1
|
Xue Y, Tian T, Ottallah M, Mannan M, Barkin J, Jin-Smith B, Pi L. Alcohol-Associated Hepatocarcinogenesis: Wnt/β-Catenin in Action. THE AMERICAN JOURNAL OF PATHOLOGY 2025:S0002-9440(25)00156-7. [PMID: 40350059 DOI: 10.1016/j.ajpath.2025.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/06/2025] [Accepted: 04/14/2025] [Indexed: 05/14/2025]
Abstract
Chronic alcohol consumption is a leading global health concern, primarily due to its deleterious effects on liver function and its well-established association with hepatocellular carcinoma (HCC). Alcohol-related liver disease (ALD) encompasses a continuum-from reversible hepatic steatosis and steatohepatitis through progressive fibrosis and cirrhosis to overt HCC. Accumulating studies have revealed that the Wnt/β-catenin signaling pathway is an essential regulator in ALD pathogenesis, orchestrating diverse molecular, immunological, and epigenetic processes. Aberrant β-catenin activity disrupts redox homeostasis, promotes chronic inflammation, drives extracellular matrix (ECM) remodeling, and alters hepatocyte fate decisions, thereby creating a microenvironment that is highly conducive to carcinogenesis. Here, we provide a systemic review of the significant function of Wnt/β-catenin signaling in ALD, emphasizing its regulatory impact on liver fat accumulation, its inflammatory role in steatohepatitis, its involvement in fibrogenesis, and its tumor-promoting effects in alcohol-related HCC. In addition, we explore emerging therapeutic strategies-including direct Wnt modulators, combinatory therapeutics, and precision medicine approaches-that offer potential for early identification and tailored therapy of ALD.
Collapse
Affiliation(s)
- Yuhua Xue
- Department of Pathology, Tulane University, New Orleans, LA, USA 70112
| | - Tian Tian
- Department of Pathology, Tulane University, New Orleans, LA, USA 70112
| | - Melak Ottallah
- Department of Pathology, Tulane University, New Orleans, LA, USA 70112
| | - Mahfuza Mannan
- Department of Pathology, Tulane University, New Orleans, LA, USA 70112
| | - Joshua Barkin
- Department of Pathology, Tulane University, New Orleans, LA, USA 70112
| | - Brady Jin-Smith
- Department of Pathology, Tulane University, New Orleans, LA, USA 70112
| | - Liya Pi
- Department of Pathology, Tulane University, New Orleans, LA, USA 70112.
| |
Collapse
|
2
|
Kipp BT, Nunes PT, Savage LM. Dysregulation of neurotrophin expression in prefrontal cortex and nucleus basalis magnocellularis during and after adolescent intermittent ethanol exposure. Alcohol 2024; 120:1-14. [PMID: 38897258 PMCID: PMC11390331 DOI: 10.1016/j.alcohol.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
A preclinical model of human adolescent binge drinking, adolescent intermittent ethanol exposure (AIE) recreates the heavy binge withdrawal consummatory patterns of adolescents and has identified the loss of basal forebrain cholinergic neurons as a pathological hallmark of this model. Cholinergic neurons of the nucleus basalis magnocellularis (NbM) that innervate the prefrontal cortex (PFC) are particularly vulnerable to alcohol related neurodegeneration. Target derived neurotrophins (nerve growth factor [NGF] and brain-derived neurotrophic factor [BDNF]) regulate cholinergic phenotype expression and survival. Evidence from other disease models implicates the role of immature neurotrophin, or proneurotrophins, activity at neurotrophic receptors in promoting cholinergic degeneration; however, it has yet to be explored in adolescent binge drinking. We sought to characterize the pro- and mature neurotrophin expression, alongside their cognate receptors and cholinergic markers in an AIE model. Male and female Sprague Dawley rats underwent 5 g/kg 20% EtOH or water gavage on two-day-on, two-day-off cycles from post-natal day 25-57. Rats were sacrificed 2 h, 24 h, or 3 weeks following the last gavage, and tissue were collected for protein measurement. Western blot analyses revealed that ethanol intoxication reduced the expression of BDNF and vesicular acetylcholine transporter (vAChT) in the PFC, while NGF was lower in the NbM of AIE treated animals. During acute alcohol withdrawal, proNGF in the PFC was increased while proBDNF decreased, and in the NbM proBDNF increased while NGF decreased. During AIE abstinence, the expression of neurotrophins, their receptors, and vAChT did not differ from controls in the PFC. In contrast, in the NbM the expression of both NGF and choline acetyltransferase (ChAT) were reduced long-term following AIE. Taken together these findings suggest that AIE alters the expression of proneurotrophins and neurotrophins during intoxication and withdrawal that favor prodegenerative mechanisms by increasing the expression of proNGF and proBDNF, while also reducing NGF and BDNF.
Collapse
Affiliation(s)
- Brian T Kipp
- Department of Psychology, Binghamton University of the State University of New York, New York, USA
| | - Polliana T Nunes
- Department of Psychology, Binghamton University of the State University of New York, New York, USA
| | - Lisa M Savage
- Department of Psychology, Binghamton University of the State University of New York, New York, USA.
| |
Collapse
|
3
|
Legaki E, Dovrolis N, Moscholiou N, Koutromanos I, Vassilopoulos E, Dakanalis A, Gazouli M, Tzavellas E. Altered Expression of Neuroplasticity-Related Genes in Alcohol Addiction and Treatment. Int J Mol Sci 2024; 25:11349. [PMID: 39518903 PMCID: PMC11546795 DOI: 10.3390/ijms252111349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Alcohol use disorder's complexity arises from genetic and environmental factors, with alcohol metabolism genes and neurotransmitter pathways being critical. This study aims to analyze synaptic plasticity gene expression changes in individuals with AUD in order to study their contribution to AUD development and to identify potential biomarkers of treatment response. RNA was extracted from whole peripheral blood (20 patients, 10 healthy controls), before and after treatment (Qiagen AllPrep RNA/DNA Mini Kit), and the gene expression of 84 genes related to neuroplasticity was studied using the RT2 Profiler for Human Synaptic Plasticity RT-PCR Array (PAHS-126ZA, Qiagen), comparing AUD patients to control and responders to non-responders. The potential prognostic/predictive biomarkers were searched using machine learning models. A total of 35 dysregulated genes were found in AUD patients. EPHB2, EGR, and AKT1 were increased, while TIMP1, NCAM1, and GRM2 were decreased. Responders showed distinct gene expression profiles at baseline. After treatment, the expression of 57 genes was normalized, while NCAM1, GRM2, and BDNF showed the most significant recovery. EGR4, INHBA, and NCAM1 emerged as potential biomarkers to predict treatment success. These results indicate that gene profiles in peripheral blood can serve as prognostic markers for the prognosis and treatment of AUD, although further validation is required.
Collapse
Affiliation(s)
- Evangelia Legaki
- Laboratory of Biology, Department of Basic Biological Science, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.L.); (N.D.); (N.M.)
| | - Nikolas Dovrolis
- Laboratory of Biology, Department of Basic Biological Science, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.L.); (N.D.); (N.M.)
| | - Nikoletta Moscholiou
- Laboratory of Biology, Department of Basic Biological Science, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.L.); (N.D.); (N.M.)
| | - Ilias Koutromanos
- First Department of Psychiatry, “Aiginition” Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.K.); (E.V.)
- Department of Psychiatry and Psychotherapy, Psychiatric Services Aargou AG, 5210 Brugg-Windisch, Switzerland
| | - Efthimios Vassilopoulos
- First Department of Psychiatry, “Aiginition” Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.K.); (E.V.)
| | - Antonios Dakanalis
- Department of Medicine and Surgery, University of Milano Bicocca, Via Cadore 38, 20900 Monza, Italy;
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Biological Science, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.L.); (N.D.); (N.M.)
| | - Elias Tzavellas
- First Department of Psychiatry, “Aiginition” Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.K.); (E.V.)
| |
Collapse
|
4
|
Pomella S, Melaiu O, Cifaldi L, Bei R, Gargari M, Campanella V, Barillari G. Biomarkers Identification in the Microenvironment of Oral Squamous Cell Carcinoma: A Systematic Review of Proteomic Studies. Int J Mol Sci 2024; 25:8929. [PMID: 39201614 PMCID: PMC11354375 DOI: 10.3390/ijms25168929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
An important determinant for oral squamous cell carcinoma (OSCC) onset and outcome is the composition of the tumor microenvironment (TME). Thus, the study of the interactions occurring among cancer cells, immune cells, and cancer-associated fibroblasts within the TME could facilitate the understanding of the mechanisms underlying OSCC development and progression, as well as of its sensitivity or resistance to the therapy. In this context, it must be highlighted that the characterization of TME proteins is enabled by proteomic methodologies, particularly mass spectrometry (MS). Aiming to identify TME protein markers employable for diagnosing and prognosticating OSCC, we have retrieved a total of 119 articles spanning 2001 to 2023, of which 17 have passed the selection process, satisfying all its criteria. We have found a total of 570 proteins detected by MS-based proteomics in the TME of OSCC; among them, 542 are identified by a single study, while 28 are cited by two or more studies. These 28 proteins participate in extracellular matrix remodeling and/or energy metabolism. Here, we propose them as markers that could be used to characterize the TME of OSCC for diagnostic/prognostic purposes. Noteworthy, most of the 28 individuated proteins share one feature: being modulated by the hypoxia that is present in the proliferating OSCC mass.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy; (S.P.); (O.M.); (L.C.); (R.B.); (M.G.); (V.C.)
| |
Collapse
|
5
|
Tümen L, Pollmann-Schweckhorst L, Breinbauer R, Hammour MM, Aspera-Werz RH, Blumenstock G, Histing T, Menger MM, Ehnert S, Nüssler AK. Smoking increases risk of complication after musculoskeletal surgery: analysis of single immune parameter to predict complication risk. EXCLI JOURNAL 2024; 23:967-990. [PMID: 39253528 PMCID: PMC11382255 DOI: 10.17179/excli2024-7306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/10/2024] [Indexed: 09/11/2024]
Abstract
Smoking is the most significant and modifiable risk factor for a range of conditions, including cancer, cardiovascular and respiratory diseases. Furthermore, it significantly reduces bone mass and increases the risk of fragility fractures due to its detrimental effects on bone metabolism and regeneration. Moreover, smoking is a known cause of chronic systemic inflammation, leading to an imbalance of cytokines. Comprehending the pathological mechanisms that underlie cytokine production and its impact on post-surgical healing is essential to prevent post-surgical complications. The present study recruited a total of 1144 patients, including 897 patients, among them non-smokers (N = 413), current smokers (N = 201) and ex-smokers (N = 283). Human proteome profiler arrays were used to screen for smoking-dependent differences in the serum cytokine and protein profiles, after matching samples for age, gender, body mass index (BMI), alcohol use, and diabetes risk. Cytokines and immune checkpoint proteins such as CD28, B7-1, MIG, TGFβ2 and IL-1α/β were quantified by ELISA. Our study demonstrates a comprehensive understanding of the relationship between smoking, the development of complications, the systemic immune inflammation index (SII) and cytokine/protein levels. We found that a comparison of non-smokers, former smokers, and active smokers in our study cohort did not exhibit significantly altered cytokine and protein serum levels although other studies reported differences between smokers and non-smokers. We were unable to identify single blood circulating markers that could predict complications in smokers after trauma. However, we found the ratio of women to men to be inverted between non-smokers and active smokers resulting in a ratio of 0.62 in smokers. Furthermore, we demonstrate a higher complication rate, longer hospitalizations and elevated SII values among smokers, indicating an involvement of the immune system. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Leyla Tümen
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, 72076 Tübingen, Germany
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany
| | - Lena Pollmann-Schweckhorst
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, 72076 Tübingen, Germany
| | - Regina Breinbauer
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, 72076 Tübingen, Germany
| | - Mohammad M. Hammour
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, 72076 Tübingen, Germany
| | - Romina H. Aspera-Werz
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, 72076 Tübingen, Germany
| | - Gunnar Blumenstock
- Department of Medical Biometry, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Tina Histing
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany
| | - Maximilian M. Menger
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany
| | - Sabrina Ehnert
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, 72076 Tübingen, Germany
| | - Andreas K. Nüssler
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, 72076 Tübingen, Germany
| |
Collapse
|
6
|
周 豪, 陈 涛, 吴 爱. [Effects of Oxidative Stress on Mitochondrial Functions and Intervertebral Disc Cells]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:249-255. [PMID: 38645848 PMCID: PMC11026887 DOI: 10.12182/20240360201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Indexed: 04/23/2024]
Abstract
Intervertebral disc degeneration is widely recognized as one of the main causes of lower back pain. Intervertebral disc cells are the primary cellular components of the discs, responsible for synthesizing and secreting collagen and proteoglycans to maintain the structural and functional stability of the discs. Additionally, intervertebral disc cells are involved in maintaining the nutritional and metabolic balance, as well as exerting antioxidant and anti-inflammatory effects within the intervertebral discs. Consequently, intervertebral disc cells play a crucial role in the process of disc degeneration. When these cells are exposed to oxidative stress, mitochondria can be damaged, which may disrupt normal cellular function and accelerate degenerative changes. Mitochondria serve as the powerhouse of cells, being the primary energy-producing organelles that control a number of vital processes, such as cell death. On the other hand, mitochondrial dysfunction may be associated with various degenerative pathophysiological conditions. Moreover, mitochondria are the key site for oxidation-reduction reactions. Excessive oxidative stress and reactive oxygen species can negatively impact on mitochondrial function, potentially leading to mitochondrial damage and impaired functionality. These factors, in turn, triggers inflammatory responses, mitochondrial DNA damage, and cell apoptosis, playing a significant role in the pathological processes of intervertebral disc cell degeneration. This review is focused on exploring the impact of oxidative stress and reactive oxygen species on mitochondria and the crucial roles played by oxidative stress and reactive oxygen species in the pathological processes of intervertebral disc cells. In addition, we discussed current cutting-edge treatments and introduced the use of mitochondrial antioxidants and protectants as a potential method to slow down oxidative stress in the treatment of disc degeneration.
Collapse
Affiliation(s)
- 豪 周
- 温州医科大学附属第二医院 浙江省骨科学重点实验室 (温州 325000)Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - 涛 陈
- 温州医科大学附属第二医院 浙江省骨科学重点实验室 (温州 325000)Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - 爱悯 吴
- 温州医科大学附属第二医院 浙江省骨科学重点实验室 (温州 325000)Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
7
|
Pang X, Gao S, Liu T, Xu FX, Fan C, Zhang JF, Jiang H. Identification of STAT3 as a biomarker for cellular senescence in liver fibrosis: A bioinformatics and experimental validation study. Genomics 2024; 116:110800. [PMID: 38286349 DOI: 10.1016/j.ygeno.2024.110800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 01/31/2024]
Abstract
BACKGROUND Cellular senescence is associated with a dysregulated inflammatory response, which is an important driver of the development of liver fibrosis (LF). This study aimed to investigate the effect of cellular senescence on LF and identify potential key biomarkers through bioinformatics analysis combined with validation experiments in vivo and in vitro. METHODS The Gene Expression Omnibus (GEO) database and GeneCards database were used to download the LF dataset and the aging-related gene set, respectively. Functional enrichment analysis of differential genes was then performed using GO and KEGG. Hub genes were further screened using Cytoscape's cytoHubba. Diagnostic values for hub genes were evaluated with a receiver operating characteristic (ROC) curve. Next, CIBERSORTx was used to estimate immune cell types and ratios. Finally, in vivo and in vitro experiments validated the results of the bioinformatics analysis. Moreover, molecular docking was used to simulate drug-gene interactions. RESULTS A total of 44 aging-related differentially expressed genes (AgDEGs) were identified, and enrichment analysis showed that these genes were mainly enriched in inflammatory and immune responses. PPI network analysis identified 6 hub AgDEGs (STAT3, TNF, MMP9, CD44, TGFB1, and TIMP1), and ROC analysis showed that they all have good diagnostic value. Immune infiltration suggested that hub AgDEGs were significantly associated with M1 macrophages or other immune cells. Notably, STAT3 was positively correlated with α-SMA, COL1A1, IL-6 and IL-1β, and was mainly expressed in hepatocytes (HCs). Validation experiments showed that STAT3 expression was upregulated and cellular senescence was increased in LF mice. A co-culture system of HCs and hepatic stellate cells (HSCs) further revealed that inhibiting STAT3 reduced HCs senescence and suppressed HSCs activation. In addition, molecular docking revealed that STAT3 was a potential drug therapy target. CONCLUSIONS STAT3 may be involved in HCs senescence and promote HSCs activation, which in turn leads to the development of LF. Our findings suggest that STAT3 could be a potential biomarker for LF.
Collapse
Affiliation(s)
- Xue Pang
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230011, Anhui, China
| | - Shang Gao
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230011, Anhui, China
| | - Tao Liu
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230011, Anhui, China
| | - Feng Xia Xu
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230011, Anhui, China
| | - Chang Fan
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Jia Fu Zhang
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Hui Jiang
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230011, Anhui, China.
| |
Collapse
|
8
|
Zdanowicz K, Flisiak-Jackiewicz M, Bobrus-Chociej A, Kowalczuk-Kryston M, Jamiolkowski J, Martonik D, Rogalska M, Lebensztejn DM. Thrombospondin-2 as a potential noninvasive biomarker of hepatocyte injury but not liver fibrosis in children with MAFLD: A preliminary study. Clin Exp Hepatol 2023; 9:368-374. [PMID: 38774195 PMCID: PMC11103807 DOI: 10.5114/ceh.2023.133108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/13/2023] [Indexed: 05/24/2024] Open
Abstract
Aim of the study Metabolic-associated fatty liver disease (MAFLD) requires close monitoring due to its increased incidence and progression to fibrosis, cirrhosis and even hepatocellular carcinoma. The search for non-invasive markers to diagnose liver fibrosis is ongoing. The aim of our study was to evaluate the serum levels of growth differentiation factor-15 (GDF-15), thrombospondin-2 (TSP2), pentraxin 3 (PTX3) and angiopoietin-like protein 8 (ANGPTL8) in children with MAFLD. Material and methods Fifty-six overweight/obese children with suspected liver disease were included in this prospective study. MAFLD was diagnosed according to the latest consensus. Vibration-controlled transient elastography (TE) was performed to detect clinically significant liver fibrosis. Serum concentrations of GDF-15, TSP2, PTX3 and ANGPTL8 were measured by enzyme-linked immunosorbent assay (ELISA). Results Liver steatosis was diagnosed in abdominal ultrasound in 31 (55.36%) overweight/obese patients who were classified as the MAFLD group. Aspartate aminotransferase (AST)/platelet ratio (APRI) and liver stiffness measurement (LSM) values and TSP2 concentrations showed significantly higher values in patients in MAFLD than in the non-MAFLD group. TSP2 was significantly positively correlated with alanine transaminase (ALT), AST, γ-glutamyltransferase (GGT) and APRI in the study group. The receiver operating characteristics (ROC) analysis showed that the area under the curve (AUC) of LSM, APRI and serum TSP2 was significant for predicting MAFLD in obese children. In the multivariable regression model, LSM was the only significant parameter associated with the diagnosis of MAFLD in children. Conclusions TSP2 may be a potential biomarker of hepatocyte injury in pediatric patients with MAFLD. None of the examined biomarkers were found to be effective non-invasive markers of liver fibrosis in children.
Collapse
Affiliation(s)
- Katarzyna Zdanowicz
- Department of Pediatrics, Gastroenterology, Hepatology, Nutrition, Allergology and Pulmonology, Medical University of Bialystok, Bialystok, Poland
| | - Marta Flisiak-Jackiewicz
- Department of Pediatrics, Gastroenterology, Hepatology, Nutrition, Allergology and Pulmonology, Medical University of Bialystok, Bialystok, Poland
| | - Anna Bobrus-Chociej
- Department of Pediatrics, Gastroenterology, Hepatology, Nutrition, Allergology and Pulmonology, Medical University of Bialystok, Bialystok, Poland
| | - Monika Kowalczuk-Kryston
- Department of Pediatrics, Gastroenterology, Hepatology, Nutrition, Allergology and Pulmonology, Medical University of Bialystok, Bialystok, Poland
| | - Jacek Jamiolkowski
- Department of Population Medicine and Civilization Diseases Prevention, Medical University of Bialystok, Bialystok, Poland
| | - Diana Martonik
- Department of Infectious Diseases and Hepatology, Medical University of Bialystok, Bialystok, Poland
| | - Magdalena Rogalska
- Department of Infectious Diseases and Hepatology, Medical University of Bialystok, Bialystok, Poland
| | - Dariusz M. Lebensztejn
- Department of Pediatrics, Gastroenterology, Hepatology, Nutrition, Allergology and Pulmonology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
9
|
Sabir U, Gu HM, Zhang DW. Extracellular matrix turnover: phytochemicals target and modulate the dual role of matrix metalloproteinases (MMPs) in liver fibrosis. Phytother Res 2023; 37:4932-4962. [PMID: 37461256 DOI: 10.1002/ptr.7959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/05/2023] [Accepted: 07/02/2023] [Indexed: 11/10/2023]
Abstract
Extracellular matrix (ECM) resolution by matrix metalloproteinases (MMPs) is a well-documented mechanism. MMPs play a dual and complex role in modulating ECM degradation at different stages of liver fibrosis, depending on the timing and levels of their expression. Increased MMP-1 combats disease progression by cleaving the fibrillar ECM. Activated hepatic stellate cells (HSCs) increase expression of MMP-2, -9, and -13 in different chemicals-induced animal models, which may alleviate or worsen disease progression based on animal models and the stage of liver fibrosis. In the early stage, elevated expression of certain MMPs may damage surrounding tissue and activate HSCs, promoting fibrosis progression. At the later stage, downregulation of MMPs can facilitate ECM accumulation and disease progression. A number of phytochemicals modulate MMP activity and ECM turnover, alleviating disease progression. However, the effects of phytochemicals on the expression of different MMPs are variable and may depend on the disease models and stage, and the dosage, timing and duration of phytochemicals used in each study. Here, we review the most recent advances in the role of MMPs in the effects of phytochemicals on liver fibrogenesis, which indicates that further studies are warranted to confirm and define the potential clinical efficacy of these phytochemicals.
Collapse
Affiliation(s)
- Usman Sabir
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Hong-Mei Gu
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
10
|
Mitsui Y, Yamabe F, Hori S, Uetani M, Kobayashi H, Nagao K, Nakajima K. Molecular Mechanisms and Risk Factors Related to the Pathogenesis of Peyronie's Disease. Int J Mol Sci 2023; 24:10133. [PMID: 37373277 PMCID: PMC10299070 DOI: 10.3390/ijms241210133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/25/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Peyronie's disease (PD) is a benign condition caused by plaque formation on the tunica albuginea of the penis. It is associated with penile pain, curvature, and shortening, and contributes to erectile dysfunction, which worsens patient quality of life. In recent years, research into understanding of the detailed mechanisms and risk factors involved in the development of PD has been increasing. In this review, the pathological mechanisms and several closely related signaling pathways, including TGF-β, WNT/β-catenin, Hedgehog, YAP/TAZ, MAPK, ROCK, and PI3K/AKT, are described. Findings regarding cross-talk among these pathways are then discussed to elucidate the complicated cascade behind tunica albuginea fibrosis. Finally, various risk factors including the genes involved in the development of PD are presented and their association with the disease summarized. The purpose of this review is to provide a better understanding regarding the involvement of risk factors in the molecular mechanisms associated with PD pathogenesis, as well as to provide insight into disease prevention and novel therapeutic interventions.
Collapse
Affiliation(s)
- Yozo Mitsui
- Department of Urology, Toho University Faculty of Medicine, Tokyo 143-8540, Japan; (F.Y.); (S.H.); (M.U.); (H.K.); (K.N.); (K.N.)
| | | | | | | | | | | | | |
Collapse
|
11
|
Hou S, Wang D, Yuan X, Yuan X, Yuan Q. Identification of biomarkers co-associated with M1 macrophages, ferroptosis and cuproptosis in alcoholic hepatitis by bioinformatics and experimental verification. Front Immunol 2023; 14:1146693. [PMID: 37090703 PMCID: PMC10117880 DOI: 10.3389/fimmu.2023.1146693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/30/2023] [Indexed: 04/25/2023] Open
Abstract
Backgrounds Alcoholic hepatitis (AH) is a major health problem worldwide. There is increasing evidence that immune cells, iron metabolism and copper metabolism play important roles in the development of AH. We aimed to explore biomarkers that are co-associated with M1 macrophages, ferroptosis and cuproptosis in AH patients. Methods GSE28619 and GSE103580 datasets were integrated, CIBERSORT algorithm was used to analyze the infiltration of 22 types of immune cells and GSVA algorithm was used to calculate ferroptosis and cuproptosis scores. Using the "WGCNA" R package, we established a gene co-expression network and analyzed the correlation between M1 macrophages, ferroptosis and cuproptosis scores and module characteristic genes. Subsequently, candidate genes were screened by WGCNA and differential expression gene analysis. The LASSO-SVM analysis was used to identify biomarkers co-associated with M1 macrophages, ferroptosis and cuproptosis. Finally, we validated these potential biomarkers using GEO datasets (GSE155907, GSE142530 and GSE97234) and a mouse model of AH. Results The infiltration level of M1 macrophages was significantly increased in AH patients. Ferroptosis and cuproptosis scores were also increased in AH patients. In addition, M1 macrophages, ferroptosis and cuproptosis were positively correlated with each other. Combining bioinformatics analysis with a mouse model of AH, we found that ALDOA, COL3A1, LUM, THBS2 and TIMP1 may be potential biomarkers co-associated with M1 macrophages, ferroptosis and cuproptosis in AH patients. Conclusion We identified 5 potential biomarkers that are promising new targets for the treatment and diagnosis of AH patients.
Collapse
Affiliation(s)
- Shasha Hou
- Department of Life Science and Engineering, Jining University, Jining, China
| | - Dan Wang
- College of Life Science, Mudanjiang Medical University, Mudanjiang, China
| | - Xiaxia Yuan
- Department of Life Science and Engineering, Jining University, Jining, China
| | - Xiaohuan Yuan
- College of Life Science, Mudanjiang Medical University, Mudanjiang, China
| | - Qi Yuan
- College of Life Science, Mudanjiang Medical University, Mudanjiang, China
- *Correspondence: Qi Yuan,
| |
Collapse
|
12
|
Tsomidis I, Notas G, Xidakis C, Voumvouraki A, Samonakis DN, Koulentaki M, Kouroumalis E. Enzymes of Fibrosis in Chronic Liver Disease. Biomedicines 2022; 10:biomedicines10123179. [PMID: 36551935 PMCID: PMC9776355 DOI: 10.3390/biomedicines10123179] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction: Liver fibrosis has been extensively studied at the cellular and molecular level, but very few data exist on the final enzymatic stages of collagen synthesis (prolyl hydroxylase, PH) and degradation (matrix metalloproteinases, MMPs), particularly in primary biliary cholangitis (PBC). Aim: We studied enzyme activities in liver tissue from patients with chronic liver diseases and compared them to normal livers. Patients: Eighteen patients with PBC of early and late stages (Ludwig’s classification) and seven on treatment with ursodeoxycholate (UDCA) were studied and compared to 34 patients with alcoholic liver disease (ALD), 25 patients with chronic viral liver disease and five normal biopsies. Sera were available from a total of 140 patients. Methods: The tritiated water released from the tritiated proline was measured in PH assessment. 14C intact and heat-denatured collagen substrates were used to measure collagenase and gelatinases, respectively. 3H Elastin was the substrate for elastase. In serum, ELISAs were used for MMP-1, TIMP-1, and TIMP-2 measurements while MMP-2 and MMP-9 were estimated by zymography. Results: PH was significantly increased in early and late PBC. Collagenase was reduced only in the late stages (p < 0.01), where the ratio PH/collagenase was increased. UDCA treatment restored values to almost normal. Gelatinases were reduced in late stages (p < 0.05). In contrast to PBC and ALD fibrosis, collagen synthesis is not increased in viral fibrosis. The balance shifted towards collagen deposition due to reduced degradation. Interestingly, gelatinolytic activity is not impaired in ALD. Elastase was similar to controls in all diseases studied. TIMP-1 was reduced in early PBC and viral and alcoholic hepatitis and cirrhosis (p < 0.001). Conclusions: (1) There is evidence that collagen synthesis increases in the early stages of PBC, but the collagenolytic mechanism may compensate for the increased synthesis. (2) In viral disease, fibrosis may be due to decreased degradation rather than increased synthesis. (3) The final biochemical stages of liver fibrosis may be quantitatively different according to underlying etiology.
Collapse
Affiliation(s)
- Ioannis Tsomidis
- First Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Chalkidiki, Greece
- Laboratory of Gastroenterology and Hepatology, School of Medicine, University of Crete, 71500 Heraklion, Crete, Greece
| | - George Notas
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, 71500 Heraklion, Crete, Greece
| | - Costas Xidakis
- Laboratory of Gastroenterology and Hepatology, School of Medicine, University of Crete, 71500 Heraklion, Crete, Greece
| | - Argyro Voumvouraki
- First Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Chalkidiki, Greece
| | - Dimitrios N Samonakis
- Department of Gastroenterology, PAGNI University Hospital, School of Medicine, University of Crete, 71500 Heraklion, Crete, Greece
| | - Mairi Koulentaki
- Department of Gastroenterology, PAGNI University Hospital, School of Medicine, University of Crete, 71500 Heraklion, Crete, Greece
| | - Elias Kouroumalis
- Laboratory of Gastroenterology and Hepatology, School of Medicine, University of Crete, 71500 Heraklion, Crete, Greece
- Department of Gastroenterology, PAGNI University Hospital, School of Medicine, University of Crete, 71500 Heraklion, Crete, Greece
- Correspondence:
| |
Collapse
|