1
|
Yang F, Chen Y, Zheng G, Gu K, Fan L, Li T, Zhu L, Yan Y. LIMA1 O-GlcNAcylation Promotes Hepatic Lipid Deposition through Inducing β-catenin-Regulated FASn Expression in Metabolic Dysfunction-Associated Steatotic Liver Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415941. [PMID: 39921472 PMCID: PMC12005730 DOI: 10.1002/advs.202415941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/20/2025] [Indexed: 02/10/2025]
Abstract
Hepatic lipid deposition is a key factor in progressing metabolic dysfunction-associated steatotic liver disease (MASLD). This study investigates the impact of the LIM domain and actin-binding protein 1 (LIMA1) on hepatic steatotic in MASLD and explore the underlying mechanisms. Increased levels of LIMA1 is observed in both serum and serum sEV of metabolic dysfunction-associated steatohepatitis (MASH) patients compared to healthy controls, with AUROC values of 0.76 and 0.86, respectively. Furthermore, increased LIMA1 O-GlcNAcylation is observed in mouse models of MASLD, and steatotic hepatocytes. Mechanistic studies revealed that steatosis upregulated Host cell factor 1 (HCF1) and O-GlcNAc transferase (OGT) expression, leading to catalyzed O-GlcNAcylation at the T662 site of LIMA1 and subsequent inhibition of its ubiquitin-dependent degradation. O-GlcNAcylation of LIMA1 enhances hepatocyte lipid deposition by activating β-catenin/FASn-associated signaling. Additionally, compared with their AAV8-TBG-LIMA1-WT counterparts, AAV8-TBG-LIMA1ΔT662 injection exhibited decreases in systemic insulin resistance, steatosis severity, inflammation and fibrosis in HFD-fed and CDAHFD-fed LIMA1 HKO (hepatocyte-specific knockout) mice. Moreover, LTH-sEV-mediated delivery of LIMA1 promoted MASLD progression by promoting hepatic stellate cell (HSC) activation. The findings suggest that serum sEV LIMA1 may be a potential noninvasive biomarker and therapeutic target for individuals with MASH.
Collapse
Affiliation(s)
- Fuji Yang
- Department of Laboratory MedicineWujin Hospital Affiliated with Jiangsu UniversityJiangsu UniversityChangzhou213017China
- Department of Laboratory MedicineSchool of MedicineJiangsu UniversityZhenjiang212013China
| | - Yifei Chen
- Department of Laboratory MedicineWujin Hospital Affiliated with Jiangsu UniversityJiangsu UniversityChangzhou213017China
- Department of Laboratory MedicineSchool of MedicineJiangsu UniversityZhenjiang212013China
| | - Guojun Zheng
- Department of Laboratory MedicineThe Third People's Hospital of ChangzhouChangzhou213017China
| | - Kefeng Gu
- Changzhou Key Laboratory of Exosome Foundation and Transformation ApplicationWujin Hospital Affiliated with Jiangsu UniversityJiangsu UniversityChangzhou213017China
| | - Lin Fan
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu UniversityJiangsu UniversityChangzhou213017China
| | - Tingfen Li
- Department of laboratory medicineThe Second People's Hospital of ChangzhouChangzhou213614China
| | - Ling Zhu
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu UniversityJiangsu UniversityChangzhou213017China
| | - Yongmin Yan
- Department of Laboratory MedicineWujin Hospital Affiliated with Jiangsu UniversityJiangsu UniversityChangzhou213017China
- Changzhou Key Laboratory of Exosome Foundation and Transformation ApplicationWujin Hospital Affiliated with Jiangsu UniversityJiangsu UniversityChangzhou213017China
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu UniversityJiangsu UniversityChangzhou213017China
| |
Collapse
|
2
|
Jia X, Peng M, Wang Z, Li X, Mou T, Wang X, Xia Y, Ma J, Wang Q, Li Z, Zhang L, Zhu W, Xu G. Relationship Between Dietary Inflammatory Index and Carotid Artery Calcification in Patients with Ischemic Stroke. J Inflamm Res 2024; 17:10131-10140. [PMID: 39634286 PMCID: PMC11616426 DOI: 10.2147/jir.s479965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Background and Purpose Diet may influence systemic inflammatory status, vascular calcification, and, therefore, the development of atherosclerosis. The Dietary Inflammatory Index (DII) is a measure of the inflammatory potential of diet. Although previous studies have examined the relationship between DII and cardiovascular diseases, its specific association with carotid artery calcification in ischemic stroke patients remains insufficiently explored. This study aimed to evaluate the relationship between Dietary Inflammatory Index (DII) and carotid artery calcification in patients with ischemic stroke. Methods This is a retrospective cross-sectional analysis based on a prospective registry database. Patients with ischemic stroke were enrolled via Nanjing Stroke Registry Program. DII was calculated based on 39 food components with the help of a food frequency questionnaire. Carotid artery calcification was quantified as calcification score using the Agatston method based on computed tomography angiography. The data were compared among patients stratified by tertiles of DII. Multiple logistic regression models were used to evaluate the influence of DII on carotid artery calcification. Spearman analysis was used to evaluate the relationship between DII and ln-transformed carotid artery calcification score. Results Of the 601 enrolled, carotid artery calcification was detected in 368 (61.23%) patients. Compared with patients with the lowest DII, those with higher DII had a higher ratio of stroke subtypes of large artery atherosclerosis (p =0.050), a higher calcification score (p <0.001), and a higher ratio of calcification (p <0.001). Other baseline characteristics, including sex and age, showed no significant differences across the DII tertiles. Patients with carotid artery calcification had significantly higher DII scores compared to those without calcification (p = 0.018). Logistic regression analysis showed that patients with the highest DII tertile had a higher risk of carotid artery calcification after adjusting for significant cofounders (OR =1.880, 95% CI, 1.205-2.932; p =0.005). Spearman correlation analysis indicated that DII was associated with ln-transformed carotid artery calcification score in patients with carotid artery calcification (R =0.110, p =0.035). Conclusion DII was associated with carotid artery calcification in patients with ischemic stroke. Considering a possible causal relationship, the mechanism of this relationship warrants further investigation.
Collapse
Affiliation(s)
- Xuerong Jia
- Department of Neurology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, People’s Republic of China
| | - Min Peng
- Department of Neurology, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518000, People’s Republic of China
| | - Zewen Wang
- Department of Radiology, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210002, People’s Republic of China
| | - Xiang Li
- Department of Neurology, Jinling Hospital, Nanjing Medical University, Nanjing, 210002, People’s Republic of China
- Department of Neurology, The Ninth People’s Hospital of Chongqing, Chongqing, 400700, People’s Republic of China
| | - Tao Mou
- Department of Neurology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, People’s Republic of China
| | - Xiaoke Wang
- Department of Neurology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, People’s Republic of China
| | - Yaqian Xia
- Department of Neurology, The People’s Hospital of Rugao, Rugao, Jiangsu, 226500, People’s Republic of China
| | - Jizi Ma
- Department of Neurology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, People’s Republic of China
| | - Qing Wang
- Department of Neurology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, People’s Republic of China
| | - Zefang Li
- Department of Neurology, Jinling Hospital, Nanjing Medical University, Nanjing, 210002, People’s Republic of China
| | - Longjiang Zhang
- Department of Radiology, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210002, People’s Republic of China
| | - Wusheng Zhu
- Department of Neurology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, People’s Republic of China
| | - Gelin Xu
- Department of Neurology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, People’s Republic of China
- Department of Neurology, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518000, People’s Republic of China
- Department of Neurology, Jinling Hospital, Nanjing Medical University, Nanjing, 210002, People’s Republic of China
| |
Collapse
|
3
|
Ding J, Chen FP, Song YY, Li HY, Ai XW, Chen Y, Han L, Zhou XJ, Zhu DS, Guan YT. Serum Low-Density Lipoprotein Cholesterol Levels are Associated with Relapse in Neuromyelitis Optica Spectrum Disorder. J Inflamm Res 2024; 17:8227-8240. [PMID: 39525310 PMCID: PMC11549894 DOI: 10.2147/jir.s489723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Background The relationship between serum low-density lipoprotein cholesterol (LDL-C) and the risk of relapse in neuromyelitis optica spectrum disorder (NMOSD) remains uncertain. We aimed to examine the association between serum LDL-C level and relapse in NMOSD patients. Methods We conducted an analysis of the prospective observational NMOSD cohort study with consecutive 184 hospitalized NMOSD patients from department of neurology. Blood samples were collected to measure LDL-C level upon admission. Primary and relapse were evaluated during hospitalization. The relationship between serum LDL-C level and relapse were analyzed by linear curve fitting analyses. Crude and adjusted odds ratios (OR) of LDL-C for relapse with 95% confidence intervals were analyzed using multiple logistic regression models. ROC curve analysis was used to identify the target lipid-lowering value of LDL-C and the probability of relapse was evaluated by the Kaplan-Meier Plot. Results Over a mean disease course of 100±87 days, 59.24% (n=109) participants developed relapse with higher LDL-C than the primary group (n=75) (p<0.001). Adjusted smoothed plots suggested that there were linear relationships between serum LDL-C level and relapse (p< 0.001). The OR (95% CI) between serum LDL-C level and relapse were 2.67 (1.76-4.04, p<0.001), and 2.38 (1.48-3.83, p<0.001) respectively in NMOSD patients before and after adjusting for potential confounders. The target LDL-C lowering values were 2.795 mmol/L with potential benefits to prevent relapse in NMOSD. Conclusion In this sample of NMOSD patients, we found that the elevated serum LDL-C was independently and positively associated with the relapse, and serum LDL-C should be well-controlled to prevent the relapse of NMOSD.
Collapse
Affiliation(s)
- Jie Ding
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People’s Republic of China
| | - Fu-Ping Chen
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People’s Republic of China
| | - Ya-Ying Song
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People’s Republic of China
| | - Hong-Yan Li
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People’s Republic of China
| | - Xi-Wen Ai
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People’s Republic of China
| | - Yi Chen
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People’s Republic of China
| | - Lu Han
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People’s Republic of China
| | - Xia-Jun Zhou
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People’s Republic of China
| | - De-Sheng Zhu
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People’s Republic of China
| | - Yang-Tai Guan
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People’s Republic of China
- Department of Neurology, Pu Nan Branch of Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
4
|
Hu B, Pei J, Wan C, Liu S, Xu Z, Zou Y, Li Z, Tang Z. Mechanisms of Postischemic Stroke Angiogenesis: A Multifaceted Approach. J Inflamm Res 2024; 17:4625-4646. [PMID: 39045531 PMCID: PMC11264385 DOI: 10.2147/jir.s461427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024] Open
Abstract
Ischemic stroke constitutes a significant global health care challenge, and a comprehensive understanding of its recovery mechanisms is imperative for the development of innovative therapeutic strategies. Angiogenesis, a pivotal element of ischemic tissue repair, facilitates the restoration of blood flow to damaged regions, thereby promoting neuronal regeneration and functional recovery. Nevertheless, the mechanisms underlying postischemic stroke angiogenesis remain incompletely elucidated. This review meticulously examines the constituents of the neurovascular unit, ion channels, molecular mediators, and signaling pathways implicated in angiogenesis following stroke. Furthermore, it delves into prospective therapeutic strategies informed by these factors. Our objective is to provide detailed and exhaustive information on the intricate mechanisms governing postischemic stroke angiogenesis, thus providing a robust scientific foundation for the advancement of novel neurorepair therapies.
Collapse
Affiliation(s)
- Bin Hu
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Jingchun Pei
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Cheng Wan
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
- Department of Medical Imaging, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Shuangshuang Liu
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Zhe Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, People’s Republic of China
- School of Basic Medical Sciences, Qujing Medical College, Qujing, People’s Republic of China
| | - Yongwei Zou
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Zhigao Li
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Zhiwei Tang
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| |
Collapse
|
5
|
Neff LS, Biggs RM, Zhang Y, Van Laer AO, Baicu CF, Subramanian S, Berto S, DeLeon-Pennell K, Zile MR, Bradshaw AD. Role of macrophages in regression of myocardial fibrosis following alleviation of left ventricular pressure overload. Am J Physiol Heart Circ Physiol 2024; 326:H1204-H1218. [PMID: 38363214 PMCID: PMC11687953 DOI: 10.1152/ajpheart.00240.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 01/30/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Sustained hemodynamic pressure overload (PO) produced by murine transverse aortic constriction (TAC) causes myocardial fibrosis; removal of TAC (unTAC) returns left ventricle (LV) hemodynamic load to normal and results in significant, but incomplete regression of myocardial fibrosis. However, the cellular mechanisms that result in these outcomes have not been defined. The objective was to determine temporal changes in myocardial macrophage phenotype in TAC and unTAC and determine whether macrophage depletion alters collagen degradation after unTAC. Myocardial macrophage abundance and phenotype were assessed by immunohistochemistry, flow cytometry, and gene expression by RT-PCR in control (non-TAC), 2 wk, 4 wk TAC, and 2 wk, 4 wk, and 6 wk unTAC. Myocardial cytokine profiles and collagen-degrading enzymes were determined by immunoassay and immunoblots. Initial collagen degradation was detected with collagen-hybridizing peptide (CHP). At unTAC, macrophages were depleted with clodronate liposomes, and endpoints were measured at 2 wk unTAC. Macrophage number had a defined temporal pattern: increased in 2 wk and 4 wk TAC, followed by increases at 2 wk unTAC (over 4 wk TAC) that then decreased at 4 wk and 6 wk unTAC. At 2 wk unTAC, macrophage area was significantly increased and was regionally associated with CHP reactivity. Cytokine profiles in unTAC reflected a proinflammatory milieu versus the TAC-induced profibrotic milieu. Single-cell sequencing analysis of 2 wk TAC versus 2 and 6 wk unTAC revealed distinct macrophage gene expression profiles at each time point demonstrating unique macrophage populations in unTAC versus TAC myocardium. Clodronate liposome depletion at unTAC reduced CHP reactivity and decreased cathepsin K and proMMP2. We conclude that temporal changes in number and phenotype of macrophages play a critical role in both TAC-induced development and unTAC-mediated partial, but incomplete, regression of myocardial fibrosis.NEW & NOTEWORTHY Our novel findings highlight the dynamic changes in myocardial macrophage populations that occur in response to PO and after alleviation of PO. Our data demonstrated, for the first time, a potential benefit of macrophages in contributing to collagen degradation and the partial regression of interstitial fibrosis following normalization of hemodynamic load.
Collapse
Affiliation(s)
- Lily S Neff
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Rachel M Biggs
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Yuhua Zhang
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - An O Van Laer
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Catalin F Baicu
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Suganya Subramanian
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Stefano Berto
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Kristine DeLeon-Pennell
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
- The Ralph H. Johnson Department of Veteran's Affairs Medical Center, Charleston, South Carolina, United States
| | - Michael R Zile
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
- The Ralph H. Johnson Department of Veteran's Affairs Medical Center, Charleston, South Carolina, United States
| | - Amy D Bradshaw
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
- The Ralph H. Johnson Department of Veteran's Affairs Medical Center, Charleston, South Carolina, United States
| |
Collapse
|
6
|
Aschner M, Martins AC, Oliveira-Paula GH, Skalny AV, Zaitseva IP, Bowman AB, Kirichuk AA, Santamaria A, Tizabi Y, Tinkov AA. Manganese in autism spectrum disorder and attention deficit hyperactivity disorder: The state of the art. Curr Res Toxicol 2024; 6:100170. [PMID: 38737010 PMCID: PMC11088232 DOI: 10.1016/j.crtox.2024.100170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/27/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024] Open
Abstract
The objective of the present narrative review was to synthesize existing clinical and epidemiological findings linking manganese (Mn) exposure biomarkers to autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD), and to discuss key pathophysiological mechanisms of neurodevelopmental disorders that may be affected by this metal. Existing epidemiological data demonstrated both direct and inverse association between Mn body burden and ASD, or lack of any relationship. In contrast, the majority of studies revealed significantly higher Mn levels in subjects with ADHD, as well as direct relationship between Mn body burden with hyperactivity and inattention scores in children, although several studies reported contradictory results. Existing laboratory studies demonstrated that impaired attention and hyperactivity in animals following Mn exposure was associated with dopaminergic dysfunction and neuroinflammation. Despite lack of direct evidence on Mn-induced neurobiological alterations in patients with ASD and ADHD, a plethora of studies demonstrated that neurotoxic effects of Mn overexposure may interfere with key mechanisms of pathogenesis inherent to these neurodevelopmental disorders. Specifically, Mn overload was shown to impair not only dopaminergic neurotransmission, but also affect metabolism of glutamine/glutamate, GABA, serotonin, noradrenaline, thus affecting neuronal signaling. In turn, neurotoxic effects of Mn may be associated with its ability to induce oxidative stress, apoptosis, and neuroinflammation, and/or impair neurogenesis. Nonetheless, additional detailed studies are required to evaluate the association between environmental Mn exposure and/or Mn body burden and neurodevelopmental disorders at a wide range of concentrations to estimate the potential dose-dependent effects, as well as environmental and genetic factors affecting this association.
Collapse
Affiliation(s)
- Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | | | - Anatoly V. Skalny
- Department of Medical Elementology, and Department of Human Ecology and Bioelementology, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russia
| | - Irina P. Zaitseva
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl 150003, Russia
| | - Aaron B. Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, USA
| | - Anatoly A. Kirichuk
- Department of Medical Elementology, and Department of Human Ecology and Bioelementology, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - Abel Santamaria
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Laboratorio de Nanotecnología y Nanomedicina, Departamento de Cuidado de la Salud, Universidad Autónoma Metropolitana-Xochimilco, Mexico City 04960, Mexico
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC 20059, USA
| | - Alexey A. Tinkov
- Department of Medical Elementology, and Department of Human Ecology and Bioelementology, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russia
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl 150003, Russia
| |
Collapse
|
7
|
Khemka S, Sehar U, Manna PR, Kshirsagar S, Reddy PH. Cell-Free DNA As Peripheral Biomarker of Alzheimer's Disease. Aging Dis 2024; 16:787-803. [PMID: 38607732 PMCID: PMC11964419 DOI: 10.14336/ad.2024.0329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Alzheimer's disease (AD) and Alzheimer's disease-related disorders (ADRD) are progressive neurodegenerative diseases without cure. Alzheimer's disease occurs in 2 forms, early-onset familial AD and late-onset sporadic AD. Early-onset AD is a rare (~1%), autosomal dominant, caused by mutations in presenilin-1, presenilin-2, and amyloid precursor protein genes and the other is a late-onset, prevalent and is evolved due to age-associated complex interactions between environmental and genetic factors, in addition to apolipoprotein E4 polymorphism. Cellular senescence, promoting the impairment of physical and mental functions is constituted to be the main cause of aging, the primary risk factor for AD, which results in progressive loss of cognitive function, memory, and visual-spatial skills for an individual to live or act independently. Despite significant progress in the understanding of the biology and pathophysiology of AD, we continue to lack definitive early detectable biomarkers and/or drug targets that can be used to delay the development of AD and ADRD in elderly populations. However, recent developments in the studies of DNA double-strand breaks result in the release of fragmented DNA into the bloodstream and contribute to higher levels of cell-free DNA (cf-DNA). This fragmented cf-DNA can be released into the bloodstream from various cell types, including normal cells and cells undergoing apoptosis or necrosis and elevated levels of cf-DNA in the blood have the potential to serve as blood blood-based biomarker for early detection of AD and ADRD. The overall goal of our study is to discuss the latest developments in circulating cell-free DNA into the blood in the progression of AD and ADRD. Our article summarized the status of research on double-strand breaks and circulating cell-free DNA in both healthy and disease states and how these recent developments can be used to develop early detectable biomarkers for AD and ADRD. Our article also discussed the impact of lifestyle and epigenetic factors that are involved in DNA double-strand breaks and circulating cell-free DNA in AD and ADRD.
Collapse
Affiliation(s)
- Sachi Khemka
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Pulak R Manna
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Sudhir Kshirsagar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - P. Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
- Public Health Department, School of Population and Public Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
- Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA.
| |
Collapse
|
8
|
Choi W, Cho JH, Park SH, Kim DS, Lee HP, Kim D, Kim HS, Kim JH, Cho JY. Ginseng root-derived exosome-like nanoparticles protect skin from UV irradiation and oxidative stress by suppressing activator protein-1 signaling and limiting the generation of reactive oxygen species. J Ginseng Res 2024; 48:211-219. [PMID: 38465216 PMCID: PMC10920011 DOI: 10.1016/j.jgr.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 12/05/2023] [Accepted: 01/10/2024] [Indexed: 03/12/2024] Open
Abstract
Background Recently, plant-derived exosome-like nanoparticles (PDENs) have been isolated, and active research was focusing on understanding their properties and functions. In this study, the characteristics and molecular properties of ginseng root-derived exosome-like nanoparticles (GrDENs) were examined in terms of skin protection. Methods HPLC-MS protocols were used to analyze the ginsenoside contents in GrDENs. To investigate the beneficial effect of GrDENs on skin, HaCaT cells were pre-treated with GrDENs (0-2 × 109 particles/mL), and followed by UVB irradiation or H2O2 exposure. In addition, the antioxidant activity of GrDENs was measured using a fluorescence microscope or flow cytometry. Finally, molecular mechanisms were examined with immunoblotting analysis. Results GrDENs contained detectable levels of ginsenosides (Re, Rg1, Rb1, Rf, Rg2 (S), Gyp17, Rd, C-Mc1, C-O, and F2). In UVB-irradiated HaCaT cells, GrDENs protected cells from death and reduced ROS production. GrDENs downregulated the mRNA expression of proapoptotic genes, including BAX, caspase-1, -3, -6, -7, and -8 and the ratio of cleaved caspase-8, -9, and -3 in a dose-dependent manner. In addition, GrDENs reduced the mRNA levels of aging-related genes (MMP2 and 3), proinflammatory genes (COX-2 and IL-6), and cellular senescence biomarker p21, possibly by suppressing activator protein-1 signaling. Conclusions This study demonstrates the protective effects of GrDENs against skin damage caused by UV and oxidative stress, providing new insights into beneficial uses of ginseng. In particular, our results suggest GrDENs as a potential active ingredient in cosmeceuticals to promote skin health.
Collapse
Affiliation(s)
- Wooram Choi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jeong Hun Cho
- Research and Innovation Center, AMOREPACIFIC, Yongin, Republic of Korea
| | - Sang Hee Park
- Department of Biocosmetics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Dong Seon Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hwa Pyoung Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Donghyun Kim
- Research and Innovation Center, AMOREPACIFIC, Yongin, Republic of Korea
| | - Hyun Soo Kim
- Research and Innovation Center, AMOREPACIFIC, Yongin, Republic of Korea
| | - Ji Hye Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
9
|
Azar Bahadori R, Shabani D, Arjmandrad E, Kazerani M, Rohani M, Ramazani Karim Z, Ali-Kheyl M, Nosratabadi R, Pourghadamyari H, Zaemi MA. Circulating miRNA-106b-5p As a Potential Biomarker for Coronary Artery Disease. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2024; 13:325-336. [PMID: 39493512 PMCID: PMC11530952 DOI: 10.22088/ijmcm.bums.13.3.325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/07/2024] [Indexed: 11/05/2024]
Abstract
Coronary artery diseases (CAD) represent a significant global health concern and are recognized as a primary contributor to mortality on a worldwide scale. Early diagnosis of CAD is one of promising goal to manage this disorder. Recent investigations have highlighted the pivotal involvement of microRNAs (miRNAs) in diverse health conditions, notably CAD. The principal objective of this investigation was to identify appropriate miRNAs that could be employed for the early detection of CAD. In the present study, we analyzed dataset of CAD (GSE113079) and 100 differentially expressed mRNAs (DEmRNAs) were detected. The miRNAs that have a significant interaction with DEmRNAs were chosen. By computational prediction method, 5 miRNAs (miR-106b-5p, miR-20a-3p, miR-17-3p, miR-146a-5p, and miR-155-3p) were selected. Finally, we assessed the anticipated expression levels of microRNAs in CAD patients and healthy control groups. Our findings revealed a statistically significant elevation solely in the expression level of miR-106b-5p within the CAD group when compared to the control group (p>0.001). Our study demonstrated an elevation in the expression of miR-106b-5p in individuals diagnosed with CAD. This microRNA may be used as a diagnostic biomarker in patients with CAD. However, further investigations are needed to confirm these results.
Collapse
Affiliation(s)
- Rosita Azar Bahadori
- Department of Molecular Genetics, Parand Branch, Islamic Azad University, Tehran, Iran.
| | - Dina Shabani
- Cellular and Molecular Biology, Department of Biology. Science Faculty, Science and Art University, Yazd, Iran.
| | - Elham Arjmandrad
- Department of Molecular and Cellular Sciences, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mahsa Kazerani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Mina Rohani
- Department of Clinical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Zohreh Ramazani Karim
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Masoud Ali-Kheyl
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Reza Nosratabadi
- Department of Medical Immunology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Hossein Pourghadamyari
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Ali Zaemi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Goggins E, Mironchik Y, Kakkad S, Jacob D, Wildes F, Bhujwalla ZM, Krishnamachary B. Reprogramming of VEGF-mediated extracellular matrix changes through autocrine signaling. Cancer Biol Ther 2023; 24:2184145. [PMID: 37389973 PMCID: PMC10012930 DOI: 10.1080/15384047.2023.2184145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 03/11/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) plays key roles in angiogenesis, vasculogenesis, and wound healing. In cancers, including triple negative breast cancer (TNBC), VEGF has been associated with increased invasion and metastasis, processes that require cancer cells to traverse through the extracellular matrix (ECM) and establish angiogenesis at distant sites. To further understand the role of VEGF in modifying the ECM, we characterized VEGF-mediated changes in the ECM of tumors derived from TNBC MDA-MB-231 cells engineered to overexpress VEGF. We established that increased VEGF expression by these cells resulted in tumors with reduced collagen 1 (Col1) fibers, fibronectin, and hyaluronan. Molecular characterization of tumors identified an increase of MMP1, uPAR, and LOX, and a decrease of MMP2, and ADAMTS1. α-SMA, a marker of cancer associated fibroblasts (CAFs), increased, and FAP-α, a marker of a subset of CAFs associated with immune suppression, decreased with VEGF overexpression. Analysis of human data from The Cancer Genome Atlas Program confirmed mRNA differences for several molecules when comparing TNBC with high and low VEGF expression. We additionally characterized enzymatic changes induced by VEGF overexpression in three different cancer cell lines that clearly identified autocrine-mediated changes, specifically uPAR, in these enzymes. Unlike the increase of Col1 fibers and fibronectin mediated by VEGF during wound healing, in the TNBC model, VEGF significantly reduced key protein components of the ECM. These results further expand our understanding of the role of VEGF in cancer progression and identify potential ECM-related targets to disrupt this progression.
Collapse
Affiliation(s)
- Eibhlin Goggins
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yelena Mironchik
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Samata Kakkad
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Desmond Jacob
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Flonne Wildes
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zaver M. Bhujwalla
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Balaji Krishnamachary
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
11
|
DeDreu J, Basta MD, Walker JL, Menko AS. Immune Responses Induced at One Hour Post Cataract Surgery Wounding of the Chick Lens. Biomolecules 2023; 13:1615. [PMID: 38002297 PMCID: PMC10668984 DOI: 10.3390/biom13111615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
While the lens is an avascular tissue with an immune-privileged status, studies have now revealed that there are immune responses specifically linked to the lens. The response to lens injury, such as following cataract surgery, has been shown to involve the activation of the resident immune cell population of the lens and the induction of immunomodulatory factors by the wounded epithelium. However, there has been limited investigation into the immediate response of the lens to wounding, particularly those induced factors that are intrinsic to the lens and its associated resident immune cells. Using an established chick embryo ex vivo cataract surgery model has made it possible to determine the early immune responses of this tissue to injury, including its resident immune cells, through a transcriptome analysis. RNA-seq studies were performed to determine the gene expression profile at 1 h post wounding compared to time 0. The results provided evidence that, as occurs in other tissues, the resident immune cells of the lens rapidly acquired a molecular signature consistent with their activation. These studies also identified the expression of many inflammatory factors by the injured lens that are associated with both the induction and regulation of the immune response.
Collapse
Affiliation(s)
- JodiRae DeDreu
- Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA (M.D.B.); (J.L.W.)
| | - Morgan D. Basta
- Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA (M.D.B.); (J.L.W.)
| | - Janice L. Walker
- Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA (M.D.B.); (J.L.W.)
- Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - A. Sue Menko
- Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA (M.D.B.); (J.L.W.)
- Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
12
|
Wu L, Yin W, Wen J, Wang S, Li H, Wang X, Zhang W, Duan S, Zhu Q, Gao E, Wu S, Zhan B, Zhou R, Yang X. Excretory/secretory products from Trichinella spiralis adult worms ameliorate myocardial infarction by inducing M2 macrophage polarization in a mouse model. Parasit Vectors 2023; 16:362. [PMID: 37845695 PMCID: PMC10577921 DOI: 10.1186/s13071-023-05930-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/14/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Ischemia-induced inflammatory response is the main pathological mechanism of myocardial infarction (MI)-caused heart tissue injury. It has been known that helminths and worm-derived proteins are capable of modulating host immune response to suppress excessive inflammation as a survival strategy. Excretory/secretory products from Trichinella spiralis adult worms (Ts-AES) have been shown to ameliorate inflammation-related diseases. In this study, Ts-AES were used to treat mice with MI to determine its therapeutic effect on reducing MI-induced heart inflammation and the immunological mechanism involved in the treatment. METHODS The MI model was established by the ligation of the left anterior descending coronary artery, followed by the treatment of Ts-AES by intraperitoneal injection. The therapeutic effect of Ts-AES on MI was evaluated by measuring the heart/body weight ratio, cardiac systolic and diastolic functions, histopathological change in affected heart tissue and observing the 28-day survival rate. The effect of Ts-AES on mouse macrophage polarization was determined by stimulating mouse bone marrow macrophages in vitro with Ts-AES, and the macrophage phenotype was determined by flow cytometry. The protective effect of Ts-AES-regulated macrophage polarization on hypoxic cardiomyocytes was determined by in vitro co-culturing Ts-AES-induced mouse bone marrow macrophages with hypoxic cardiomyocytes and cardiomyocyte apoptosis determined by flow cytometry. RESULTS We observed that treatment with Ts-AES significantly improved cardiac function and ventricular remodeling, reduced pathological damage and mortality in mice with MI, associated with decreased pro-inflammatory cytokine levels, increased regulatory cytokine expression and promoted macrophage polarization from M1 to M2 type in MI mice. Ts-AES-induced M2 macrophage polarization also reduced apoptosis of hypoxic cardiomyocytes in vitro. CONCLUSIONS Our results demonstrate that Ts-AES ameliorates MI in mice by promoting the polarization of macrophages toward the M2 type. Ts-AES is a potential pharmaceutical agent for the treatment of MI and other inflammation-related diseases.
Collapse
Affiliation(s)
- Lingqin Wu
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
- First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
- Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China
| | - Wenhui Yin
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
- First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
| | - Jutai Wen
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Shuying Wang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
- First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
| | - Huihui Li
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
- Basic Medical College of Bengbu Medical College, Bengbu, 233000, China
| | - Xiaoli Wang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
- Basic Medical College of Bengbu Medical College, Bengbu, 233000, China
| | - Weixiao Zhang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
- First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
| | - Shuyao Duan
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Qiuyu Zhu
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Erhe Gao
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Shili Wu
- First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
| | - Bin Zhan
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Rui Zhou
- First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China.
| | - Xiaodi Yang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China.
- Basic Medical College of Bengbu Medical College, Bengbu, 233000, China.
| |
Collapse
|
13
|
Lanzer JD, Valdeolivas A, Pepin M, Hund H, Backs J, Frey N, Friederich HC, Schultz JH, Saez-Rodriguez J, Levinson RT. A network medicine approach to study comorbidities in heart failure with preserved ejection fraction. BMC Med 2023; 21:267. [PMID: 37488529 PMCID: PMC10367269 DOI: 10.1186/s12916-023-02922-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 06/05/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Comorbidities are expected to impact the pathophysiology of heart failure (HF) with preserved ejection fraction (HFpEF). However, comorbidity profiles are usually reduced to a few comorbid disorders. Systems medicine approaches can model phenome-wide comorbidity profiles to improve our understanding of HFpEF and infer associated genetic profiles. METHODS We retrospectively explored 569 comorbidities in 29,047 HF patients, including 8062 HFpEF and 6585 HF with reduced ejection fraction (HFrEF) patients from a German university hospital. We assessed differences in comorbidity profiles between HF subtypes via multiple correspondence analysis. Then, we used machine learning classifiers to identify distinctive comorbidity profiles of HFpEF and HFrEF patients. Moreover, we built a comorbidity network (HFnet) to identify the main disease clusters that summarized the phenome-wide comorbidity. Lastly, we predicted novel gene candidates for HFpEF by linking the HFnet to a multilayer gene network, integrating multiple databases. To corroborate HFpEF candidate genes, we collected transcriptomic data in a murine HFpEF model. We compared predicted genes with the murine disease signature as well as with the literature. RESULTS We found a high degree of variance between the comorbidity profiles of HFpEF and HFrEF, while each was more similar to HFmrEF. The comorbidities present in HFpEF patients were more diverse than those in HFrEF and included neoplastic, osteologic and rheumatoid disorders. Disease communities in the HFnet captured important comorbidity concepts of HF patients which could be assigned to HF subtypes, age groups, and sex. Based on the HFpEF comorbidity profile, we predicted and recovered gene candidates, including genes involved in fibrosis (COL3A1, LOX, SMAD9, PTHL), hypertrophy (GATA5, MYH7), oxidative stress (NOS1, GSST1, XDH), and endoplasmic reticulum stress (ATF6). Finally, predicted genes were significantly overrepresented in the murine transcriptomic disease signature providing additional plausibility for their relevance. CONCLUSIONS We applied systems medicine concepts to analyze comorbidity profiles in a HF patient cohort. We were able to identify disease clusters that helped to characterize HF patients. We derived a distinct comorbidity profile for HFpEF, which was leveraged to suggest novel candidate genes via network propagation. The identification of distinctive comorbidity profiles and candidate genes from routine clinical data provides insights that may be leveraged to improve diagnosis and identify treatment targets for HFpEF patients.
Collapse
Affiliation(s)
- Jan D Lanzer
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Bioquant, Heidelberg, Germany.
- Department of General Internal Medicine and Psychosomatics, Heidelberg University Hospital, Heidelberg, Germany.
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.
- Informatics for Life, Heidelberg, Germany.
| | - Alberto Valdeolivas
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Mark Pepin
- Institute of Experimental Cardiology, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| | - Hauke Hund
- Department of Cardiology, Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany
| | - Johannes Backs
- Institute of Experimental Cardiology, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| | - Norbert Frey
- Department of Cardiology, Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany
| | - Hans-Christoph Friederich
- Department of General Internal Medicine and Psychosomatics, Heidelberg University Hospital, Heidelberg, Germany
- Informatics for Life, Heidelberg, Germany
| | - Jobst-Hendrik Schultz
- Department of General Internal Medicine and Psychosomatics, Heidelberg University Hospital, Heidelberg, Germany
- Informatics for Life, Heidelberg, Germany
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Bioquant, Heidelberg, Germany
- Informatics for Life, Heidelberg, Germany
| | - Rebecca T Levinson
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Bioquant, Heidelberg, Germany.
- Department of General Internal Medicine and Psychosomatics, Heidelberg University Hospital, Heidelberg, Germany.
- Informatics for Life, Heidelberg, Germany.
| |
Collapse
|
14
|
Nunes JM, Kell DB, Pretorius E. Cardiovascular and haematological pathology in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): A role for viruses. Blood Rev 2023; 60:101075. [PMID: 36963989 PMCID: PMC10027292 DOI: 10.1016/j.blre.2023.101075] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
ME/CFS is a debilitating chronic condition that often develops after viral or bacterial infection. Insight from the study of Long COVID/Post Acute Sequelae of COVID-19 (PASC), the post-viral syndrome associated with SARS-CoV-2 infection, might prove to be useful for understanding pathophysiological mechanisms of ME/CFS. Disease presentation is similar between the two conditions, and a subset of Long COVID patients meet the diagnostic criteria for ME/CFS. Since Long COVID is characterized by significant vascular pathology - including endothelial dysfunction, coagulopathy, and vascular dysregulation - the question of whether or not the same biological abnormalities are of significance in ME/CFS arises. Cardiac abnormalities have for a while now been documented in ME/CFS cohorts, with recent studies demonstrating major deficits in cerebral blood flow, and hence vascular dysregulation. A growing body of research is demonstrating that ME/CFS is accompanied by platelet hyperactivation, anomalous clotting, a procoagulant phenotype, and endothelial dysfunction. Endothelial damage and dysregulated clotting can impair substance exchange between blood and tissues, and result in hypoperfusion, which may contribute to the manifestation of certain ME/CFS symptoms. Here we review the ME/CFS literature to summarize cardiovascular and haematological findings documented in patients with the condition, and, in this context, briefly discuss the potential role of previously-implicated pathogens. Overall, cardiac and haematological abnormalities are present within ME/CFS cohorts. While atherosclerotic heart disease is not significantly associated with ME/CFS, suboptimal cardiovascular function defined by reduced cardiac output, impaired cerebral blood flow, and vascular dysregulation are, and these abnormalities do not appear to be influenced by deconditioning. Rather, these cardiac abnormalities may result from dysfunction in the (autonomic) nervous system. Plenty of recently published studies are demonstrating significant platelet hyperactivity and endothelial dysfunction in ME/CFS, as well as anomalous clotting processes. It is of particular importance to determine to what extent these cardiovascular and haematological abnormalities contribute to symptom severity, and if these two systems can be targeted for therapeutic purposes. Viral reservoirs of herpesviruses exist in ME/CFS, and most likely contribute to cardiovascular and haematological dysfunction directly or indirectly. This review highlights the potential of studying cardiac functioning, the vasculature, and coagulation system in ME/CFS.
Collapse
Affiliation(s)
- Jean M Nunes
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1, Matieland 7602, South Africa.
| | - Douglas B Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1, Matieland 7602, South Africa; Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK; The Novo Nordisk Foundation Centre for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1, Matieland 7602, South Africa; Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK.
| |
Collapse
|
15
|
Utispan K, Koontongkaew S, Niyomtham N, Yingyongnarongkul BE. Ethanolic extract of Ocimum sanctum leaf modulates oxidative stress, cell cycle and apoptosis in head and neck cancer cell lines. Heliyon 2023; 9:e15518. [PMID: 37128326 PMCID: PMC10148043 DOI: 10.1016/j.heliyon.2023.e15518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023] Open
Abstract
Ocimum sanctum Linn. is a medicinal herb that has cytotoxic effects by inducing oxidative stress in some carcinomas. This study aimed to examine the impact of O. sanctum leaf extract on oxidative stress, cell cycle progression, and apoptosis in cell lines of head and neck squamous cell carcinoma (HNSCC). Isogenic primary (HN18/HN30) and metastatic (HN17/HN31) HNSCC cell lines were used. Preparation of the ethanolic extract of O. sanctum leaf (EEOS) was carried out. HNSCC cell lines were exposed to varying concentrations (0.1-0.8 mg/ml) of EEOS for a duration of 72 h, and the MTT assay was utilized to determine the cytotoxic doses. To assess the impact of EEOS on HNSCC cells, the levels of reactive oxygen species (ROS) and malondialdehyde were measured using a fluorometric method. Flow cytometry was utilized to evaluate effects of EEOS on the cell cycle, DNA damage, and apoptosis in HNSCC cells. Caspase-3 and -9 levels in the EEOS-treated HNSCC cells were measured by ELISA. The chemical components in EEOS were detected using high-performance liquid chromatography-electrospray ionization-time of flight-mass spectrometry. EEOS exhibited cytotoxicity against the HN18, HN17, HN30 and HN31 cells at minimum concentrations of 0.1, 0.3, 0.2 and 0.2 mg/ml, respectively. Treatment with EEOS resulted in a significant increase in ROS levels in HN18 and HN17 cells. Additionally, EEOS significantly induced the levels of malondialdehyde in HN18 and HN31 cells. Moreover, EEOS arrested the cell cycle in HN30 and HN31 cells, and significantly induced DNA damage and apoptosis in the HN18, HN30, and HN31 cells. EEOS selectively increased caspase-9 in the HN18 cells. However, caspase-3 was activated without apoptosis in the EEOS-treated HN17 cells. The constituents of EEOS were identified as rosmarinic acid, caffeic acid, and apigenin. In conclusion, EEOS exhibits various prooxidative and apoptotic effects between HNSCC cells.
Collapse
Affiliation(s)
- Kusumawadee Utispan
- Faculty of Dentistry, Thammasat University, Pathum Thani, 12120, Thailand
- Corresponding author.
| | - Sittichai Koontongkaew
- Walailak University International College of Dentistry, Walailak University, Bangkok, 10300, Thailand
| | - Nattisa Niyomtham
- Walailak University International College of Dentistry, Walailak University, Bangkok, 10300, Thailand
| | - Boon-ek Yingyongnarongkul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| |
Collapse
|
16
|
Ueberham L, Hagendorff A, Klingel K, Paetsch I, Jahnke C, Kluge T, Ebbinghaus H, Hindricks G, Laufs U, Dinov B. Pathophysiological Gaps, Diagnostic Challenges, and Uncertainties in Cardiac Sarcoidosis. J Am Heart Assoc 2023; 12:e027971. [PMID: 36892055 PMCID: PMC10111513 DOI: 10.1161/jaha.122.027971] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Cardiac sarcoidosis can mimic any cardiomyopathy in different stages. Noncaseating granulomatous inflammation can be missed, because of the nonhomogeneous distribution in the heart. The current diagnostic criteria show discrepancies and are partly nonspecific and insensitive. Besides the diagnostic pitfalls, there are controversies in the understanding of the causes, genetic and environmental background, and the natural evolution of the disease. Here, we review the current pathophysiological aspects and gaps that are relevant for future cardiac sarcoidosis diagnostics and research.
Collapse
Affiliation(s)
- Laura Ueberham
- Klinik und Poliklinik für Kardiologie Universitätsklinikum Leipzig Leipzig Germany
| | - Andreas Hagendorff
- Klinik und Poliklinik für Kardiologie Universitätsklinikum Leipzig Leipzig Germany
| | - Karin Klingel
- Cardiopathology Institute for Pathology, Eberhard Karls Universität Tübingen Tübingen Germany
| | - Ingo Paetsch
- Department of Electrophysiology Heart Center Leipzig at University of Leipzig Leipzig Germany
| | - Cosima Jahnke
- Department of Electrophysiology Heart Center Leipzig at University of Leipzig Leipzig Germany
| | - Theresa Kluge
- Klinik und Poliklinik für Nuklearmedizin Universitätsklinikum Leipzig Leipzig Germany
| | - Hans Ebbinghaus
- Department of Electrophysiology Heart Center Leipzig at University of Leipzig Leipzig Germany
| | - Gerhard Hindricks
- Department of Electrophysiology Heart Center Leipzig at University of Leipzig Leipzig Germany
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie Universitätsklinikum Leipzig Leipzig Germany
| | - Borislav Dinov
- Department of Electrophysiology Heart Center Leipzig at University of Leipzig Leipzig Germany
| |
Collapse
|
17
|
Cassau S, Degen A, Krüger S, Krieger J. The specific expression patterns of sensory neuron membrane proteins are retained throughout the development of the desert locust Schistocerca gregaria. CURRENT RESEARCH IN INSECT SCIENCE 2023; 3:100053. [PMID: 36874554 PMCID: PMC9974456 DOI: 10.1016/j.cris.2023.100053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
The desert locust Schistocerca gregaria detects odorants through olfactory sensory neurons (OSNs) that are surrounded by non-neuronal support cells (SCs). OSNs and SCs are housed in cuticle structures, named sensilla found abundantly on the antenna in all developmental stages of the hemimetabolic insect. In insects, multiple proteins expressed by OSNs and SCs are indicated to play a pivotal role in the detection of odorants. This includes insect-specific members of the CD36 family of lipid receptors and transporters called sensory neuron membrane proteins (SNMPs). While the distribution pattern of the SNMP1 and SNMP2 subtypes in OSNs and SCs across different sensilla types has been elucidated for the adult S. gregaria antenna, their localization in cells and sensilla of different developmental stages is unclear. Here, we determined the SNMP1 and SNMP2 expression topography on the antenna of the first, third and fifth instar nymphs. Through FIHC experiments we found that in all developmental stages SNMP1 is expressed in OSNs and SCs of the trichoid and basiconic sensilla while SNMP2 is restricted to the SCs of the basiconic and coeloconic sensilla thus resembling the adult arrangement. Our results demonstrate that both SNMP types have defined cell- and sensilla-specific distribution patterns established already in the first instar nymphs and retained into the adult stage. This conserved expression topography underlines the importance of SNMP1 and SNMP2 in olfactory processes throughout the development of the desert locust.
Collapse
Affiliation(s)
- Sina Cassau
- Martin Luther University Halle-Wittenberg, Institute of Biology/Zoology, Department of Animal Physiology, 06120 Halle (Saale), Germany
| | - Angelina Degen
- Martin Luther University Halle-Wittenberg, Institute of Biology/Zoology, Department of Animal Physiology, 06120 Halle (Saale), Germany
| | - Stephanie Krüger
- Martin Luther University Halle-Wittenberg, Institute of Biology/Zoology, Department of Developmental Biology, 06120 Halle (Saale), Germany
- Martin Luther University Halle-Wittenberg, Biocenter, Microscopy Unit, 06120 Halle (Saale), Germany
| | - Jürgen Krieger
- Martin Luther University Halle-Wittenberg, Institute of Biology/Zoology, Department of Animal Physiology, 06120 Halle (Saale), Germany
| |
Collapse
|
18
|
The Application of Single-Cell RNA Sequencing in the Inflammatory Tumor Microenvironment. Biomolecules 2023; 13:biom13020344. [PMID: 36830713 PMCID: PMC9953711 DOI: 10.3390/biom13020344] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
The initiation and progression of tumors are complex. The cancer evolution-development hypothesis holds that the dysregulation of immune balance is caused by the synergistic effect of immune genetic factors and environmental factors that stimulate and maintain non-resolving inflammation. Throughout the cancer development process, this inflammation creates a microenvironment for the evolution and development of cancer. Research on the inflammatory tumor microenvironment (TME) explains the initiation and progression of cancer and guides anti-cancer immunotherapy. Single-cell RNA sequencing (scRNA-seq) can detect the transcription levels of cells at the single-cell resolution level, reveal the heterogeneity and evolutionary trajectory of infiltrated immune cells and cancer cells, and provide insight into the composition and function of each cell group in the inflammatory TME. This paper summarizes the application of scRNA-seq in inflammatory TME.
Collapse
|
19
|
Hedvičáková V, Žižková R, Buzgo M, Vištejnová L, Klein P, Hovořáková M, Bartoš M, Steklíková K, Luňáčková J, Šebová E, Paurová I, Rysová M, Filová E, Rampichová M. The Gradual Release of Alendronate for the Treatment of Critical Bone Defects in Osteoporotic and Control Rats. Int J Nanomedicine 2023; 18:541-560. [PMID: 36756052 PMCID: PMC9901358 DOI: 10.2147/ijn.s386784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/23/2022] [Indexed: 02/04/2023] Open
Abstract
Purpose Osteoporosis is a severe health problem with social and economic impacts on society. The standard treatment consists of the systemic administration of drugs such as bisphosphonates, with alendronate (ALN) being one of the most common. Nevertheless, complications of systemic administration occur with this drug. Therefore, it is necessary to develop new strategies, such as local administration. Methods In this study, emulsion/dispersion scaffolds based on W/O emulsion of PCL and PF68 with ALN, containing hydroxyapatite (HA) nanoparticles as the dispersion phase were prepared using electrospinning. Scaffolds with different release kinetics were tested in vitro on the co-cultures of osteoblasts and osteoclast-like cells, isolated from adult osteoporotic and control rats. Cell viability, proliferation, ALP, TRAP and CA II activity were examined. A scaffold with a gradual release of ALN was tested in vivo in the bone defects of osteoporotic and control rats. Results The release kinetics were dependent on the scaffold composition and the used system of the poloxamers. The ALN was released from the scaffolds for more than 22 days. The behavior of cells cultured in vitro on scaffolds with different release kinetics was comparable. The difference was evident between cell co-cultures isolated from osteoporotic and control animals. The PCL/HA scaffold show slow degradation in vivo and residual scaffold limited new bone formation inside the defects. Nevertheless, the released ALN supported bone formation in the areas surrounding the residual scaffold. Interestingly, a positive effect of systemic administration of ALN was not proved. Conclusion The prepared scaffolds enabled tunable control release of ALN. The effect of ALN was proved in vitro and in in vivo study supported peri-implant bone formation.
Collapse
Affiliation(s)
- Věra Hedvičáková
- Department of Tissue Engineering, Institute of Experimental Medicine, the Czech Academy of Sciences, Prague, Czech Republic
| | - Radmila Žižková
- Department of Tissue Engineering, Institute of Experimental Medicine, the Czech Academy of Sciences, Prague, Czech Republic,Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Liberec, Czech Republic
| | - Matěj Buzgo
- Department of Tissue Engineering, Institute of Experimental Medicine, the Czech Academy of Sciences, Prague, Czech Republic,BIOFABICS Lda, Porto, Portugal
| | - Lucie Vištejnová
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Pavel Klein
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic,Department of Pathological Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Maria Hovořáková
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martin Bartoš
- Institute of Dental Medicine, First Faculty of Medicine and General University Hospital, Prague, Czech Republic,Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Klára Steklíková
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jitka Luňáčková
- Institute of Dental Medicine, First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Eva Šebová
- Department of Tissue Engineering, Institute of Experimental Medicine, the Czech Academy of Sciences, Prague, Czech Republic
| | - Iveta Paurová
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Miroslava Rysová
- Department of Applied Biology, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Liberec, Czech Republic
| | - Eva Filová
- Department of Tissue Engineering, Institute of Experimental Medicine, the Czech Academy of Sciences, Prague, Czech Republic
| | - Michala Rampichová
- Department of Tissue Engineering, Institute of Experimental Medicine, the Czech Academy of Sciences, Prague, Czech Republic,Correspondence: Michala Rampichová, Department of Tissue engineering, Institute of Experimental Medicine, the Czech Academy of Sciences, Videnska 1083, Prague, 14220, Czech Republic, Tel +420 241 062 692, Email
| |
Collapse
|
20
|
Farhangnia P, Akbarpour M, Yazdanifar M, Aref AR, Delbandi AA, Rezaei N. Advances in therapeutic targeting of immune checkpoints receptors within the CD96-TIGIT axis: clinical implications and future perspectives. Expert Rev Clin Immunol 2022; 18:1217-1237. [PMID: 36154551 DOI: 10.1080/1744666x.2022.2128107] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION The development of therapeutic antibodies targeting immune checkpoint molecules (ICMs) that induce long-term remissions in cancer patients has revolutionized cancer immunotherapy. However, a major drawback is that relapse after an initial response may be attributed to innate and acquired resistance. Additionally, these treatments are not beneficial to all patients. Therefore, the discovery and targeting of novel ICMs and their combination with other immunotherapeutics are urgently needed. AREAS COVERED There has been increasing evidence of the CD96-TIGIT axis as ICMs in cancer immunotherapy in the last five years. This review will highlight and discuss the current knowledge about the role of CD96 and TIGIT in hematological and solid tumor immunotherapy in the context of empirical studies and clinical trials, and provide a comprehensive list of ongoing cancer clinical trials on the blockade of these ICMs, as well as the rationale behind combinational therapies with anti-PD-1/PD-L1 agents, chemotherapy drugs, and radiotherapy. Moreover, we share our perspectives on anti-CD96/TIGIT-related combination therapies. EXPERT OPINION CD96-TIGIT axis regulates anti-tumor immune responses. Thus, the receptors within this axis are the potential candidates for cancer immunotherapy. Combining the inhibition of CD96-TIGIT with anti-PD-1/PD-L1 mAbs and chemotherapy drugs has shown relatively effective results in the context of preclinical studies and tumor models.
Collapse
Affiliation(s)
- Pooya Farhangnia
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahzad Akbarpour
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Advanced Cellular Therapeutics Facility (ACTF), Hematopoietic Cellular Therapy Program, Section of Hematology & Oncology, Department of Medicine, University of Chicago Medical Center, Chicago, IL, USA
| | - Mahboubeh Yazdanifar
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ali-Akbar Delbandi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Catalogna M, Sasson E, Hadanny A, Parag Y, Zilberman-Itskovich S, Efrati S. Effects of hyperbaric oxygen therapy on functional and structural connectivity in post-COVID-19 condition patients: A randomized, sham-controlled trial. Neuroimage Clin 2022; 36:103218. [PMID: 36208548 PMCID: PMC9528018 DOI: 10.1016/j.nicl.2022.103218] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 11/11/2022]
Abstract
INTRODUCTION Post-COVID-19 condition refers to a range of persisting physical, neurocognitive, and neuropsychological symptoms after SARS-CoV-2 infection. Abnormalities in brain connectivity were found in recovered patients compared to non-infected controls. This study aims to evaluate the effect of hyperbaric oxygen therapy (HBOT) on brain connectivity in post-COVID-19 patients. METHODS In this randomized, sham-controlled, double-blind trial, 73 patients were randomized to receive 40 daily sessions of HBOT (n = 37) or sham treatment (n = 36). We examined pre- and post-treatment resting-state brain functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) scans to evaluate functional and structural connectivity changes, which were correlated to cognitive and psychological distress measures. RESULTS The ROI-to-ROI analysis revealed decreased internetwork connectivity in the HBOT group which was negatively correlated to improvements in attention and executive function scores (p < 0.001). Significant group-by-time interactions were demonstrated in the right hippocampal resting state function connectivity (rsFC) in the medial prefrontal cortex (PFWE = 0.002). Seed-to-voxel analysis also revealed a negative correlation in the brief symptom inventory (BSI-18) score and in the rsFC between the amygdala seed, the angular gyrus, and the primary sensory motor area (PFWE = 0.012, 0.002). Positive correlations were found between the BSI-18 score and the left insular cortex seed and FPN (angular gyrus) (PFWE < 0.0001). Tractography based structural connectivity analysis showed a significant group-by-time interaction in the fractional anisotropy (FA) of left amygdala tracts (F = 7.81, P = 0.007). The efficacy measure had significant group-by-time interactions (F = 5.98, p = 0.017) in the amygdala circuit. CONCLUSIONS This study indicates that HBOT improves disruptions in white matter tracts and alters the functional connectivity organization of neural pathways attributed to cognitive and emotional recovery in post-COVID-19 patients. This study also highlights the potential of structural and functional connectivity analysis as a promising treatment response monitoring tool.
Collapse
Affiliation(s)
- Merav Catalogna
- Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel
| | - Efrat Sasson
- Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel
| | - Amir Hadanny
- Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel; Sackler School of Medicine, Tel- Aviv University, Tel-Aviv, Israel
| | - Yoav Parag
- Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel
| | - Shani Zilberman-Itskovich
- Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel; Sackler School of Medicine, Tel- Aviv University, Tel-Aviv, Israel
| | - Shai Efrati
- Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel; Sackler School of Medicine, Tel- Aviv University, Tel-Aviv, Israel; Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
22
|
Spagnolo P, Tonelli R, Samarelli AV, Castelli G, Cocconcelli E, Petrarulo S, Cerri S, Bernardinello N, Clini E, Saetta M, Balestro E. The role of immune response in the pathogenesis of idiopathic pulmonary fibrosis: far beyond the Th1/Th2 imbalance. Expert Opin Ther Targets 2022; 26:617-631. [PMID: 35983984 DOI: 10.1080/14728222.2022.2114897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION . Idiopathic pulmonary fibrosis (IPF) is a chronic disease of unknown origin characterized by progressive scarring of the lung leading to irreversible loss of function. Despite the availability of two drugs that are able to slow down disease progression, IPF remains a deadly disease. The pathogenesis of IPF is poorly understood, but a dysregulated wound healing response following recurrent alveolar epithelial injury is thought to be crucial. Areas covered. In the last few years, the role of the immune system in IPF pathobiology has been reconsidered; indeed, recent data suggest that a dysfunctional immune system may promote and unfavorable interplay with pro-fibrotic pathways thus acting as a cofactor in disease development and progression. In this article, we review and critically discuss the role of T cells in the pathogenesis and progression of IPF in the attempt to highlight ways in which further research in this area may enable the development of targeted immunomodulatory therapies for this dreadful disease. EXPERT OPINION A better understanding of T cells interactions has the potential to facilitate the development of immune modulators targeting multiple T cell-mediated pathways thus halting disease initiation and progression.
Collapse
Affiliation(s)
- Paolo Spagnolo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Roberto Tonelli
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults University Hospital of Modena and Reggio Emilia, Modena, Italy.,University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Anna Valeria Samarelli
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults University Hospital of Modena and Reggio Emilia, Modena, Italy.,University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Gioele Castelli
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Elisabetta Cocconcelli
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Simone Petrarulo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Stefania Cerri
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults University Hospital of Modena and Reggio Emilia, Modena, Italy.,University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Nicol Bernardinello
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Enrico Clini
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults University Hospital of Modena and Reggio Emilia, Modena, Italy.,University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marina Saetta
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Elisabetta Balestro
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| |
Collapse
|
23
|
Chavda VP, Apostolopoulos V. Global impact of delta plus variant and vaccination. Expert Rev Vaccines 2022; 21:597-600. [DOI: 10.1080/14760584.2022.2044800] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad, 380008, Gujarat, India
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| |
Collapse
|
24
|
Gholipour A, Malakootian M, Oveisee M. hsa-miR-508-5p as a New Potential Player in Intervertebral Disc Degeneration. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2022; 11:137-149. [PMID: 37091041 PMCID: PMC10116350 DOI: 10.22088/ijmcm.bums.11.2.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/09/2022] [Accepted: 11/28/2022] [Indexed: 04/25/2023]
Abstract
Intervertebral disc degeneration (IDD) is widely known as the principal cause of low back pain, diminishing patients' quality of life and imposing a huge economic burden on healthcare systems worldwide. However, the underlying mechanisms of IDD remain to be determined. This study aimed to scrutinize data sets via bioinformatics to identify microRNAs (miRNAs)/genes and pathways associated with IDD. The array profiling of patients with IDD and individuals without IDD was acquired from the Gene Expression Omnibus (GEO) database (viz., GSE19943, GSE63492, and GSE34095). The expression profiles of miRNAs and genes with differential patterns were analyzed using GEO2R. The target genes of the chosen miRNA were then examined, and in silico functional analyses were performed on the signaling pathways and biological processes of the differentially expressed genes. Three human miRNAs were up and downregulated in IDD patients in the examined data sets. Among them, hsa-miR-508-5p had a significant differential expression in the IDD group, and SEC11A, IPO5, FN1, and MRPS10, as the targets of hsa-miR-508-5p, were upregulated in the IDD group. Furthermore, extracellular matrix-receptor interactions, focal adhesion, and actin cytoskeleton regulation were important pathways involved in IDD. Our analysis identified hsa-miR-508-5p as a novel miRNA involved in IDD pathogenies. Our findings not only further confirmed the significant role of miRNAs in IDD pathogenesis but also extended the spectrum of the miRNAs and genes involved in IDD. Though, still, further experimental investigations are needed to confirm our findings.
Collapse
Affiliation(s)
- Akram Gholipour
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Mahshid Malakootian
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Maziar Oveisee
- School of Medicine, Bam University of Medical Sciences, Bam, Kerman, Iran.
- Clinical Research Center, Pastor Educational Hospital, Bam University of Medical Sciences, Bam, Kerman, Iran.
- Corresponding Author: Maziar Oveisee Address: School of Medicine, Bam University of Medical Sciences, Bam, Kerman, Iran. E-mail: ;
| |
Collapse
|