1
|
Xing C, Shi L, Zhu L, Aguirre T, Qi J, Chen Y, Liu Y, Chin AC, Zhu H, Fiedler D, Chen AF, Fu C. IP6K1 Rewires LKB1 Signaling to Mediate Hyperglycemic Endothelial Senescence. Diabetes 2025; 74:486-501. [PMID: 39792359 DOI: 10.2337/db24-0706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 01/07/2025] [Indexed: 01/12/2025]
Abstract
ARTICLE HIGHLIGHTS Diabetes is a major risk factor for cardiovascular diseases. The mechanisms of hyperglycemia-induced endothelial dysfunction have been elusive. We found that inositol hexakisphosphate kinase 1 (IP6K1) mediates hyperglycemia-induced endothelial senescence by switching liver kinase B1 (LKB1) activation of the AMPK pathway to activation of the p53 pathway. Hyperglycemia upregulates IP6K1, which stabilizes LKB1 by disrupting Hsp/Hsc70 and carboxyl terminus of Hsc70-interacting protein-mediated LKB1 degradation but suppresses LKB1-dependent AMPK activation. Elevated LKB1 binds more to p53, resulting in p53-dependent endothelial senescence. Endothelial cell-specific deletion of IP6K1 attenuates, whereas endothelial cell-specific overexpression of IP6K1 exaggerates, hyperglycemia-induced endothelial senescence.
Collapse
Affiliation(s)
- Changchang Xing
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linhui Shi
- Department of Critical Care Unit, Ningbo Medical Center Lihuili Hospital, Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Limei Zhu
- Department of Trauma Orthopedics, Ningbo No. 6 Hospital, Ningbo, China
| | - Tim Aguirre
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Ji Qi
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyuan Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Liu
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Alfred C Chin
- Tri-Institutional MD-PhD Program, Weill Cornell Medical College, Rockefeller University, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Hong Zhu
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Alex F Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenglai Fu
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Heitmann T, Liao G, Ernst G, Poslusney M, van Kralingen T, Li Y, Masi M, DePasquale M, Buchler I, Wei H, Carr GV, Shlevkov E, Lu M, Jessen H, Barrow JC. Identification and Characterization of a Blood-Brain Barrier Penetrant Inositol Hexakisphosphate Kinase (IP6K) Inhibitor. J Med Chem 2024; 67:13639-13665. [PMID: 39096294 DOI: 10.1021/acs.jmedchem.4c00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Inositol hexakisphosphate kinases (IP6Ks) have been studied for their role in glucose homeostasis, metabolic disease, fatty liver disease, chronic kidney disease, neurological development, and psychiatric disease. IP6Ks phosphorylate inositol hexakisphosphate (IP6) to the pyrophosphate, 5-diphosphoinositol-1,2,3,4,6-pentakisphosphate (5-IP7). Most of the currently known potent IP6K inhibitors contain a critical carboxylic acid which limits blood-brain barrier (BBB) penetration. In this work, the synthesis and testing of a variety of carboxylic acid isosteres resulted in several new compounds with improved BBB penetration. The most promising compound has an IP6K1 IC50 of 16 nM with an improved brain/plasma ratio and a favorable pharmacokinetic profile. This series of brain penetrant compounds may be used to investigate the role of IP6Ks in CNS disorders.
Collapse
Affiliation(s)
- Tyler Heitmann
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Gangling Liao
- Lieber Institute for Brain Development, 855 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Glen Ernst
- Lieber Institute for Brain Development, 855 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Michael Poslusney
- Lieber Institute for Brain Development, 855 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Thomas van Kralingen
- Lieber Institute for Brain Development, 855 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Ye Li
- Lieber Institute for Brain Development, 855 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Megan Masi
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Michael DePasquale
- Lieber Institute for Brain Development, 855 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Ingrid Buchler
- Lieber Institute for Brain Development, 855 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Huijun Wei
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Lieber Institute for Brain Development, 855 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Gregory V Carr
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Lieber Institute for Brain Development, 855 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Evgeny Shlevkov
- Lieber Institute for Brain Development, 855 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Mengsi Lu
- Institute of Organic Chemistry and CIBSS─Centre for Integrative Biological Signaling Studies, Albert-Ludwigs-University, Albertstr. 21, Freiburg 79104, Germany
| | - Henning Jessen
- Institute of Organic Chemistry and CIBSS─Centre for Integrative Biological Signaling Studies, Albert-Ludwigs-University, Albertstr. 21, Freiburg 79104, Germany
| | - James C Barrow
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Lieber Institute for Brain Development, 855 N. Wolfe Street, Baltimore, Maryland 21205, United States
| |
Collapse
|
3
|
Jin H, Liu A, Chin AC, Fu C, Shen H, Cheng W. Deleting IP6K1 stabilizes neuronal sodium-potassium pumps and suppresses excitability. Mol Brain 2024; 17:8. [PMID: 38350944 PMCID: PMC10863101 DOI: 10.1186/s13041-024-01080-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/31/2024] [Indexed: 02/15/2024] Open
Abstract
Inositol pyrophosphates are key signaling molecules that regulate diverse neurobiological processes. We previously reported that the inositol pyrophosphate 5-InsP7, generated by inositol hexakisphosphate kinase 1 (IP6K1), governs the degradation of Na+/K+-ATPase (NKA) via an autoinhibitory domain of PI3K p85α. NKA is required for maintaining electrochemical gradients for proper neuronal firing. Here we characterized the electrophysiology of IP6K1 knockout (KO) neurons to further expand upon the functions of IP6K1-regulated control of NKA stability. We found that IP6K1 KO neurons have a lower frequency of action potentials and a specific deepening of the afterhyperpolarization phase. Our results demonstrate that deleting IP6K1 suppresses neuronal excitability, which is consistent with hyperpolarization due to an enrichment of NKA. Given that impaired NKA function contributes to the pathophysiology of various neurological diseases, including hyperexcitability in epilepsy, our findings may have therapeutic implications.
Collapse
Affiliation(s)
- Hongfu Jin
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aili Liu
- Department of Cellular Biology, School of Basic Science, Tianjin Medical University, Tianjin, China
| | - Alfred C Chin
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Chenglai Fu
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Shen
- Department of Cellular Biology, School of Basic Science, Tianjin Medical University, Tianjin, China.
| | - Weiwei Cheng
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Gogianu LI, Ruta LL, Farcasanu IC. Kcs1 and Vip1: The Key Enzymes behind Inositol Pyrophosphate Signaling in Saccharomyces cerevisiae. Biomolecules 2024; 14:152. [PMID: 38397389 PMCID: PMC10886477 DOI: 10.3390/biom14020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
The inositol pyrophosphate pathway, a complex cell signaling network, plays a pivotal role in orchestrating vital cellular processes in the budding yeast, where it regulates cell cycle progression, growth, endocytosis, exocytosis, apoptosis, telomere elongation, ribosome biogenesis, and stress responses. This pathway has gained significant attention in pharmacology and medicine due to its role in generating inositol pyrophosphates, which serve as crucial signaling molecules not only in yeast, but also in higher eukaryotes. As targets for therapeutic development, genetic modifications within this pathway hold promise for disease treatment strategies, offering practical applications in biotechnology. The model organism Saccharomyces cerevisiae, renowned for its genetic tractability, has been instrumental in various studies related to the inositol pyrophosphate pathway. This review is focused on the Kcs1 and Vip1, the two enzymes involved in the biosynthesis of inositol pyrophosphate in S. cerevisiae, highlighting their roles in various cell processes, and providing an up-to-date overview of their relationship with phosphate homeostasis. Moreover, the review underscores the potential applications of these findings in the realms of medicine and biotechnology, highlighting the profound implications of comprehending this intricate signaling network.
Collapse
Affiliation(s)
- Larisa Ioana Gogianu
- Doctoral School of Biology, Faculty of Biology, University of Bucharest, Splaiul Independenței 91-95, 050095 Bucharest, Romania;
- National Institute for Research and Development in Microtechnologies, Erou Iancu Nicolae Str. 126A, 077190 Voluntari, Romania
| | - Lavinia Liliana Ruta
- Faculty of Chemistry, University of Bucharest, Panduri Road 90-92, 050663 Bucharest, Romania;
| | - Ileana Cornelia Farcasanu
- Doctoral School of Biology, Faculty of Biology, University of Bucharest, Splaiul Independenței 91-95, 050095 Bucharest, Romania;
- Faculty of Chemistry, University of Bucharest, Panduri Road 90-92, 050663 Bucharest, Romania;
| |
Collapse
|
5
|
Heitmann T, Barrow JC. The Role of Inositol Hexakisphosphate Kinase in the Central Nervous System. Biomolecules 2023; 13:1317. [PMID: 37759717 PMCID: PMC10526494 DOI: 10.3390/biom13091317] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Inositol is a unique biological small molecule that can be phosphorylated or even further pyrophosphorylated on each of its six hydroxyl groups. These numerous phosphorylation states of inositol along with the kinases and phosphatases that interconvert them comprise the inositol phosphate signaling pathway. Inositol hexakisphosphate kinases, or IP6Ks, convert the fully mono-phosphorylated inositol to the pyrophosphate 5-IP7 (also denoted IP7). There are three isoforms of IP6K: IP6K1, 2, and 3. Decades of work have established a central role for IP6Ks in cell signaling. Genetic and pharmacologic manipulation of IP6Ks in vivo and in vitro has shown their importance in metabolic disease, chronic kidney disease, insulin signaling, phosphate homeostasis, and numerous other cellular and physiologic processes. In addition to these peripheral processes, a growing body of literature has shown the role of IP6Ks in the central nervous system (CNS). IP6Ks have a key role in synaptic vesicle regulation, Akt/GSK3 signaling, neuronal migration, cell death, autophagy, nuclear translocation, and phosphate homeostasis. IP6Ks' regulation of these cellular processes has functional implications in vivo in behavior and CNS anatomy.
Collapse
Affiliation(s)
- Tyler Heitmann
- Department of Pharmacology and Molecular Sciences, School of Medicine, Johns Hopkins University, 725 North Wolfe Street Suite 300, Baltimore, MD 21205, USA
- The Lieber Institute for Brain Development, 855 North Wolfe Street Suite 300, Baltimore, MD 21205, USA
| | - James C. Barrow
- Department of Pharmacology and Molecular Sciences, School of Medicine, Johns Hopkins University, 725 North Wolfe Street Suite 300, Baltimore, MD 21205, USA
- The Lieber Institute for Brain Development, 855 North Wolfe Street Suite 300, Baltimore, MD 21205, USA
| |
Collapse
|