1
|
VanderGiessen M, Jamiu A, Heath B, Akhrymuk I, Kehn-Hall K. Cellular takeover: How new world alphaviruses impact host organelle function. Virology 2025; 603:110365. [PMID: 39733515 DOI: 10.1016/j.virol.2024.110365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/28/2024] [Accepted: 12/16/2024] [Indexed: 12/31/2024]
Abstract
Alphavirus replication is dependent on host cell organelles to facilitate multiple steps of the viral life cycle. New world alphaviruses (NWA) consisting of eastern, western and Venezuelan equine encephalitis viruses are a subgroup of alphaviruses associated with central nervous system disease. Despite differing morbidity and mortality amongst these viruses, all are important human pathogens due to their transmission through viral aerosolization and mosquito transmission. In this review, we summarize the utilization of host organelles for NWA replication and the subversion of the host innate immune responses. The impact of viral proteins and replication processes on organelle function is also discussed. Literature involving old world alphaviruses (OWA), such as chikungunya virus and Sindbis virus, is included to compare and contrast between OWA and NWA and highlight gaps in knowledge for NWA. Finally, potential targets for therapeutics or vaccine candidates are highlighted with a focus on host-directed therapeutics.
Collapse
Affiliation(s)
- Morgen VanderGiessen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Abdullahi Jamiu
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Brittany Heath
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Ivan Akhrymuk
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Kylene Kehn-Hall
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| |
Collapse
|
2
|
Kim E, Khan MS, Shin J, Huang S, Ferrari A, Han D, An E, Kenniston TW, Cassaniti I, Baldanti F, Jeong D, Gambotto A. The Long-Term Immunity of a Microneedle Array Patch of a SARS-CoV-2 S1 Protein Subunit Vaccine Irradiated by Gamma Rays in Mice. Vaccines (Basel) 2025; 13:86. [PMID: 39852865 PMCID: PMC11768753 DOI: 10.3390/vaccines13010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/07/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES COVID-19 vaccines effectively prevent severe disease, but unequal distribution, especially in low- and middle-income countries, has led to vaccine-resistant strains. This highlights the urgent need for alternative vaccine platforms that are safe, thermostable, and easy to distribute. This study evaluates the immunogenicity, stability, and scalability of a dissolved microneedle array patch (MAP) delivering the rS1RS09 subunit vaccine, comprising the SARS-CoV-2 S1 monomer and RS09, a TLR-4 agonist peptide. METHODS The rS1RS09 vaccine was administered via MAP or intramuscular injection in murine models. The immune responses of the MAP with and without gamma irradiation as terminal sterilization were assessed at doses of 5, 15, and 45 µg, alongside neutralizing antibody responses to Wuhan, Delta, and Omicron variants. The long-term storage stability was also evaluated through protein degradation analyses at varying temperatures. RESULTS The rS1RS09 vaccine elicited stronger immune responses and ACE2-binding inhibition than S1 monomer alone or trimer. The MAP delivery induced sgnificantly higher and longer-lasting S1-specific IgG responses for up to 70 weeks compared to intramuscular injections. Robust Th2-prevalent immune responses were generated in all the groups vaccinated via the MAP and significant neutralizing antibodies were elicited at 15 and 45 µg, showing dose-sparing potential. The rS1RS09 in MAP has remained stable with minimal protein degradation for 19 months at room temperature or under refrigeration, regardless of gamma-irradiation. After an additional month of storage at 42 °C, cit showed less than 3% degradation, ompared to over 23% in liquid vaccines Conclusions: Gamma-irradiated MAP-rS1RS09 is a promising platform for stable, scalable vaccine production and distribution, eliminating cold chain logistics. These findings support its potential for mass vaccination efforts, particularly in resource-limited settings.
Collapse
Affiliation(s)
- Eun Kim
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (E.K.); (T.W.K.)
| | - Muhammad S. Khan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (E.K.); (T.W.K.)
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA 15213, USA
| | - Juyeop Shin
- Medical Business Division, Raphas Co., Ltd., Seoul 07793, Republic of Korea (D.J.)
| | - Shaohua Huang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (E.K.); (T.W.K.)
| | - Alessandro Ferrari
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Donghoon Han
- Medical Business Division, Raphas Co., Ltd., Seoul 07793, Republic of Korea (D.J.)
| | - Eunjin An
- Medical Business Division, Raphas Co., Ltd., Seoul 07793, Republic of Korea (D.J.)
| | - Thomas W. Kenniston
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (E.K.); (T.W.K.)
| | - Irene Cassaniti
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Dohyeon Jeong
- Medical Business Division, Raphas Co., Ltd., Seoul 07793, Republic of Korea (D.J.)
| | - Andrea Gambotto
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (E.K.); (T.W.K.)
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA 15213, USA
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| |
Collapse
|
3
|
Stephens AD, Wilkinson T. Discovery of Therapeutic Antibodies Targeting Complex Multi-Spanning Membrane Proteins. BioDrugs 2024; 38:769-794. [PMID: 39453540 PMCID: PMC11530565 DOI: 10.1007/s40259-024-00682-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 10/26/2024]
Abstract
Complex integral membrane proteins, which are embedded in the cell surface lipid bilayer by multiple transmembrane spanning polypeptides, encompass families of proteins that are important target classes for drug discovery. These protein families include G protein-coupled receptors, ion channels, transporters, enzymes, and adhesion molecules. The high specificity of monoclonal antibodies and the ability to engineer their properties offers a significant opportunity to selectively bind these target proteins, allowing direct modulation of pharmacology or enabling other mechanisms of action such as cell killing. Isolation of antibodies that bind these types of membrane proteins and exhibit the desired pharmacological function has, however, remained challenging due to technical issues in preparing membrane protein antigens suitable for enabling and driving antibody drug discovery strategies. In this article, we review progress and emerging themes in defining discovery strategies for a generation of antibodies that target these complex membrane protein antigens. We also comment on how this field may develop with the emerging implementation of computational techniques, artificial intelligence, and machine learning.
Collapse
Affiliation(s)
- Amberley D Stephens
- Department of Biologics Engineering, Oncology R&D, The Discovery Centre, AstraZeneca, 1 Francis Crick Avenue, Cambridge, CB2 0AA, UK
| | - Trevor Wilkinson
- Department of Biologics Engineering, Oncology R&D, The Discovery Centre, AstraZeneca, 1 Francis Crick Avenue, Cambridge, CB2 0AA, UK.
| |
Collapse
|
4
|
Baskakova KO, Kuzmichev PK, Karbyshev MS. Advanced applications of Nanodiscs-based platforms for antibodies discovery. Biophys Chem 2024; 313:107290. [PMID: 39002246 DOI: 10.1016/j.bpc.2024.107290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/18/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Due to their fundamental biological importance, membrane proteins (MPs) are attractive targets for drug discovery, with cell surface receptors, transporters, ion channels, and membrane-bound enzymes being of particular interest. However, due to numerous challenges, these proteins present underutilized opportunities for discovering biotherapeutics. Antibodies hold the promise of exquisite specificity and adaptability, making them the ideal candidates for targeting complex membrane proteins. They can target specific conformations of a particular membrane protein and can be engineered into various formats. Generating specific and effective antibodies targeting these proteins is no easy task due to several factors. The antigen's design, antibody-generation strategies, lead optimization technologies, and antibody modalities can be modified to tackle these challenges. The rational employment of cutting-edge lipid nanoparticle systems for retrieving the membrane antigen has been successfully implemented to simplify the mechanism-based therapeutic antibody discovery approach. Despite the highlighted MP production challenges, this review unequivocally underscores the advantages of targeting complex membrane proteins with antibodies and designing membrane protein antigens. Selected examples of lipid nanoparticle success have been illustrated, emphasizing the potential of therapeutic antibody discovery in this regard. With further research and development, we can overcome these challenges and unlock the full potential of therapeutic antibodies directed to target complex MPs.
Collapse
Affiliation(s)
- Kristina O Baskakova
- Laboratory of Molecular Therapy of Cancer, Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - Pavel K Kuzmichev
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudniy, Russian Federation
| | - Mikhail S Karbyshev
- Laboratory of Molecular Therapy of Cancer, Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation; Department of Biochemistry and Molecular Biology, Pirogov Russian National Research Medical University, Moscow, Russian Federation.
| |
Collapse
|
5
|
Ching C, Maufront J, di Cicco A, Lévy D, Dezi M. C ool-contacts: Cryo-Electron Microscopy of Membrane Contact Sites and Their Components. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241231364. [PMID: 38410695 PMCID: PMC10895918 DOI: 10.1177/25152564241231364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/23/2024] [Indexed: 02/28/2024]
Abstract
Electron microscopy has played a pivotal role in elucidating the ultrastructure of membrane contact sites between cellular organelles. The advent of cryo-electron microscopy has ushered in the ability to determine atomic models of constituent proteins or protein complexes within sites of membrane contact through single particle analysis. Furthermore, it enables the visualization of the three-dimensional architecture of membrane contact sites, encompassing numerous copies of proteins, whether in vitro reconstituted or directly observed in situ using cryo-electron tomography. Nevertheless, there exists a scarcity of cryo-electron microscopy studies focused on the site of membrane contact and their constitutive proteins. This review provides an overview of the contributions made by cryo-electron microscopy to our understanding of membrane contact sites, outlines the associated limitations, and explores prospects in this field.
Collapse
Affiliation(s)
- Cyan Ching
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physique des Cellules et Cancer, Paris, France
| | - Julien Maufront
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physique des Cellules et Cancer, Paris, France
| | - Aurélie di Cicco
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physique des Cellules et Cancer, Paris, France
| | - Daniel Lévy
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physique des Cellules et Cancer, Paris, France
| | - Manuela Dezi
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physique des Cellules et Cancer, Paris, France
| |
Collapse
|
6
|
Schütz A, Bernhard F, Berrow N, Buyel JF, Ferreira-da-Silva F, Haustraete J, van den Heuvel J, Hoffmann JE, de Marco A, Peleg Y, Suppmann S, Unger T, Vanhoucke M, Witt S, Remans K. A concise guide to choosing suitable gene expression systems for recombinant protein production. STAR Protoc 2023; 4:102572. [PMID: 37917580 PMCID: PMC10643540 DOI: 10.1016/j.xpro.2023.102572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 11/04/2023] Open
Abstract
This overview guides both novices and experienced researchers facing challenging targets to select the most appropriate gene expression system for producing a particular protein. By answering four key questions, readers can determine the most suitable gene expression system following a decision scheme. This guide addresses the most commonly used and accessible systems and provides brief descriptions of the main gene expression systems' key characteristics to assist decision making. Additionally, information has been included for selected less frequently used "exotic" gene expression systems.
Collapse
Affiliation(s)
- Anja Schütz
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Technology Platform for Protein Production & Characterization, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Frank Bernhard
- Institute of Biophysical Chemistry, Centre of Biomolecular Magnetic Resonance, Goethe-University of Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Nick Berrow
- Protein Expression Core Facility, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Johannes F Buyel
- Univeristy of Natural Resources and Life Sciences, Vienna (BOKU), Department of Biotechnology (DBT), Institute of Bioprocess Science and Engineering (IBSE), Muthgasse 18, 1190 Vienna, Austria
| | - Frederico Ferreira-da-Silva
- Instituto de Biologia Molecular e Celular (IBMC) and Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Jurgen Haustraete
- VIB, Center for Inflammation Research & Ugent, Department of Biomedical Molecular Biology, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Joop van den Heuvel
- Helmholtz Centre for Infection Research (HZI), Department of Structure and Function of Proteins, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Jan-Erik Hoffmann
- Protein Chemistry Facility, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Ario de Marco
- Laboratory of Environmental and Life Sciences, University of Nova Gorica, Vipavska Cesta 13, 5000 Nova Gorica, Slovenia
| | - Yoav Peleg
- Structural Proteomics Unit (SPU), Department of Life Sciences Core Facilities (LSCF), Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sabine Suppmann
- Protein Expression and Purification Core Facility, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Tamar Unger
- Structural Proteomics Unit (SPU), Department of Life Sciences Core Facilities (LSCF), Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Martine Vanhoucke
- BCCM/GeneCorner Plasmid Collection, Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Gent, Belgium
| | - Susanne Witt
- Centre for Structural Systems Biology (CSSB), University Medical Center Hamburg-Eppendorf (UKE), Notkestr. 85, 22607 Hamburg, Germany
| | - Kim Remans
- European Molecular Biology Laboratory (EMBL), Protein Expression and Purification Core Facility, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|