1
|
Wen Z, Liang W, Yang Z, Liu J, Yang J, Xu R, Lin K, Pan J, Chen Z. Genetic insights into idiopathic pulmonary fibrosis: a multi-omics approach to identify potential therapeutic targets. J Transl Med 2025; 23:337. [PMID: 40091050 PMCID: PMC11912729 DOI: 10.1186/s12967-025-06368-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/07/2025] [Indexed: 03/19/2025] Open
Abstract
OBJECTIVE To identify potential therapeutic targets and evaluate the safety profiles for Idiopathic Pulmonary Fibrosis (IPF) using a comprehensive multi-omics approach. METHOD We integrated genomic and transcriptomic data to identify therapeutic targets for IPF. First, we conducted a transcriptome-wide association study (TWAS) using the Omnibus Transcriptome Test using Expression Reference Summary data (OTTERS) framework, combining plasma expression quantitative trait loci (eQTL) data with IPF Genome-Wide Association Studies (GWAS) summary statistics from the Global Biobank (discovery) and Finngen (duplication). We then applied Mendelian randomization (MR) to explore causal relationships. RNA-seq co-expression analysis (bulk, single-cell and spatial transcriptomics) was used to identify critical genes, followed by molecular docking to evaluate their druggability. Finally, phenome-wide MR (PheW-MR) using GWAS data from 679 diseases in the UK Biobank assessed the potential adverse effects of the identified genes. RESULT We identified 696 genes associated with IPF in the discovery dataset and 986 genes in the duplication dataset, with 126 overlapping genes through TWAS. MR analysis revealed 29 causal genes in the discovery dataset, with 13 linked to increased and 16 to decreased IPF risk. Summary data-based MR (SMR) confirmed six essential genes: ANO9, BRCA1, CCDC200, EZH1, FAM13A, and SFR1. Bulk RNA-seq showed FAM13A upregulation and SFR1 and EZH1 downregulation in IPF. Single-cell RNA-seq revealed gene expression changes across cell types. Molecular docking identified binding solid affinities for essential genes with respiratory drugs, and PheW-MR highlighted potential side effects. CONCLUSION We identified six key genes-ANO9, BRCA1, CCDC200, EZH1, FAM13A, and SFR1-as potential drug targets for IPF. Molecular docking revealed strong drug affinities, while PheW-MR analysis highlighted therapeutic potential and associated risks. These findings offer new insights for IPF treatment and further investigation of potential side effects.
Collapse
Affiliation(s)
- Zhuofeng Wen
- 1The Sixth School of Clinical Medicine, Department of Respiratory and Critical Care Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, China
| | - Weixuan Liang
- The First School of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Ziyang Yang
- The Third School of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Junjie Liu
- The Second School of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Jing Yang
- 1The Sixth School of Clinical Medicine, Department of Respiratory and Critical Care Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, China
| | - Runge Xu
- The First School of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Keye Lin
- The First School of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Jia Pan
- The First School of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Zisheng Chen
- 1The Sixth School of Clinical Medicine, Department of Respiratory and Critical Care Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, China.
| |
Collapse
|
2
|
Chen R, Zhong G, Ji T, Xu Q, Liu H, Xu Q, Chen L, Dai J. Serum cholesterol levels predict the survival in patients with idiopathic pulmonary fibrosis: A long-term follow up study. Respir Med 2025; 237:107937. [PMID: 39743155 DOI: 10.1016/j.rmed.2024.107937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 10/03/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND The relationship between serum lipid with idiopathic pulmonary fibrosis (IPF) required to be explored. We aim to evaluate the association of serum lipid levels with mortality in patients with IPF. MATERIALS AND METHODS This retrospective study included IPF patients with more than three years follow-up. We collected baseline demographics information, forced vital capacity (FVC)% predicted, carbon monoxide diffusion capacity (DLCO)% predicted, gender-age-physiology (GAP) index, and serum lipid levels, including triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C). We evaluate the relationship between the serum lipid levels and the disease severity, and the mortality in IPF. RESULTS This study enrolled 146 patients, with the three-year survival rate of 71.23 %. The median follow-up time was 46.5 months. There was no significant difference in baseline lipid levels between the survival and non-survival group. TG levels were positively correlated with DLCO% predicted (r = 0.189, p = 0.022) and negatively correlated with GAP index (r = -0.186, p = 0.025). After adjusting for GAP index, smoking history, body mass index and the use of antifibrotic and lipid-lowering drug, lower TC levels (HR: 0.74, 95 % CI: 0.58-0.94, p = 0.013) were identified as an independent risk factor for mortality. CONCLUSION This study demonstrated that lower TC levels were associated with increased mortality in IPF. More investigations are required to explore the role of lipid metabolism in the pathogenesis of pulmonary fibrosis.
Collapse
Affiliation(s)
- Ranxun Chen
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Guanning Zhong
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Tong Ji
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qinghua Xu
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Huarui Liu
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qingqing Xu
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lulu Chen
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jinghong Dai
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
3
|
Xu K, Ding L, Li W, Wang Y, Ma S, Lian H, Pan X, Wan R, Zhao W, Yang J, Rosas I, Wang L, Yu G. Aging-Associated Metabolite Methylmalonic Acid Increases Susceptibility to Pulmonary Fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1478-1493. [PMID: 38849030 DOI: 10.1016/j.ajpath.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 06/09/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease characterized by pulmonary fibroblast overactivation, resulting in the accumulation of abnormal extracellular matrix and lung parenchymal damage. Although the pathogenesis of IPF remains unclear, aging was proposed as the most prominent nongenetic risk factor. Propionate metabolism undergoes reprogramming in the aging population, leading to the accumulation of the by-product methylmalonic acid (MMA). This study aimed to explore alterations in propionate metabolism in IPF and the impact of the by-product MMA on pulmonary fibrosis. It revealed alterations in the expression of enzymes involved in propionate metabolism within IPF lung tissues, characterized by an increase in propionyl-CoA carboxylase and methylmalonyl-CoA epimerase expression, and a decrease in methylmalonyl-CoA mutase expression. Knockdown of methylmalonyl-CoA mutase, the key enzyme in propionate metabolism, induced a profibrotic phenotype and activated co-cultured fibroblasts in A549 cells. MMA exacerbated bleomycin-induced mouse lung fibrosis and induced a profibrotic phenotype in both epithelial cells and fibroblasts through activation of the canonical transforming growth factor-β/Smad pathway. Overall, these findings unveil an alteration of propionate metabolism in IPF, leading to MMA accumulation, thus exacerbating lung fibrosis through promoting profibrotic phenotypic transitions via the canonical transforming growth factor-β/Smad signaling pathway.
Collapse
Affiliation(s)
- Kai Xu
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang, China
| | - Linke Ding
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang, China
| | - Wenwen Li
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang, China
| | - Yaxuan Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang, China
| | - Shuaichen Ma
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang, China
| | - Hui Lian
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang, China
| | - Xiaoyue Pan
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang, China
| | - Ruyan Wan
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang, China
| | - Weiming Zhao
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang, China
| | - Juntang Yang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang, China
| | - Ivan Rosas
- Division of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, Texas
| | - Lan Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang, China.
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang, China.
| |
Collapse
|
4
|
Dong H, Sun Y, Nie L, Cui A, Zhao P, Leung WK, Wang Q. Metabolic memory: mechanisms and diseases. Signal Transduct Target Ther 2024; 9:38. [PMID: 38413567 PMCID: PMC10899265 DOI: 10.1038/s41392-024-01755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/29/2024] Open
Abstract
Metabolic diseases and their complications impose health and economic burdens worldwide. Evidence from past experimental studies and clinical trials suggests our body may have the ability to remember the past metabolic environment, such as hyperglycemia or hyperlipidemia, thus leading to chronic inflammatory disorders and other diseases even after the elimination of these metabolic environments. The long-term effects of that aberrant metabolism on the body have been summarized as metabolic memory and are found to assume a crucial role in states of health and disease. Multiple molecular mechanisms collectively participate in metabolic memory management, resulting in different cellular alterations as well as tissue and organ dysfunctions, culminating in disease progression and even affecting offspring. The elucidation and expansion of the concept of metabolic memory provides more comprehensive insight into pathogenic mechanisms underlying metabolic diseases and complications and promises to be a new target in disease detection and management. Here, we retrace the history of relevant research on metabolic memory and summarize its salient characteristics. We provide a detailed discussion of the mechanisms by which metabolic memory may be involved in disease development at molecular, cellular, and organ levels, with emphasis on the impact of epigenetic modulations. Finally, we present some of the pivotal findings arguing in favor of targeting metabolic memory to develop therapeutic strategies for metabolic diseases and provide the latest reflections on the consequences of metabolic memory as well as their implications for human health and diseases.
Collapse
Affiliation(s)
- Hao Dong
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuezhang Sun
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lulingxiao Nie
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Aimin Cui
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Pengfei Zhao
- Periodontology and Implant Dentistry Division, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Wai Keung Leung
- Periodontology and Implant Dentistry Division, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Qi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Yan P, Liu J, Li Z, Wang J, Zhu Z, Wang L, Yu G. Glycolysis Reprogramming in Idiopathic Pulmonary Fibrosis: Unveiling the Mystery of Lactate in the Lung. Int J Mol Sci 2023; 25:315. [PMID: 38203486 PMCID: PMC10779333 DOI: 10.3390/ijms25010315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/17/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease characterized by excessive deposition of fibrotic connective tissue in the lungs. Emerging evidence suggests that metabolic alterations, particularly glycolysis reprogramming, play a crucial role in the pathogenesis of IPF. Lactate, once considered a metabolic waste product, is now recognized as a signaling molecule involved in various cellular processes. In the context of IPF, lactate has been shown to promote fibroblast activation, myofibroblast differentiation, and extracellular matrix remodeling. Furthermore, lactate can modulate immune responses and contribute to the pro-inflammatory microenvironment observed in IPF. In addition, lactate has been implicated in the crosstalk between different cell types involved in IPF; it can influence cell-cell communication, cytokine production, and the activation of profibrotic signaling pathways. This review aims to summarize the current research progress on the role of glycolytic reprogramming and lactate in IPF and its potential implications to clarify the role of lactate in IPF and to provide a reference and direction for future research. In conclusion, elucidating the intricate interplay between lactate metabolism and fibrotic processes may lead to the development of innovative therapeutic strategies for IPF.
Collapse
Affiliation(s)
| | | | | | | | | | - Lan Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang 453007, China; (P.Y.); (J.L.); (Z.L.); (J.W.); (Z.Z.)
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang 453007, China; (P.Y.); (J.L.); (Z.L.); (J.W.); (Z.Z.)
| |
Collapse
|
6
|
Li J, Wei Q, Song K, Wang Y, Yang Y, Li M, Yu J, Su G, Peng L, Fu B, Yi P. Tangeretin attenuates bleomycin-induced pulmonary fibrosis by inhibiting epithelial-mesenchymal transition via the PI3K/Akt pathway. Front Pharmacol 2023; 14:1247800. [PMID: 37781713 PMCID: PMC10540689 DOI: 10.3389/fphar.2023.1247800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/06/2023] [Indexed: 10/03/2023] Open
Abstract
Background: Pulmonary fibrosis (PF) is a terminal pathological change in a variety of lung diseases characterized by excessive deposition of extracellular matrix, for which effective treatment is lacking. Tangeretin (Tan), a flavonoid derived from citrus, has been shown to have a wide range of pharmacological effects. This study aimed to investigate the role and potential mechanisms of Tan on pulmonary fibrosis. Methods: A model of pulmonary fibrosis was established by administering bleomycin through tracheal drip, followed by administering Tan or pirfenidone through gavage. HE and Masson staining were employed to assess the extent of pulmonary fibrosis. Subsequently, Western blot, enzyme-linked immunosorbent assay (ELISA), RNA sequencing, and immunohistochemistry techniques were employed to uncover the protective mechanism of Tan in PF mice. Furthermore, A549 cells were stimulated with TGF-β1 to induce epithelial-mesenchymal transition (EMT) and demonstrate the effectiveness of Tan in mitigating PF. Results: Tan significantly ameliorated bleomycin-induced pulmonary fibrosis, improved fibrotic pathological changes, and collagen deposition in the lungs, and reduced lung inflammation and oxidative stress. The KEGG pathway enrichment analysis revealed a higher number of enriched genes in the PI3K/Akt pathway. Additionally, Tan can inhibit the EMT process related to pulmonary fibrosis. Conclusion: Taken together, the above research results indicate that Tan suppresses inflammation, oxidative stress, and EMT in BLM-induced pulmonary fibrosis via the PI3K/Akt pathway and is a potential agent for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Jiang Li
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Qian Wei
- Department of Internal Medicine-Cardiovascular, The Third Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Ke Song
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Youxin Wang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yuxin Yang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Miao Li
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jiaying Yu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Guangxu Su
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Luyuan Peng
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Bendong Fu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Pengfei Yi
- College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|