate M1 macrophage activation and increase tumor infiltration highlights their potential in overcoming the limitations of current XPDT approaches and improving therapeutic outcomes in melanoma and other cancers.
Collapse
Affiliation(s)
- Andrew E-Y Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei 11696, Taiwan.
| | - Yu-Kuang Tao
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Shao-Wei Dong
- Taipei Medical University Shuang Ho Hospital, Taiwan
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan; Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan.
| |
Collapse
|
3
|
Peng Z, Yi Y, Nie Y, Wang T, Tang J, Hong S, Liu Y, Huang W, Sun S, Tan H, Wu M. Softening the tumor matrix through cholesterol depletion breaks the physical barrier for enhanced antitumor therapy. J Control Release 2024; 371:29-42. [PMID: 38763389 DOI: 10.1016/j.jconrel.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
The tumor develops defense tactics, including conversing the mechanical characteristics of tumor cells and their surrounding environment. A recent study reported that cholesterol depletion stiffens tumor cells, which could enhance adaptive T-cell immunotherapy. However, it remains unclear whether reducing the cholesterol in tumor cells contributes to re-educating the stiff tumor matrix, which serves as a physical barrier against drug penetration. Herein, we found that depleting cholesterol from tumor cells can demolish the intratumor physical barrier by disrupting the mechanical signal transduction between tumor cells and the extracellular matrix through the destruction of lipid rafts. This disruption allows nanoparticles (H/S@hNP) to penetrate deeply, resulting in improved photodynamic treatment. Our research also indicates that cholesterol depletion can inhibit the epithelial-mesenchymal transition and repolarize tumor-associated macrophages from M2 to M1, demonstrating the essential role of cholesterol in tumor progression. Overall, this study reveals that a cholesterol-depleted, softened tumor matrix reduces the difficulty of drug penetration, leading to enhanced antitumor therapeutics.
Collapse
Affiliation(s)
- Zhangwen Peng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Yunfei Yi
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Yichu Nie
- Department of Translational Medicine Research Institute, First People's Hospital of Foshan, Foshan 528000, China
| | - Tianqi Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Jia Tang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Sheng Hong
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Yuanqi Liu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Wenxin Huang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Shengjie Sun
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Hui Tan
- Center for Child Care and Mental Health (CCCMH), Shenzhen Children's Hospital, Shenzhen 518038, China.
| | - Meiying Wu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China.
| |
Collapse
|
4
|
Zheng J, Jiang J, Pu Y, Xu T, Sun J, Zhang Q, He L, Liang X. Tumor-associated macrophages in nanomaterial-based anti-tumor therapy: as target spots or delivery platforms. Front Bioeng Biotechnol 2023; 11:1248421. [PMID: 37654704 PMCID: PMC10466823 DOI: 10.3389/fbioe.2023.1248421] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023] Open
Abstract
Targeting tumor-associated macrophages (TAMs) has emerged as a promising approach in cancer therapy. This article provides a comprehensive review of recent advancements in the field of nanomedicines targeting TAMs. According to the crucial role of TAMs in tumor progression, strategies to inhibit macrophage recruitment, suppress TAM survival, and transform TAM phenotypes are discussed as potential therapeutic avenues. To enhance the targeting capacity of nanomedicines, various approaches such as the use of ligands, immunoglobulins, and short peptides are explored. The utilization of live programmed macrophages, macrophage cell membrane-coated nanoparticles and macrophage-derived extracellular vesicles as drug delivery platforms is also highlighted, offering improved biocompatibility and prolonged circulation time. However, challenges remain in achieving precise targeting and controlled drug release. The heterogeneity of TAMs and the variability of surface markers pose hurdles in achieving specific recognition. Furthermore, the safety and clinical applicability of these nanomedicines requires further investigation. In conclusion, nanomedicines targeting TAMs hold great promise in cancer therapy, offering enhanced specificity and reduced side effects. Addressing the existing limitations and expanding our understanding of TAM biology will pave the way for the successful translation of these nano-therapies into clinical practice.
Collapse
Affiliation(s)
- Jixuan Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, West China School of Medicine, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Jinting Jiang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, West China School of Medicine, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yicheng Pu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, West China School of Medicine, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Tingrui Xu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, West China School of Medicine, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Jiantong Sun
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, West China School of Medicine, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Qiang Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ling He
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Liang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, West China School of Medicine, West China School of Pharmacy, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Ji X, Huang X, Li C, Guan N, Pan T, Dong J, Li L. Effect of tumor-associated macrophages on the pyroptosis of breast cancer tumor cells. Cell Commun Signal 2023; 21:197. [PMID: 37542283 PMCID: PMC10401873 DOI: 10.1186/s12964-023-01208-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/26/2023] [Indexed: 08/06/2023] Open
Abstract
Macrophages are immune cells with high plasticity that are widely distributed in all tissues and organs of the body. Under the influence of the immune microenvironment of breast tumors, macrophages differentiate into various germline lineages. They exert pro-tumor or tumor-suppressive effects by secreting various cytokines. Pyroptosis is mediated by Gasdermin family proteins, which form holes in cell membranes and cause a violent inflammatory response and cell death. This is an important way for the body to fight off infections. Tumor cell pyroptosis can activate anti-tumor immunity and inhibit tumor growth. At the same time, it releases inflammatory mediators and recruits tumor-associated macrophages (TAMs) for accumulation. Macrophages act as "mediators" of cytokine interactions and indirectly influence the pyroptosis pathway. This paper describes the mechanism of action on the part of TAM in affecting the pyroptosis process of breast tumor cells, as well as its key role in the tumor microenvironment. Additionally, it provides the basis for in-depth research on how to use immune cells to affect breast tumors and guide anti-tumor trends, with important implications for the prevention and treatment of breast tumors. Video Abstract.
Collapse
Affiliation(s)
- XuLing Ji
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiaoxia Huang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China
| | - Chao Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ningning Guan
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China
| | - Tingting Pan
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jing Dong
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Lin Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
6
|
Suliman IH, Kim K, Chen W, Kim Y, Moon JH, Son S, Nam J. Metal-Based Nanoparticles for Cancer Metalloimmunotherapy. Pharmaceutics 2023; 15:2003. [PMID: 37514189 PMCID: PMC10385358 DOI: 10.3390/pharmaceutics15072003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Although the promise of cancer immunotherapy has been partially fulfilled with the unprecedented clinical success of several immunotherapeutic interventions, some issues, such as limited response rate and immunotoxicity, still remain. Metalloimmunotherapy offers a new form of cancer immunotherapy that utilizes the inherent immunomodulatory features of metal ions to enhance anticancer immune responses. Their versatile functionalities for a multitude of direct and indirect anticancer activities together with their inherent biocompatibility suggest that metal ions can help overcome the current issues associated with cancer immunotherapy. However, metal ions exhibit poor drug-like properties due to their intrinsic physicochemical profiles that impede in vivo pharmacological performance, thus necessitating an effective pharmaceutical formulation strategy to improve their in vivo behavior. Metal-based nanoparticles provide a promising platform technology for reshaping metal ions into more drug-like formulations with nano-enabled engineering approaches. This review provides a general overview of cancer immunotherapy, the immune system and how it works against cancer cells, and the role of metal ions in the host response and immune modulation, as well as the impact of metal ions on the process via the regulation of immune cells. The preclinical studies that have demonstrated the potential of metal-based nanoparticles for cancer metalloimmunotherapy are presented for the representative nanoparticles constructed with manganese, zinc, iron, copper, calcium, and sodium ions. Lastly, the perspectives and future directions of metal-based nanoparticles are discussed, particularly with respect to their clinical applications.
Collapse
Affiliation(s)
| | - Kidong Kim
- Department of Biological Sciences, Inha University, Incheon 22212, Republic of Korea
| | - Weihsuan Chen
- Department of Biological Sciences, Inha University, Incheon 22212, Republic of Korea
- Department of Biological Sciences and Bioengineering, Industry-Academia Interactive R&E Center for Bioprocess Innovation, Inha University, Incheon 22212, Republic of Korea
| | - Yubin Kim
- Department of Biological Sciences, Inha University, Incheon 22212, Republic of Korea
- Department of Biological Sciences and Bioengineering, Industry-Academia Interactive R&E Center for Bioprocess Innovation, Inha University, Incheon 22212, Republic of Korea
| | - Jeong-Hyun Moon
- Department of Biological Sciences, Inha University, Incheon 22212, Republic of Korea
| | - Sejin Son
- Department of Biological Sciences, Inha University, Incheon 22212, Republic of Korea
- Department of Biological Sciences and Bioengineering, Industry-Academia Interactive R&E Center for Bioprocess Innovation, Inha University, Incheon 22212, Republic of Korea
| | - Jutaek Nam
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
7
|
Ding H, Zhang Y, Mao Y, Li Y, Shen Y, Sheng J, Gu N. Modulation of macrophage polarization by iron-based nanoparticles. MEDICAL REVIEW (2021) 2023; 3:105-122. [PMID: 37724082 PMCID: PMC10471121 DOI: 10.1515/mr-2023-0002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/03/2023] [Indexed: 09/20/2023]
Abstract
Macrophage polarization is an essential process involved in immune regulation. In response to different microenvironmental stimulation, macrophages polarize into cells with different phenotypes and functions, most typically M1 (pro-inflammatory) and M2 (anti-inflammatory) macrophages. Iron-based nanoparticles have been widely explored and reported to regulate macrophage polarization for various biomedical applications. However, the influence factors and modulation mechanisms behind are complicated and not clear. In this review, we systemically summarized different iron-based nanoparticles that regulate macrophage polarization and function and discussed the influence factors and mechanisms underlying the modulation process. This review aims to deepen the understanding of the modulation of macrophage polarization by iron-based nanoparticles and expects to provide evidence and guidance for subsequent design and application of iron-based nanoparticles with specific macrophage modulation functions.
Collapse
Affiliation(s)
- He Ding
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu Province, China
| | - Yuxin Zhang
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu Province, China
| | - Yu Mao
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Yan Li
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu Province, China
| | - Yan Shen
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jingyi Sheng
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu Province, China
| | - Ning Gu
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu Province, China
- Medical School, Nanjing University, Nanjing210093, China
| |
Collapse
|
8
|
Mishra AK, Banday S, Bharadwaj R, Ali A, Rashid R, Kulshreshtha A, Malonia SK. Macrophages as a Potential Immunotherapeutic Target in Solid Cancers. Vaccines (Basel) 2022; 11:55. [PMID: 36679900 PMCID: PMC9863216 DOI: 10.3390/vaccines11010055] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 12/28/2022] Open
Abstract
The revolution in cancer immunotherapy over the last few decades has resulted in a paradigm shift in the clinical care of cancer. Most of the cancer immunotherapeutic regimens approved so far have relied on modulating the adaptive immune system. In recent years, strategies and approaches targeting the components of innate immunity have become widely recognized for their efficacy in targeting solid cancers. Macrophages are effector cells of the innate immune system, which can play a crucial role in the generation of anti-tumor immunity through their ability to phagocytose cancer cells and present tumor antigens to the cells of adaptive immunity. However, the macrophages that are recruited to the tumor microenvironment predominantly play pro-tumorigenic roles. Several strategies targeting pro-tumorigenic functions and harnessing the anti-tumorigenic properties of macrophages have shown promising results in preclinical studies, and a few of them have also advanced to clinical trials. In this review, we present a comprehensive overview of the pathobiology of TAMs and their role in the progression of solid malignancies. We discuss various mechanisms through which TAMs promote tumor progression, such as inflammation, genomic instability, tumor growth, cancer stem cell formation, angiogenesis, EMT and metastasis, tissue remodeling, and immunosuppression, etc. In addition, we also discuss potential therapeutic strategies for targeting TAMs and explore how macrophages can be used as a tool for next-generation immunotherapy for the treatment of solid malignancies.
Collapse
Affiliation(s)
- Alok K. Mishra
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Shahid Banday
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Ravi Bharadwaj
- Department of Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Amjad Ali
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Romana Rashid
- Department of Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Ankur Kulshreshtha
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Sunil K. Malonia
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
9
|
Pu Y, Zhu J, Xu J, Zhang S, Bao Y. Antitumor effect of a polysaccharide from Pseudostellaria heterophylla through reversing tumor-associated macrophages phenotype. Int J Biol Macromol 2022; 220:816-826. [PMID: 35988728 DOI: 10.1016/j.ijbiomac.2022.08.111] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/28/2022] [Accepted: 08/16/2022] [Indexed: 11/05/2022]
Abstract
Tumor-associated macrophages (TAMs), which are predominant tumor-infiltrating immune cells in the tumor microenvironment, participate in promoting the occurrence and metastasis of tumor cells. Reprogramming TAMs has become a promising immunotherapeutic approach for novel cancer treatments. In this study, a homogeneous polysaccharide (PHP-1) was obtained from Pseudostellaria heterophylla, and its antitumor and immunological activities, as well as the underlying molecular mechanisms were explored. These findings suggested that PHP-1 can switch M2 macrophages to the M1 type, thereby promoting tumor cell apoptosis in vitro. In addition, PHP-1 can modulate the TAMs phenotype, maintain the CD4+/CD8+ lymphocyte balance, and exert antitumor effects in H22 tumor-bearing mice. Mechanistically, PHP-1 is recognized by the TLR4 receptor, promotes Ca2+ release, and activates the NF-κB and MAPK signaling pathways to reset the M2-type macrophages. These findings indicate that PHP-1 from P. heterophylla can function as a tumor immunotherapeutic modulator.
Collapse
Affiliation(s)
- Youwei Pu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Junmo Zhu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jie Xu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Sitong Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yixi Bao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
10
|
Halder J, Pradhan D, Biswasroy P, Rai VK, Kar B, Ghosh G, Rath G. Trends in iron oxide nanoparticles: a nano-platform for theranostic application in breast cancer. J Drug Target 2022; 30:1055-1075. [PMID: 35786242 DOI: 10.1080/1061186x.2022.2095389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Breast cancer (BC) is the deadliest malignant disorder globally, with a significant mortality rate. The development of tolerance throughout cancer treatment and non-specific targeting limits the drug's response. Currently, nano therapy provides an interdisciplinary area for imaging, diagnosis, and targeted drug delivery for BC. Several overexpressed biomarkers, proteins, and receptors are identified in BC, which can be potentially targeted by using nanomaterial for drug/gene/immune/photo-responsive therapy and bio-imaging. In recent applications, magnetic iron oxide nanoparticles (IONs) have shown tremendous attention to the researcher because they combine selective drug delivery and imaging functionalities. IONs can be efficaciously functionalised for potential application in BC therapy and diagnosis. In this review, we explored the current application of IONs in chemotherapeutics delivery, gene delivery, immunotherapy, photo-responsive therapy, and bio-imaging for BC based on their molecular mechanism. In addition, we also highlighted the effect of IONs' size, shape, dimension, and functionalization on BC targeting and imaging. To better comprehend the functionalization potential of IONs, this paper provides an outline of BC cellular development. IONs for BC theranostic are also reviewed based on their clinical significance and future aspects.
Collapse
Affiliation(s)
- Jitu Halder
- School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Deepak Pradhan
- School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Prativa Biswasroy
- School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Vineet Kumar Rai
- School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Biswakanth Kar
- School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Goutam Ghosh
- School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Goutam Rath
- School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| |
Collapse
|
11
|
Xu X, Tian K, Lou X, Du Y. Potential of Ferritin-Based Platforms for Tumor Immunotherapy. Molecules 2022; 27:2716. [PMID: 35566065 PMCID: PMC9104857 DOI: 10.3390/molecules27092716] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
Ferritin is an iron storage protein that plays a key role in iron homeostasis and cellular antioxidant activity. Ferritin has many advantages as a tumor immunotherapy platform, including a small particle size that allows for penetration into tumor-draining lymph nodes or tumor tissue, a unique structure consisting of 24 self-assembled subunits, cavities that can encapsulate drugs, natural targeting functions, and a modifiable outer surface. In this review, we summarize related research applying ferritin as a tumor immune vaccine or a nanocarrier for immunomodulator drugs based on different targeting mechanisms (including dendritic cells, tumor-associated macrophages, tumor-associated fibroblasts, and tumor cells). In addition, a ferritin-based tumor vaccine expected to protect against a wide range of coronaviruses by targeting multiple variants of SARS-CoV-2 has entered phase I clinical trials, and its efficacy is described in this review. Although ferritin is already on the road to transformation, there are still many difficulties to overcome. Therefore, three barriers (drug loading, modification sites, and animal models) are also discussed in this paper. Notwithstanding, the ferritin-based nanoplatform has great potential for tumor immunotherapy, with greater possibility of clinical transformation.
Collapse
Affiliation(s)
- Xiaoling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (X.X.); (K.T.)
| | - Kewei Tian
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (X.X.); (K.T.)
| | - Xuefang Lou
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|