1
|
Goya L, Mateos R. Antioxidant and Anti-inflammatory Effects of Marine Phlorotannins and Bromophenols Supportive of Their Anticancer Potential. Nutr Rev 2025; 83:e1225-e1242. [PMID: 38894623 PMCID: PMC11819485 DOI: 10.1093/nutrit/nuae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Following the goal of optimizing nutrition, the food industry has been continuously working on food reformulation, nutritional patterns, functional foods development, and the general promotion of a healthy lifestyle. To this end, the scientific community has been increasingly investigating natural compounds that could prevent or treat chronic diseases. Phlorotannins and bromophenols are phenolic compounds particularly present in marine organisms. There is extensive evidence that shows their potential in the prevention of noncommunicable diseases, including cancer, the second cause of mortality worldwide. Numerous studies have demonstrated the anticarcinogenic activity of polyphenolic algae compounds both in cell culture and experimental animal models. Although recent reviews are also available, the present update focuses on the most recent findings related to the antioxidant/anti-inflammatory effect of seaweed phenolics, as well as their regulatory capacity for new molecular targets. Additionally, the review addresses and discusses the close link between inflammation and oxidative stress, along with their relationship with tumor onset and progression, including the most recent findings supporting this correlation. Although clinical studies are still needed to support this evidence, phlorotannins and bromophenols constitute an emerging bioactive group with high potential as chemopreventive agents and/or potential adjuvants for existing cancer therapies.
Collapse
Affiliation(s)
- Luis Goya
- Department of Metabolism and Nutrition, Institute of Food Science, Technology, and Nutrition (ICTAN-CSIC), Spanish National Research Council (CSIC), 28040 Madrid, Spain
| | - Raquel Mateos
- Department of Metabolism and Nutrition, Institute of Food Science, Technology, and Nutrition (ICTAN-CSIC), Spanish National Research Council (CSIC), 28040 Madrid, Spain
| |
Collapse
|
2
|
Miazzi MM, Dellino M, Fanelli V, Mascio I, Nigro D, De Giovanni C, Montemurro C. Novel foods in the European framework: benefits and risks. Crit Rev Food Sci Nutr 2024:1-10. [PMID: 39714189 DOI: 10.1080/10408398.2024.2442062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Given the rapidly increasing global demand for food, it is mandatory to consider new sources of nutrients, safe and sustainably produced protein foods to complement the current traditional and limited sources of protein in the human diet. In recent years, a wide range of nontraditional protein foods have been explored, prompting the European Union to legislate on how novel foods can be introduced and traded on the European market to ensure their safety. This review will illustrate the range of novel foods authorized in the EU and their potential impact on human health, highlighting the gaps, the potential risks, and the future research opportunities and perspectives.
Collapse
Affiliation(s)
- Monica Marilena Miazzi
- Department of Soil, Plant and Food Sciences (DISSPA), University of Bari Aldo Moro, Italy
| | - Maria Dellino
- Department of Soil, Plant and Food Sciences (DISSPA), University of Bari Aldo Moro, Italy
| | - Valentina Fanelli
- Department of Soil, Plant and Food Sciences (DISSPA), University of Bari Aldo Moro, Italy
| | - Isabella Mascio
- Department of Soil, Plant and Food Sciences (DISSPA), University of Bari Aldo Moro, Italy
| | - Domenica Nigro
- Department of Soil, Plant and Food Sciences (DISSPA), University of Bari Aldo Moro, Italy
| | - Claudio De Giovanni
- Department of Soil, Plant and Food Sciences (DISSPA), University of Bari Aldo Moro, Italy
| | - Cinzia Montemurro
- Department of Soil, Plant and Food Sciences (DISSPA), University of Bari Aldo Moro, Italy
- Spin off Sinagri s.r.l, University of Bari Aldo Moro, Bari, Italy
- Support Unit Bari, Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), Bari, Italy
| |
Collapse
|
3
|
Goutas A, Goutzourelas N, Kevrekidou A, Kevrekidis DP, Malea P, Virgiliou C, Assimopoulou AN, Trachana V, Kollatos N, Moustafa T, Liu M, Lin X, Komiotis D, Stagos D. Hypnea musciformis Seaweed Extract Protected Human Mesenchymal Stem Cells From Oxidative Stress Through NRF2 Activation. Food Sci Nutr 2024; 12:10816-10835. [PMID: 39723057 PMCID: PMC11666820 DOI: 10.1002/fsn3.4615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 10/06/2024] [Accepted: 11/02/2024] [Indexed: 12/28/2024] Open
Abstract
Previous studies have shown that Hypnea musciformis seaweed extracts (HMEs) possess antioxidant properties, but the molecular mechanisms accounting for this activity are not known. Thus, the present study investigated the molecular mechanisms through which HME exerted its antioxidant activity in human mesenchymal stem cells (WJ-MSCs). After the isolation of HME, its chemical composition was analyzed with gas chromatography mass spectrometry, indicating that it contained amino acids, organic acids, organic amides, sugar alcohols, saturated fatty acids, hydrogenated diterpene alcohols, and other organic compounds. Afterward, HME was shown in vitro to scavenge DPPH·, ABTS·+, ·OH, and O2 ·- radicals, possess reducing activity, and protect from ROO·-induced DNA strand breakage. Finally, the results showed that HME treatment of WJ-MSCs prevented H2O2-induced oxidative stress by decreasing lipid peroxidation, protein oxidation, reactive oxygen species levels, and DNA damage and by increasing glutathione levels. Moreover, our findings showed for the first time that HME's antioxidant activity in WJ-MSCs was mediated through the activation of NRF2, which upregulated the expression of the antioxidant proteins GCLC, GSR, HMOX1, SOD1, TXN, and GPX1. These results provide new insights into H. musciformis' antioxidant properties, which could help substantially its use as a food supplement or for developing biofunctional foods.
Collapse
Affiliation(s)
- Andreas Goutas
- Department of Biochemistry and Biotechnology, School of Health SciencesUniversity of ThessalyLarissaGreece
- Department of Biology, Faculty of MedicineUniversity of ThessalyLarissaGreece
| | - Nikolaos Goutzourelas
- Department of Biochemistry and Biotechnology, School of Health SciencesUniversity of ThessalyLarissaGreece
| | - Alkistis Kevrekidou
- Laboratory of Organic Chemistry, School of Chemical EngineeringAristotle University of ThessalonikiThessalonikiGreece
- Environmental Engineering Laboratory, Department of Chemical EngineeringAristotle University of ThessalonikiThessalonikiGreece
| | - Dimitrios Phaedon Kevrekidis
- Laboratory of Forensic Medicine and Toxicology, Department of MedicineAristotle University of ThessalonikiThessalonikiGreece
| | - Paraskevi Malea
- Department of Botany, School of BiologyAristotle University of ThessalonikiThessalonikiGreece
| | - Christina Virgiliou
- Laboratory of Analytical Chemistry, School of Chemical EngineeringAristotle University of ThessalonikiThessalonikiGreece
| | - Andreana N. Assimopoulou
- Laboratory of Organic Chemistry, School of Chemical EngineeringAristotle University of ThessalonikiThessalonikiGreece
| | - Varvara Trachana
- Department of Biology, Faculty of MedicineUniversity of ThessalyLarissaGreece
| | - Nikolaos Kollatos
- Department of Biochemistry and Biotechnology, School of Health SciencesUniversity of ThessalyLarissaGreece
| | - Tafa Moustafa
- Department of Biochemistry and Biotechnology, School of Health SciencesUniversity of ThessalyLarissaGreece
| | - Ming Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and PharmacyOcean University of ChinaQingdaoChina
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| | - Xiukun Lin
- Department of Pharmacology, School of PharmacySouthwest Medical UniversityLuzhouChina
| | - Dimitrios Komiotis
- Department of Biochemistry and Biotechnology, School of Health SciencesUniversity of ThessalyLarissaGreece
| | - Dimitrios Stagos
- Department of Biochemistry and Biotechnology, School of Health SciencesUniversity of ThessalyLarissaGreece
| |
Collapse
|
4
|
Liang Y, Wang Z, Li R, Zhong S, Liu X, Chen J. Protective Effects of Polysaccharides From Sargassum hemiphyllum (Turner) C. Agardh Against Alcohol-Induced LO2 Cell Damage. Food Sci Nutr 2024; 12:10913-10923. [PMID: 39723033 PMCID: PMC11666916 DOI: 10.1002/fsn3.4632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/30/2024] [Accepted: 11/17/2024] [Indexed: 12/28/2024] Open
Abstract
The study aimed to explore the protective impact of polysaccharide derived from Sargassum hemiphyllum (Turner) C. Agardh (SHP) against ethanol-induced injury in LO2 hepatocytes, along with its potential mechanism of action. A model of alcoholic injury in LO2 cells was established to assess the shielding effect of SHP against liver injury induced by alcohol. Treatment with 800 mmol/L ethanol for 6 h was selected for the construction of the hepatocyte injury model. Compared with those in the alcohol model group, the survival rate of LO2 cells in the SHP treatment group was significantly greater. When the concentration of SHP reached 60 μg/mL, the cell viability increased to 89.17% ± 3.58%. Moreover, SHP treatment significantly reduced the level of intracellular reactive oxygen species (ROS), increased the levels of intracellular glutathione (GSH), lactate dehydrogenase (LDH), and catalase (CAT), reduced the level of malondialdehyde (MDA), and prevented the leakage of intrahepatic enzymes (aspartate aminotransferase (AST) and alanine transaminase (ALT)) to protect LO2 cells from alcohol-induced injury. Moreover, at a concentration of 60 μg/mL, SHP inhibited the ethanol-induced reduction in the protein expressions of Nrf2, HO-2, and GCLC, indicating its potential to modulate the antioxidant system to restore the homeostatic state, consequently shielding the liver from peroxidative damage induced by alcohol. These results propose that SHP exhibits a protective role against oxidative damage in LO2 cells and holds promise as a novel natural hepatoprotective agent for averting liver injury.
Collapse
Affiliation(s)
- Yuxuan Liang
- College of Food Science and TechnologyGuangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education InstitutionZhanjiangChina
| | - Zhuo Wang
- College of Food Science and TechnologyGuangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education InstitutionZhanjiangChina
| | - Rui Li
- College of Food Science and TechnologyGuangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education InstitutionZhanjiangChina
| | - Saiyi Zhong
- College of Food Science and TechnologyGuangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education InstitutionZhanjiangChina
| | - Xiaofei Liu
- College of Food Science and TechnologyGuangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education InstitutionZhanjiangChina
| | - Jianping Chen
- College of Food Science and TechnologyGuangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education InstitutionZhanjiangChina
| |
Collapse
|
5
|
Čmiková N, Kowalczewski PŁ, Kmiecik D, Tomczak A, Drożdżyńska A, Ślachciński M, Szala Ł, Matić S, Marković T, Popović S, Baskic D, Kačániová M. Seaweed Nutritional Value and Bioactive Properties: Insights from Ascophyllum nodosum, Palmaria palmata, and Chondrus crispus. Life (Basel) 2024; 14:1522. [PMID: 39598320 PMCID: PMC11595611 DOI: 10.3390/life14111522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
This study investigates the nutritional composition and bioactive properties of Palmaria palmata (dulse), Ascophyllum nodosum (knotted wrack), and Chondrus crispus (Irish moss). Understanding the nutritional values of these seaweeds is very important due to their potential health benefits, especially their antioxidant properties and cytotoxic activities, which point to their ability to inhibit cancer cell proliferation. Comprehensive analyses were conducted to assess protein content, amino acid composition, mineral profile, fatty acids, polyphenols, total carotenoids, antioxidant activity, and cytotoxicity against cervical (HeLa), and colon (HCT-116) cell lines. P. palmata exhibited the highest protein content, while C. crispus was richest in calcium, iron, manganese, and zinc. Amino acid analysis revealed C. crispus as being particularly high in essential and non-essential amino acids, including alanine, glutamic acid, and glycine. A. nodosum and C. crispus were rich in polyunsaturated fatty acids (PUFAs), notably eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). A. nodosum showed the highest total carotenoid content. Polyphenol analysis highlighted the presence of compounds such as p-coumaric acid, gallic acid, and p-hydroxybenzoic acid across the species. Both the ethanolic and hexane A. nodosum extracts demonstrated the strongest antioxidant potential in DPPH• and ABTS+ assays. The cytotoxicity evaluation revealed high anticancer activity of A. nodosum and C. crispus hexane extract against HeLa and HCT-116, though it employed cell cycle arrest and apoptosis. A. nodosum hexane extract exhibited moderate selective anticancer activity against HCT-116. These findings underscore the nutritional diversity and potential health benefits of these macroalgae (seaweed) species, suggesting their suitability as functional foods or supplements, offering diverse nutritional and therapeutic benefits.
Collapse
Affiliation(s)
- Natália Čmiková
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Przemysław Łukasz Kowalczewski
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624 Poznań, Poland; (P.Ł.K.); (D.K.)
| | - Dominik Kmiecik
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624 Poznań, Poland; (P.Ł.K.); (D.K.)
| | - Aneta Tomczak
- Department of Biochemistry and Food Analysis, Poznań University of Life Sciences, 48 Mazowiecka St., 60-623 Poznań, Poland;
| | - Agnieszka Drożdżyńska
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, 48 Wojska Polskiego St., 60-627 Poznań, Poland;
| | - Mariusz Ślachciński
- Institute of Chemistry and Technical Electrochemistry, Poznań University of Technology, 4 Berdychowo St., 60-965 Poznań, Poland;
| | - Łukasz Szala
- Students’ Scientific Club of Food Technologists, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624 Poznań, Poland;
| | - Sanja Matić
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića, 69, 34000 Kragujevac, Serbia; (S.M.); (T.M.)
| | - Tijana Marković
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića, 69, 34000 Kragujevac, Serbia; (S.M.); (T.M.)
| | - Suzana Popović
- Centre for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića, 69, 34000 Kragujevac, Serbia; (S.P.); (D.B.)
| | - Dejan Baskic
- Centre for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića, 69, 34000 Kragujevac, Serbia; (S.P.); (D.B.)
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
- School of Medical and Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01043 Warszawa, Poland
| |
Collapse
|
6
|
Wang C, Min R, Zhou Q, Qi Y, Ma Y, Zhang X. Multiple health outcomes associated with algae and its extracts supplementation: An umbrella review of systematic reviews and meta-analyses. Phytother Res 2024; 38:5162-5183. [PMID: 39161296 DOI: 10.1002/ptr.8305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/23/2024] [Accepted: 07/20/2024] [Indexed: 08/21/2024]
Abstract
Algae and its extracts, widely consumed as functional foods, offer numerous health benefits; however, a comprehensive systematic summary of clinical evidence is currently lacking. The study was to assess the available evidence and provide an accurate estimate of the overall effects of algae and its extracts supplementation on various health outcomes. The comprehensive searches in PubMed, Scopus, Embase, Web of Science, and the Cochrane Library until December 22, 2023 were implemented. The random-effects model was employed to pool the overall effect sizes (ESs) and the corresponding 95% confidence intervals (CIs) using Stata software. Moreover, detecting the methodological quality and evidence level of the eligible studies were employed by A Measurement Tool to Assess Systematic Review 2 (AMSTAR2) and the Grading of Recommendations Assessment Development and Evaluation. Ultimately, 25 articles covering 133 health outcomes were included in this umbrella review. The pooled results demonstrated that the algae and its extracts could significantly decrease body weight (ES = -1.65; 95% CI: -1.97, -1.34; p < 0.001), body mass index (BMI) (ES = -0.42; 95% CI: -0.78, -0.07; p = 0.020), waist circumference (WC) (ES = -1.40; 95% CI: -1.40, -1.39; p < 0.001), triglyceride (TG) (ES = -1.38; 95% CI: -2.15, -0.62; p < 0.001), total cholesterol (TC) (ES: -1.40; 95% CI: -2.09, -0.72; p < 0.001), very low-density lipoprotein cholesterol (VLDL-C) (ES = -7.85; 95% CI: -8.55, -7.15; p < 0.001), fasting blood glucose (ES = -2.68; 95% CI: -4.57, -0.79; p = 0.005), glycated hemoglobin (HbA1c) (ES = -0.15; 95% CI: -0.24, -0.07; p < 0.001), systolic blood pressure (ES = -3.21; 95% CI: -5.25, -1.17; p = 0.002), diastolic blood pressure (ES = -3.84; 95% CI: -7.02, -0.65; p = 0.018), alanine transaminase (ES = -0.42; 95% CI: -0.70, -0.14; p = 0.003), and alkaline phosphatase (ES = -0.54; 95% CI: -0.99, -0.10; p = 0.017). Due to the limited number of studies, no benefit was displayed on markers of inflammation and oxidative stress. Considering the suboptimal quality of studies and the insufficient articles pertaining to certain outcomes, further well-designed research is imperative to substantiate the observed findings.
Collapse
Affiliation(s)
- Caixia Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Ruixue Min
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Qilun Zhou
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yue Qi
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yanli Ma
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, China
| | - Xiaofeng Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
7
|
Carpena M, Pereira CSGP, Silva A, Barciela P, Jorge AOS, Perez-Vazquez A, Pereira AG, Barreira JCM, Oliveira MBPP, Prieto MA. Metabolite Profiling of Macroalgae: Biosynthesis and Beneficial Biological Properties of Active Compounds. Mar Drugs 2024; 22:478. [PMID: 39452886 PMCID: PMC11509156 DOI: 10.3390/md22100478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Macroalgae are known as abundant sources of phytochemicals, which offer a plethora of beneficial biological properties. Besides being the most notable classes of compounds found in macroalgae, phlorotannins, bromophenols, and terpenoids comprise some of the most relevant for their biological properties. Phlorotannins, mainly prevalent in brown algae and structurally characterized as complex polyphenolic compounds derived from phloroglucinol units, possess robust antioxidant, anti-inflammatory, antitumor, and cytotoxic activities, modulated by factors such as the degree of polymerization and environmental conditions. Bromophenols, halogenated compounds found in algae and other marine organisms, exhibit significant antioxidant and antiviral properties. Their diverse structures and bromination patterns contribute to their potential as therapeutic and chemical defense agents. Pigments (chemically described as primary terpenoids) play a critical role in light absorption and energy transfer in macroalgae and are divided into three main groups: (i) carotenoids, which are primarily found in brown algae and provide photoprotective and antioxidant benefits; (ii) chlorophylls, known for facilitating the conversion of light into biological energy; and (iii) phycobilins, which are mostly found in red algae and play important roles in light absorption and energy transfer, besides providing remarkable health benefits. Finally, secondary terpenoids, which are particularly abundant in red algae (e.g., the Rhodomelaceae family) are central to cellular interactions and exhibit significant antioxidant, antimicrobial, antidiabetic, and anti-inflammatory properties. This study represents a detailed analysis of the biosynthesis, structural diversity, and biological activities of these macroalgae metabolites, emphasizing their potential biological properties.
Collapse
Affiliation(s)
- Maria Carpena
- Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, Nutrition and Bromatology Group, 36310 Vigo, Spain; (M.C.); (A.S.); (P.B.); (A.O.S.J.); (A.P.-V.); (A.G.P.)
| | - Cláudia S. G. P. Pereira
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (C.S.G.P.P.); (M.B.P.P.O.)
| | - Aurora Silva
- Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, Nutrition and Bromatology Group, 36310 Vigo, Spain; (M.C.); (A.S.); (P.B.); (A.O.S.J.); (A.P.-V.); (A.G.P.)
- LAQV/REQUIMTE, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Paula Barciela
- Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, Nutrition and Bromatology Group, 36310 Vigo, Spain; (M.C.); (A.S.); (P.B.); (A.O.S.J.); (A.P.-V.); (A.G.P.)
| | - A. Olivia S. Jorge
- Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, Nutrition and Bromatology Group, 36310 Vigo, Spain; (M.C.); (A.S.); (P.B.); (A.O.S.J.); (A.P.-V.); (A.G.P.)
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (C.S.G.P.P.); (M.B.P.P.O.)
| | - Ana Perez-Vazquez
- Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, Nutrition and Bromatology Group, 36310 Vigo, Spain; (M.C.); (A.S.); (P.B.); (A.O.S.J.); (A.P.-V.); (A.G.P.)
| | - Antia G. Pereira
- Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, Nutrition and Bromatology Group, 36310 Vigo, Spain; (M.C.); (A.S.); (P.B.); (A.O.S.J.); (A.P.-V.); (A.G.P.)
- Investigaciones Agroalimentarias Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain
| | - João C. M. Barreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - M. Beatriz P. P. Oliveira
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (C.S.G.P.P.); (M.B.P.P.O.)
| | - Miguel A. Prieto
- Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, Nutrition and Bromatology Group, 36310 Vigo, Spain; (M.C.); (A.S.); (P.B.); (A.O.S.J.); (A.P.-V.); (A.G.P.)
| |
Collapse
|
8
|
Mo Y, Zhou L, Fu S, Yang H, Lin B, Zhang J, Lou Y, Li Y. Study on adsorption behavior of humic acid on aluminum in Enteromorpha prolifera. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2024; 59:342-357. [PMID: 39219225 DOI: 10.1080/10934529.2024.2396728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
High level of aluminum content in Enteromorpha prolifera posed a growing threat to both its growth and human health. This study focused on exploring the factors, impacts, and process of removing aluminum from Enteromorpha prolifera using humic acid. The results showed that under experimental conditions of 0.0330 g·L-1 humic acid concentration, pH 3.80, 34 °C, and a duration of 40 min, the removal rate was up to 80.18%. The levels of major flavor components, proteins, and amino acids in Enteromorpha prolifera increased significantly after treatment, while polysaccharides and trace elements like calcium and magnesium decreased significantly. Infrared spectroscopy demonstrated that the main functional groups involved in binding with Al3+ during humic acid adsorption were hydroxyl, carboxyl, phenol, and other oxygen-containing groups. The adsorption process of Al3+ by humic acid was a spontaneous phenomenon divided into three key stages: fast adsorption, slow adsorption, and adsorption equilibrium, which resulted from both physical and chemical adsorption effects. This study provided a safe and efficient method in algae metal removal.
Collapse
Affiliation(s)
- Yuke Mo
- Key Laboratory of Food Deep Processing Technology of Animal Protein of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, P. R. China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Liping Zhou
- Key Laboratory of Food Deep Processing Technology of Animal Protein of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, P. R. China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Shiqian Fu
- Key Laboratory of Food Deep Processing Technology of Animal Protein of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, P. R. China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Huicheng Yang
- Zhejiang Marine Development Research Institute, Zhoushan, Zhejiang, P. R. China
| | - Bangchu Lin
- Zhejiang Yulin Technology Co., Ltd., Ningbo, Zhejiang, P. R. China
| | - Jinjie Zhang
- Key Laboratory of Food Deep Processing Technology of Animal Protein of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, P. R. China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Yongjiang Lou
- Key Laboratory of Food Deep Processing Technology of Animal Protein of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, P. R. China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Yongyong Li
- Key Laboratory of Food Deep Processing Technology of Animal Protein of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, P. R. China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, P. R. China
| |
Collapse
|
9
|
Kaur M, Shitanaka T, Surendra KC, Khanal SK. Macroalgae-derived bioactive compounds for functional food and pharmaceutical applications-a critical review. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 39078214 DOI: 10.1080/10408398.2024.2384643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
The rising demand for global food resources, combined with an overreliance on land-based agroecosystems, poses a significant challenge for the sustainable production of food products. Macroalgae cultivation is a promising approach to mitigate impending global food insecurities due to several key factors: independence from terrestrial farming, rapid growth rates, unique biochemical makeup, and carbon capture potential. Furthermore, macroalgae are rich in vitamins, minerals, essential amino acids, polyunsaturated fatty acids and fiber, demonstrating significant potential as sustainable alternatives for enhancing dietary diversity and fulfilling nutritional requirements. This review provides an overview of the nutritional composition and functional properties of commercially cultivated macroalgae species, with emphasis on their viability as value additions to the functional food market. Furthermore, the review discusses the technological aspects of integrating macroalgae into food products, covering both innovative solutions and existing challenges. Macroalgae, beyond being nutritional powerhouses, contain a plethora of bioactive compounds with varied biological activities, including anti-diabetic, anti-cancer, cardioprotective, and neuroprotective properties, making them excellent candidates in developing novel pharmaceuticals. Thus, this review also summarizes the pharmaceutical applications of macroalgae, identifies research gaps and proposes potential strategies for incorporating macroalgae-derived bioactive compounds into therapeutic products.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Ty Shitanaka
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - K C Surendra
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Department of Environmental Engineering, Korea University Sejong Campus, Sejong, Korea
| |
Collapse
|
10
|
Zhang Z, Liu H, Yu DG, Bligh SWA. Alginate-Based Electrospun Nanofibers and the Enabled Drug Controlled Release Profiles: A Review. Biomolecules 2024; 14:789. [PMID: 39062503 PMCID: PMC11274620 DOI: 10.3390/biom14070789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Alginate is a natural polymer with good biocompatible properties and is a potential polymeric material for the sustainable development and replacement of petroleum derivatives. However, the non-spinnability of pure alginate solutions has hindered the expansion of alginate applications. With the continuous development of electrospinning technology, synthetic polymers, such as PEO and PVA, are used as co-spinning agents to increase the spinnability of alginate. Moreover, the coaxial, parallel Janus, tertiary and other diverse and novel electrospun fiber structures prepared by multi-fluid electrospinning have found a new breakthrough for the problem of poor spinning of natural polymers. Meanwhile, the diverse electrospun fiber structures effectively achieve multiple release modes of drugs. The powerful combination of alginate and electrostatic spinning is widely used in many biomedical fields, such as tissue engineering, regenerative engineering, bioscaffolds, and drug delivery, and the research fever continues to climb. This is particularly true for the controlled delivery aspect of drugs. This review provides a brief overview of alginate, introduces new advances in electrostatic spinning, and highlights the research progress of alginate-based electrospun nanofibers in achieving various controlled release modes, such as pulsed release, sustained release, biphasic release, responsive release, and targeted release.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Z.Z.); (H.L.)
| | - Hui Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Z.Z.); (H.L.)
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Z.Z.); (H.L.)
| | - Sim-Wan Annie Bligh
- School of Health Sciences, Saint Francis University, Hong Kong 999077, China
| |
Collapse
|
11
|
Healy L, Zhu X, Dong G, Selli S, Kelebek H, Sullivan C, Tiwari U, Tiwari BK. Investigation into the use of novel pretreatments in the fermentation of Alaria esculenta by Lactiplantibacillus plantarum and kombucha SCOBY. Food Chem 2024; 442:138335. [PMID: 38237300 DOI: 10.1016/j.foodchem.2023.138335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 02/15/2024]
Abstract
High pressure processing (HPP), ultrasound probe (USP) and ultrasound bath (USB) were applied to Alaria esculenta as a fermentation pre-treatment. Seaweed was then fermented by Lactiplantibacillus plantarum (LAB) or symbiotic culture of bacteria and yeast (SCOBY). Physiochemical properties of fermented seaweed were measured. pH was significantly different (p < 0.05) across SCOBY-fermented samples with different pre-treatments but not LAB-fermented samples (p > 0.05). There was a significant difference (p < 0.05) in total viable count (TVC) with the highest count in HPP-treated samples, and lowest in control samples. Organic acids differed significantly (p < 0.05) across pre-treatments for both fermentation groups. 27 volatile compounds were detected in the samples, with alcohols and ketones the most prominent groups. The quantity of volatile compounds was not significantly lower (p > 0.05) from seaweed powder. The control sample had the highest levels of tropomyosin (15.92 mg/kg) followed by HPP samples.
Collapse
Affiliation(s)
- Laura Healy
- Teagasc Food Research Centre, Ashtown, Dublin, Ireland; Department of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
| | - Xianglu Zhu
- Teagasc Food Research Centre, Ashtown, Dublin, Ireland; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Gaoya Dong
- Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| | - Serkan Selli
- Department of Food Engineering, Faculty of Agriculture, Cukurova University, 01330 Adana, Turkey; Department of Nutrition and Dietetics, Faculty of Health Sciences, Cukurova University, 01330 Adana, Turkey
| | - Hasim Kelebek
- Department of Food Engineering, Faculty of Engineering, Adana AlparslanTurkes Science and Technology University, Adana, Turkey
| | - Carl Sullivan
- Faculty of Computing, Digital and Data, School of Mathematics and Statistics, Technological University Dublin, Dublin, Ireland
| | - Uma Tiwari
- Department of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland.
| | | |
Collapse
|
12
|
Cho EC, Ahn S, Hwang HJ, Shin KO, Kim S, Choi YJ. Investigating the Nutritional and Functional Properties of Protaetia brevitarsis Larvae and Isolated Soy Protein Mixtures as Alternative Protein Sources. Foods 2024; 13:1540. [PMID: 38790840 PMCID: PMC11121311 DOI: 10.3390/foods13101540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
The growing demand for sustainable and alternative protein sources has spurred interest in insect-based and plant-based proteins. Protaetia brevitarsis (PB) larvae and isolated soy protein (ISP) are notable in this regard, offering potential health benefits and nutritional enhancements. We assessed the feasibility of PB larvae and ISP mixtures as alternative food ingredients. Methods included the optimized purification and freeze-drying of PB larvae, extraction and refinement of legume proteins, physicochemical and antioxidant capacity evaluations, DPPH radical scavenging activity measurement, total phenolic and flavonoids content quantification, general component analysis, amino acid profiling using HPLC, fatty acid profiling through gas chromatography, and mineral content analysis using inductively coupled plasma spectrometry. The study found that certain PB:ISP ratios, particularly a 7:3 ratio, significantly improved the blend's antioxidant capacity, as evidenced by DPPH scavenging activity. This ratio also impacted the nutritional profile by altering the mixture's general components, with a notable increase in moisture, crude protein, and fiber and a decrease in crude fat and ash. Amino acid analysis revealed a balanced presence of essential and non-essential amino acids. The fatty acid profile was rich in unsaturated fatty acids, especially in certain ratios. Mineral analysis showed a complex interplay between PB larvae and ISP, with some minerals decreasing and others increasing in the blend. PB larvae and ISP mixtures have significant potential as alternative protein sources, offering a diversified nutritional profile and enhanced antioxidant properties. The 7:3 ratio of PB larvae to ISP has been shown to be particularly effective, suggesting that this ratio may offer an optimal balance for enhancing the overall nutritional quality of the mixture. This study sets the stage for future research to further explore and optimize the potential of these mixtures for human consumption while considering the challenges of consumer acceptance and long-term safety.
Collapse
Affiliation(s)
- Eun-Chae Cho
- Department of Convergence Science, Sahmyook University, Seoul 01795, Republic of Korea; (E.-C.C.); (S.A.)
| | - Surin Ahn
- Department of Convergence Science, Sahmyook University, Seoul 01795, Republic of Korea; (E.-C.C.); (S.A.)
| | - Hyo-Jeong Hwang
- Department of Food and Nutrition, Sahmyook University, Seoul 01795, Republic of Korea; (H.-J.H.); (K.-O.S.)
| | - Kyung-Ok Shin
- Department of Food and Nutrition, Sahmyook University, Seoul 01795, Republic of Korea; (H.-J.H.); (K.-O.S.)
| | - Suwan Kim
- Suwan Co., Ltd., Jecheon, Chungbuk 27159, Republic of Korea;
| | - Yean-Jung Choi
- Department of Food and Nutrition, Sahmyook University, Seoul 01795, Republic of Korea; (H.-J.H.); (K.-O.S.)
| |
Collapse
|
13
|
Pereira L, Cotas J, Gonçalves AM. Seaweed Proteins: A Step towards Sustainability? Nutrients 2024; 16:1123. [PMID: 38674814 PMCID: PMC11054349 DOI: 10.3390/nu16081123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
This review delves into the burgeoning field of seaweed proteins as promising alternative sources of protein. With global demand escalating and concerns over traditional protein sources' sustainability and ethics, seaweed emerges as a viable solution, offering a high protein content and minimal environmental impacts. Exploring the nutritional composition, extraction methods, functional properties, and potential health benefits of seaweed proteins, this review provides a comprehensive understanding. Seaweed contains essential amino acids, vitamins, minerals, and antioxidants. Its protein content ranges from 11% to 32% of dry weight, making it valuable for diverse dietary preferences, including vegetarian and vegan diets. Furthermore, this review underscores the sustainability and environmental advantages of seaweed protein production compared to traditional sources. Seaweed cultivation requires minimal resources, mitigating environmental issues like ocean acidification. As the review delves into specific seaweed types, extraction methodologies, and functional properties, it highlights the versatility of seaweed proteins in various food products, including plant-based meats, dairy alternatives, and nutritional supplements. Additionally, it discusses the potential health benefits associated with seaweed proteins, such as their unique amino acid profile and bioactive compounds. Overall, this review aims to provide insights into seaweed proteins' potential applications and their role in addressing global protein needs sustainably.
Collapse
Affiliation(s)
- Leonel Pereira
- Marine Resources, Conservation and Technology, Marine Algae Laboratory, Centre for Functional Ecology—Science for People & the Planet (CFE), Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (A.M.G.)
| | - João Cotas
- Marine Resources, Conservation and Technology, Marine Algae Laboratory, Centre for Functional Ecology—Science for People & the Planet (CFE), Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (A.M.G.)
| | - Ana Marta Gonçalves
- Marine Resources, Conservation and Technology, Marine Algae Laboratory, Centre for Functional Ecology—Science for People & the Planet (CFE), Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (A.M.G.)
- Department of Biology and CESAM—Centro de Estudos do Ambiente e do Mar, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
14
|
Adarshan S, Sree VSS, Muthuramalingam P, Nambiar KS, Sevanan M, Satish L, Venkidasamy B, Jeelani PG, Shin H. Understanding Macroalgae: A Comprehensive Exploration of Nutraceutical, Pharmaceutical, and Omics Dimensions. PLANTS (BASEL, SWITZERLAND) 2023; 13:113. [PMID: 38202421 PMCID: PMC10780804 DOI: 10.3390/plants13010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/17/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Driven by a surge in global interest in natural products, macroalgae or seaweed, has emerged as a prime source for nutraceuticals and pharmaceutical applications. Characterized by remarkable genetic diversity and a crucial role in marine ecosystems, these organisms offer not only substantial nutritional value in proteins, fibers, vitamins, and minerals, but also a diverse array of bioactive molecules with promising pharmaceutical properties. Furthermore, macroalgae produce approximately 80% of the oxygen in the atmosphere, highlighting their ecological significance. The unique combination of nutritional and bioactive attributes positions macroalgae as an ideal resource for food and medicine in various regions worldwide. This comprehensive review consolidates the latest advancements in the field, elucidating the potential applications of macroalgae in developing nutraceuticals and therapeutics. The review emphasizes the pivotal role of omics approaches in deepening our understanding of macroalgae's physiological and molecular characteristics. By highlighting the importance of omics, this review also advocates for continued exploration and utilization of these extraordinary marine organisms in diverse domains, including drug discovery, functional foods, and other industrial applications. The multifaceted potential of macroalgae warrants further research and development to unlock their full benefits and contribute to advancing global health and sustainable industries.
Collapse
Affiliation(s)
- Sivakumar Adarshan
- Department of Biotechnology, Alagappa University, Karaikudi 630003, Tamil Nadu, India;
| | - Vairavel Sivaranjani Sivani Sree
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India; (V.S.S.S.); (K.S.N.); (M.S.)
| | - Pandiyan Muthuramalingam
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52725, Republic of Korea;
- Department of Oral and Maxillofacial Surgery, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospitals, Saveetha University, Chennai 600077, Tamil Nadu, India;
| | - Krishnanjana S Nambiar
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India; (V.S.S.S.); (K.S.N.); (M.S.)
| | - Murugan Sevanan
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India; (V.S.S.S.); (K.S.N.); (M.S.)
| | - Lakkakula Satish
- Applied Phycology and Biotechnology Division, Marine Algal Research Station, CSIR—Central Salt and Marine Chemicals Research Institute, Mandapam 623519, Tamil Nadu, India;
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospitals, Saveetha University, Chennai 600077, Tamil Nadu, India;
| | - Peerzada Gh Jeelani
- Department of Biotechnology, Microbiology & Bioinformatics, National College Trichy, Tiruchirapalli 620001, Tamil Nadu, India;
| | - Hyunsuk Shin
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52725, Republic of Korea;
| |
Collapse
|
15
|
Tavares JO, Cotas J, Valado A, Pereira L. Algae Food Products as a Healthcare Solution. Mar Drugs 2023; 21:578. [PMID: 37999402 PMCID: PMC10672234 DOI: 10.3390/md21110578] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/16/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
Diseases such as obesity; cardiovascular diseases such as high blood pressure, myocardial infarction and stroke; digestive diseases such as celiac disease; certain types of cancer and osteoporosis are related to food. On the other hand, as the world's population increases, the ability of the current food production system to produce food consistently is at risk. As a result, intensive agriculture has contributed to climate change and a major environmental impact. Research is, therefore, needed to find new sustainable food sources. One of the most promising sources of sustainable food raw materials is macroalgae. Algae are crucial to solving this nutritional deficiency because they are abundant in bioactive substances that have been shown to combat diseases such as hyperglycemia, diabetes, obesity, metabolic disorders, neurodegenerative diseases and cardiovascular diseases. Examples of these substances include polysaccharides such as alginate, fucoidan, agar and carrageenan; proteins such as phycobiliproteins; carotenoids such as β-carotene and fucoxanthin; phenolic compounds; vitamins and minerals. Seaweed is already considered a nutraceutical food since it has higher protein values than legumes and soy and is, therefore, becoming increasingly common. On the other hand, compounds such as polysaccharides extracted from seaweed are already used in the food industry as thickening agents and stabilizers to improve the quality of the final product and to extend its shelf life; they have also demonstrated antidiabetic effects. Among the other bioactive compounds present in macroalgae, phenolic compounds, pigments, carotenoids and fatty acids stand out due to their different bioactive properties, such as antidiabetics, antimicrobials and antioxidants, which are important in the treatment or control of diseases such as diabetes, cholesterol, hyperglycemia and cardiovascular diseases. That said, there have already been some studies in which macroalgae (red, green and brown) have been incorporated into certain foods, but studies on gluten-free products are still scarce, as only the potential use of macroalgae for this type of product is considered. Considering the aforementioned issues, this review aims to analyze how macroalgae can be incorporated into foods or used as a food supplement, as well as to describe the bioactive compounds they contain, which have beneficial properties for human health. In this way, the potential of macroalgae-based products in eminent diseases, such as celiac disease, or in more common diseases, such as diabetes and cholesterol complications, can be seen.
Collapse
Affiliation(s)
- Joana O Tavares
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - João Cotas
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Ana Valado
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, University of Coimbra, 3000-456 Coimbra, Portugal
- Biomedical Laboratory Sciences, Coimbra Health School, Polytechnic Institute of Coimbra, Rua 5 de Outubro-SM Bispo, Apartado 7006, 3045-043 Coimbra, Portugal
| | - Leonel Pereira
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, University of Coimbra, 3000-456 Coimbra, Portugal
- Instituto do Ambiente Tecnologia e Vida, Faculdade de Ciências e Tecnologia, Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| |
Collapse
|
16
|
González-Meza GM, Elizondo-Luevano JH, Cuellar-Bermudez SP, Sosa-Hernández JE, Iqbal HMN, Melchor-Martínez EM, Parra-Saldívar R. New Perspective for Macroalgae-Based Animal Feeding in the Context of Challenging Sustainable Food Production. PLANTS (BASEL, SWITZERLAND) 2023; 12:3609. [PMID: 37896072 PMCID: PMC10610262 DOI: 10.3390/plants12203609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
Food production is facing challenging times due to the pandemic, and climate change. With production expected to double by 2050, there is a need for a new paradigm in sustainable animal feed supply. Seaweeds offer a highly valuable opportunity in this regard. Seaweeds are classified into three categories: brown (Phaeophyceae), red (Rhodophyceae), and green (Chlorophyceae). While they have traditionally been used in aquafeed, their demand in the feed market is growing, parallelly increasing according to the food demand. Additionally, seaweeds are being promoted for their nutritional benefits, which contribute to the health, growth, and performance of animals intended for human consumption. Moreover, seaweeds contain biologically active compounds such as polyunsaturated fatty acids, antioxidants (polyphenols), and pigments (chlorophylls and carotenoids), which possess beneficial properties, including antibacterial, antifungal, antiviral, antioxidant, and anti-inflammatory effects and act as prebiotics. This review offers a new perspective on the valorization of macroalgae biomass due to their nutritional profile and bioactive components, which have the potential to play a crucial role in animal growth and making possible new sources of healthy food ingredients.
Collapse
Affiliation(s)
- Georgia M. González-Meza
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (G.M.G.-M.); (J.H.E.-L.); (J.E.S.-H.); (H.M.N.I.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Joel H. Elizondo-Luevano
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (G.M.G.-M.); (J.H.E.-L.); (J.E.S.-H.); (H.M.N.I.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Sara P. Cuellar-Bermudez
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (G.M.G.-M.); (J.H.E.-L.); (J.E.S.-H.); (H.M.N.I.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (G.M.G.-M.); (J.H.E.-L.); (J.E.S.-H.); (H.M.N.I.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (G.M.G.-M.); (J.H.E.-L.); (J.E.S.-H.); (H.M.N.I.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Elda M. Melchor-Martínez
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (G.M.G.-M.); (J.H.E.-L.); (J.E.S.-H.); (H.M.N.I.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (G.M.G.-M.); (J.H.E.-L.); (J.E.S.-H.); (H.M.N.I.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| |
Collapse
|
17
|
Espinosa-Ramírez J, Mondragón-Portocarrero AC, Rodríguez JA, Lorenzo JM, Santos EM. Algae as a potential source of protein meat alternatives. Front Nutr 2023; 10:1254300. [PMID: 37743912 PMCID: PMC10513374 DOI: 10.3389/fnut.2023.1254300] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
With the rise of plant-based meat alternatives, there is a growing need for sustainable and nutritious sources of protein. Alga is a rich protein source, and initial studies show that it can be a good component in developing protein meat alternatives. However, there are certain limitations in their use as the need for efficient and optimal technical process in large-scale protein extraction and purification, as well as overcoming certain negative effects such as potentially harmful compounds, allergenicity issues, or sensorial affections, especially in color but also in textural and flavor characteristics. This review offers a vision of the fledgling research about using alga protein in the development of meat alternatives or supplementing meat products.
Collapse
Affiliation(s)
| | - Alicia C. Mondragón-Portocarrero
- Laboratorio de Higiene, Inspección y Control de Alimentos, Departamento de Quimica Analitica Nutricion y Bromatología, Universidad de Santiago de Compostela, Lugo, Spain
| | - Jose A. Rodríguez
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Pachuca, Mexico
| | | | - Eva M. Santos
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Pachuca, Mexico
| |
Collapse
|
18
|
Goutzourelas N, Kevrekidis DP, Barda S, Malea P, Trachana V, Savvidi S, Kevrekidou A, Assimopoulou AN, Goutas A, Liu M, Lin X, Kollatos N, Amoutzias GD, Stagos D. Antioxidant Activity and Inhibition of Liver Cancer Cells' Growth of Extracts from 14 Marine Macroalgae Species of the Mediterranean Sea. Foods 2023; 12:foods12061310. [PMID: 36981236 PMCID: PMC10048654 DOI: 10.3390/foods12061310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Macroalgae exhibit beneficial bioactivities for human health. Thus, the aim of the present study was to examine the antioxidant and anticancer potential of 14 macroalgae species' extracts, namely, Gigartina pistillata, Gigartina teedei, Gracilaria gracilis, Gracilaria sp., Gracilaria bursa pastoris, Colpomenia sinuosa, Cystoseira amentacea, Cystoseira barbata, Cystoseira compressa, Sargassum vulgare, Padina pavonica, Codium fragile, Ulva intestinalis, and Ulva rigida, from the Aegean Sea, Greece. The antioxidant activity was assessed using DPPH, ABTS•+, •OH, and O2•- radicals' scavenging assays, reducing power (RP), and protection from ROO•-induced DNA plasmid damage assays. Moreover, macroalgae extracts' total polyphenol contents (TPCs) were assessed. Extracts' inhibition against liver HepG2 cancer cell growth was assessed using the XTT assay. The results showed that G. teedei extract's IC50 was the lowest in DPPH (0.31 ± 0.006 mg/mL), ABTS•+ (0.02 ± 0.001 mg/mL), •OH (0.10 ± 0.007 mg/mL), O2•- (0.05 ± 0.003 mg/mL), and DNA plasmid breakage (0.038 ± 0.002 mg/mL) and exhibited the highest RP (RP0.5AU 0.24 ± 0.019 mg/mL) and TPC (12.53 ± 0.88 mg GAE/g dw). There was also a significant correlation between antioxidant activity and TPC. P. pavonica (IC50 0.93 ± 0.006 mg/mL) exhibited the highest inhibition against HepG2 cell growth. Conclusively, some of the tested extracts exhibited significant chemopreventive properties, and so they may be used for food products.
Collapse
Affiliation(s)
- Nikolaos Goutzourelas
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Dimitrios Phaedon Kevrekidis
- Laboratory of Forensic Medicine and Toxicology, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Sofia Barda
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Paraskevi Malea
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Varvara Trachana
- Department of Biology, Faculty of Medicine, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Stavroula Savvidi
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Alkistis Kevrekidou
- Laboratory of Organic Chemistry, School of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Andreana N Assimopoulou
- Laboratory of Organic Chemistry, School of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Andreas Goutas
- Department of Biology, Faculty of Medicine, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Ming Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiukun Lin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, 319 Zhongshan Road, Luzhou 646000, China
| | - Nikolaos Kollatos
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Grigorios D Amoutzias
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Dimitrios Stagos
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Biopolis, 41500 Larissa, Greece
| |
Collapse
|
19
|
Luo B, Wang Z, Chen J, Chen X, Li J, Li Y, Li R, Liu X, Song B, Cheong KL, Zhong S. Physicochemical Characterization and Antitumor Activity of Fucoidan and Its Degraded Products from Sargassum hemiphyllum (Turner) C. Agardh. Molecules 2023; 28:2610. [PMID: 36985583 PMCID: PMC10057303 DOI: 10.3390/molecules28062610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Fucoidan has many biological functions, including anti-tumor activity. Additionally, it has been suggested that low-molecular-weight fucoidans have greater bioactivities. This study aimed to examine the degradation, purification, physicochemical characterization and in vitro antitumor activity of fucoidan from Sargassum hemiphyllum (Turner) C. Agardh. Fucoidan was isolated using DEAE-cellulose-52 (F1, F2), Vc-H2O2 degration, and Sepharose CL-6B gel (DF1, DF2) from crude Sargassum fucoidans. Physicochemical characteristics of four isolated fucoidans were examined using chemical and monosaccharide composition, average molecular weight (Mw), and FTIR. Furthermore, the anti-proliferative effects of purified fucoidans on human hepatocellular carcinoma cells (HepG2), human Burkitt Lymphoma cells (MCF-7), human uterine carcinoma cells (Hela) and human lung cancer cells (A549) were analyzed by MTT method. The apoptosis of HepG2 cells was detected by flow cytometry. Our data suggest that the contents of polysaccharide, L-fucose and sulfate of DF2 were the highest, which were 73.93%, 23.02% and 29.88%, respectively. DF1 has the smallest molecular weight (14,893 Da) followed by DF2 (21,292 Da). The four fractions are mainly composed of fucose, mannose and rhamnose, and the infrared spectra are similar, all of which contain polysaccharide and sulfate characteristic absorption peaks. The results of MTT assay showed that the four fractions had inhibitory effects on HepG2 and A549 in the range of 0.5-8 mg/mL, and the four fractions had strong cytotoxic effects on HepG2 cells. DF2 had the best inhibitory effect on HepG2 (IC50 = 2.2 mg/mL). In general, the antitumor activity of Sargassum fucoidans is related to the content of L-fucose, sulfate and molecular weight, and Sargassum fucoidan has the best inhibitory effect on HepG2 hepatocellular carcinoma cells. Furthermore, when compared to MCF-7, Hela, and A549 cells, Sargassum fucoidans had the best capacity to reduce the viability of human hepatocellular carcinoma cells (HepG2) and to induce cell apoptosis, proving itself to have a good potential in anti-liver cancer therapy.
Collapse
Affiliation(s)
- Baozhen Luo
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (B.L.); (Z.W.); (X.C.); (J.L.); (R.L.); (X.L.); (B.S.); (K.-L.C.)
| | - Zhuo Wang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (B.L.); (Z.W.); (X.C.); (J.L.); (R.L.); (X.L.); (B.S.); (K.-L.C.)
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Jianping Chen
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (B.L.); (Z.W.); (X.C.); (J.L.); (R.L.); (X.L.); (B.S.); (K.-L.C.)
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xuehua Chen
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (B.L.); (Z.W.); (X.C.); (J.L.); (R.L.); (X.L.); (B.S.); (K.-L.C.)
| | - Jiarui Li
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (B.L.); (Z.W.); (X.C.); (J.L.); (R.L.); (X.L.); (B.S.); (K.-L.C.)
| | - Yinghua Li
- Center Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510120, China;
| | - Rui Li
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (B.L.); (Z.W.); (X.C.); (J.L.); (R.L.); (X.L.); (B.S.); (K.-L.C.)
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaofei Liu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (B.L.); (Z.W.); (X.C.); (J.L.); (R.L.); (X.L.); (B.S.); (K.-L.C.)
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Bingbing Song
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (B.L.); (Z.W.); (X.C.); (J.L.); (R.L.); (X.L.); (B.S.); (K.-L.C.)
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (B.L.); (Z.W.); (X.C.); (J.L.); (R.L.); (X.L.); (B.S.); (K.-L.C.)
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (B.L.); (Z.W.); (X.C.); (J.L.); (R.L.); (X.L.); (B.S.); (K.-L.C.)
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|