1
|
Kong M, Li J, Tong N. The role of peripheral blood microRNAs in the pathogenesis and treatment response of age-related macular degeneration. Future Sci OA 2025; 11:2482499. [PMID: 40183456 PMCID: PMC11980467 DOI: 10.1080/20565623.2025.2482499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 02/12/2025] [Indexed: 04/05/2025] Open
Abstract
Age-related macular degeneration is a leading cause of vision loss in aging populations, driven by complex interactions between genetic, environmental, and molecular factors. MicroRNAs have emerged as crucial regulators of cellular processes such as oxidative stress, inflammation, and angiogenesis, all of which contribute to AMD pathogenesis. This narrative review aims to summarize the involvement of peripheral blood microRNAs in the pathogenesis of AMD, focusing on key pathways such as oxidative stress, inflammation, and angiogenesis. Additionally, it explores their potential as biomarkers for predicting treatment response, particularly to anti-VEGF therapies. The potential of miRNAs as noninvasive biomarkers for early diagnosis and personalized treatment strategies is also explored, highlighting future directions for research.
Collapse
Affiliation(s)
- Meng Kong
- Department of Ophthalmology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, Shandong, China
- School of Medicine, Qingdao University, Qingdao, Shandong, China
| | - Jingwen Li
- Department of Ophthalmology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, Shandong, China
| | - Nianting Tong
- Department of Ophthalmology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, Shandong, China
- School of Medicine, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
2
|
Skowronska-Krawczyk D, Finnemann SC, Grant MB, Held K, Hu Z, Lu YR, Malek G, Sennlaub F, Sparrow J, D'Amore PA. Features that distinguish age-related macular degeneration from aging. Exp Eye Res 2025; 254:110303. [PMID: 39986366 PMCID: PMC11975485 DOI: 10.1016/j.exer.2025.110303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
Age-related macular degeneration (AMD) is a complex, multifactorial retinal degenerative disease that is influenced by both genetic and environmental factors. However, the strongest risk factor for AMD is advanced age. Several physiological processes are observed in aging tissues including a low level of chronic inflammation (inflammaging), changed lipid and energy metabolism, and senescence. Nevertheless, whereas everyone ages, only a subset of the population develops AMD. The purpose of this review is to delineate the differences on a cellular and molecular level between natural aging changes and those observed in AMD. We provide a unique perspective on how genetic and environmental components modulate aging in the eye, as well as the specific role of the aging RPE and retina in the pathogenesis of AMD. Topics discussed include the mechanism of aging and its relation to the mechanism of AMD, current animal models that can be used to recapitulate some aspects of the pathology, and potential interventions that shift the balance towards healthy aging and therefore attenuate, prevent or delay the initiation of the disease.
Collapse
Affiliation(s)
| | | | - Maria B Grant
- Department of Ophthalmology and Visual Sciences, Marnix E. Heersink School of Medicine University of Alabama at Birmingham, Alabama, USA
| | - Katherine Held
- Ophthalmology Discovery Research, AbbVie Inc., Irvine, CA, USA
| | - Zhengping Hu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA; Departments of Ophthalmology and Pathology, Harvard Medical School, Boston, MA, USA
| | | | - Goldis Malek
- Duke University, Departments of Ophthalmology, Pathology, and Cell Biology, Albert Eye Research Institute, Durham, NC, USA
| | - Florian Sennlaub
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Janet Sparrow
- Departments of Ophthalmology and Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Patricia A D'Amore
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA; Departments of Ophthalmology and Pathology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Qureshi M, Metin E, Kesim C, Zakeri Z, Rumman B, Sahin A, Tasoglu S, Hasanreisoglu M, Sokullu E. A Hydrogel-Based Multiplex Coculture Platform for Retinal Component Cells. ACS APPLIED BIO MATERIALS 2025; 8:2813-2823. [PMID: 39815824 PMCID: PMC12015949 DOI: 10.1021/acsabm.4c01376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 01/18/2025]
Abstract
There is growing interest in generating in vitro models of tissues and tissue-related diseases to mimic normal tissue organization and pathogenesis for different purposes. The retina is a highly complex multicellular tissue where the organization of the cellular components relative to each other is critical for retinal function. Many retinopathies arise due to the disruption of this order. In this study, we aimed to generate a coculture model of retina-derived cells, namely RPE and Müller cells, in multiplexed 3D hydrogels. Using methacrylated gelatin (GelMA)-based 3D hydrogels, we compared the behavior of RPE and Müller cells when they were cultured together. These patterned multiplex hydrogels containing cells were cultured for several days to reflect how cells would reorganize themselves in the presence of another cellular component derived from the same tissue. Here, we present a multicellular multiplex platform for the creation of cellular networks with cells of retinal tissue that can be easily adapted to create more complex tissue-like alternatives for large-scale tissue modeling and screening purposes. We also present an alternative method of coculture by generating spheroids from one of the components while keeping the other component free and motile in the hydrogel. The latter model predicts enhanced possibilities of cellular interactions by retarding the movement of one of the component cells.
Collapse
Affiliation(s)
- Mohammad
Haroon Qureshi
- Koç
University Translational Medicine Research Center, Koç University, Istanbul 34450, Turkey
- Dept.
of Molecular Biology and Genetics, Boğaziçi
University, Istanbul 34342, Turkey
| | - Ecem Metin
- Koç
University Translational Medicine Research Center, Koç University, Istanbul 34450, Turkey
| | - Cem Kesim
- Dept.
of Ophthalmology, Koç University
Hospital, Istanbul 34450, Turkey
| | - Ziba Zakeri
- Koç
University Translational Medicine Research Center, Koç University, Istanbul 34450, Turkey
| | - Baseerat Rumman
- Koç
University Translational Medicine Research Center, Koç University, Istanbul 34450, Turkey
| | - Afsun Sahin
- Koç
University Translational Medicine Research Center, Koç University, Istanbul 34450, Turkey
- Dept.
of Ophthalmology, Koç University
Hospital, Istanbul 34450, Turkey
| | - Savas Tasoglu
- Koç
University Translational Medicine Research Center, Koç University, Istanbul 34450, Turkey
- Dept.
of Mechanical Engineering, Koç University, Istanbul 34450, Turkey
| | - Murat Hasanreisoglu
- Koç
University Translational Medicine Research Center, Koç University, Istanbul 34450, Turkey
- Dept.
of Ophthalmology, Koç University
Hospital, Istanbul 34450, Turkey
| | - Emel Sokullu
- Koç
University Translational Medicine Research Center, Koç University, Istanbul 34450, Turkey
- Dept.
of Biophysics, Koç University School
of Medicine, Istanbul 34450, Turkey
| |
Collapse
|
4
|
Gnanaraj R, Lisker-Cervantes A, Patnaik J, Rajeswaren V, Mehta N, Gange W, Lynch AM, Palestine A, Mathias M, Manoharan N, Mandava N, Forest TEDC. Multimodal imaging biomarkers for progression from intermediate to advanced age-related macular degeneration (AMD): a 10-year prospective longitudinal cohort study from the University of Colorado AMD registry. BMJ Open Ophthalmol 2025; 10:e002112. [PMID: 40187761 PMCID: PMC11973788 DOI: 10.1136/bmjophth-2024-002112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/12/2025] [Indexed: 04/07/2025] Open
Abstract
OBJECTIVE To evaluate multimodal imaging (MMI) biomarkers for predicting progression from intermediate to advanced age-related macular degeneration (AMD). METHODS AND ANALYSIS This prospective longitudinal cohort study included patients with intermediate AMD (iAMD) enrolled in the University of Colorado AMD registry between July 2014 and August 2023, with follow-up through February 2024. At enrolment, patients' medical histories and MMI were collected. Baseline and follow-up imaging were reviewed for progression to geographic atrophy (GA) and neovascular AMD (nAMD). Univariate and multivariable Cox proportional hazard modelling with competing risks to determine HRs for progression. RESULTS A total of 367 patients (733 eyes) with iAMD were included in the study, with a median follow-up of 27.8 months. During this period, 100 eyes progressed to GA, 58 to nAMD. Adjusted for age, BMI and hypertension, progression to nAMD was significantly associated with soft drusen (HR 5.31, 95% CI 1.95 to 14.4, p=0.001), pigmentary changes (HR 2.74, 95% CI 1.52 to 4.92, p=0.0008) on colour fundus photography (CFP) and subretinal hyper-reflective material (SHRM) (HR 3.36, 95% CI 1.88 to 6.02, p<0.0001) and intraretinal hyper-reflective foci (IHRF) (HR 3.12, 95% CI 1.74 to 5.57, p=0.0001) on optical coherence tomography (OCT). Adjusted for age, progression to GA was predicted by soft drusen (HR 1.90, 95% CI 1.11 to 3.27, p=0.020), drusenoid pigment epithelial detachment (PED) (HR 5.51, 95% CI 2.49 to 12.2, p<0.0001), avascular non-drusenoid PED (HR 6.59, 95% CI 1.54 to 28.1, p=0.011), pigmentary changes (HR 4.44, 95% CI 2.84 to 6.96, p<0.0001) on CFP and nnSRF (HR 6.41, 95% CI 1.39 to 29.6, p=0.017), SHRM (HR 2.55, 95% CI 1.45 to 4.49, p=0.001), drusenoid PED (HR 2.25, 95% CI 1.43 to 3.55, p=0.0005), avascular non-drusenoid PED (HR 4.67, 95% CI 2.45 to 8.92, p<0.0001), IHRF (HR 6.27, 95% CI 3.89 to 10.1, p<0.0001) and incomplete retinal pigment epithelium and outer retinal atrophy (HR 9.42, 95% CI 5.82 to 15.2, p<0.0001) on OCT (table 3). CONCLUSIONS Key imaging biomarkers associated with the progression were identified, which may offer prognostic information for providers. However, the study is limited by its predominantly Caucasian population and single-centre design, which may affect the generalisability of certain biomarkers.
Collapse
Affiliation(s)
- Ramya Gnanaraj
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, Colorado, USA
| | - Andres Lisker-Cervantes
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, Colorado, USA
| | - Jennifer Patnaik
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, Colorado, USA
| | - Vivian Rajeswaren
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, Colorado, USA
| | - Nihaal Mehta
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, Colorado, USA
| | - William Gange
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, Colorado, USA
| | - Anne M Lynch
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, Colorado, USA
| | - Alan Palestine
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, Colorado, USA
| | - Marc Mathias
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, Colorado, USA
| | - Niranjan Manoharan
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, Colorado, USA
| | - Naresh Mandava
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, Colorado, USA
| | - Talisa E de Carlo Forest
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
5
|
Lee H, Zhang S, Ahn HR, Kim T, Kim J, Lee H, Jung SH, Kim J. Retinal Protective Effect of Mono-Ethyl Fumarate in Experimental Age-Related Macular Degeneration via Anti-Oxidative and Anti-Apoptotic Alterations. Int J Mol Sci 2025; 26:1413. [PMID: 40003880 PMCID: PMC11855399 DOI: 10.3390/ijms26041413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 02/27/2025] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of vision impairment in people over the age of 60. Currently, the FDA-approved drugs for AMD have various side effects, and there is a notable lack of drug development for dry AMD. This study aimed to explore the therapeutic effects of mono-ethyl fumarate (MEF) on AMD. MEF effectively protected ARPE-19 cells from cell death induced by a combination of A2E and blue light exposure. In a C57BL/6J mouse model of retinal degeneration caused by sodium iodate, MEF played a role in preserving retinal thickness and maintaining the layered structure of the retina. It was assessed via fundus imaging, optical coherence tomography, and hematoxylin and eosin staining. Treatment with MEF significantly increased the expression of antioxidant proteins such as HO-1, NQO1, and SOD1 in ARPE-19 cells. Additionally, treatment with MEF significantly increased the levels of the antioxidant proteins SOD1 and GPX4 in the mouse retina. Concurrently, it significantly reduced the levels of apoptosis-related factors, such as the Bax/Bcl-2 ratio and Caspase -3 cleavage. These findings suggest that MEF may represent a promising therapeutic candidate for the management of AMD.
Collapse
Affiliation(s)
- Hara Lee
- Center for Natural Product Efficacy Optimization, Natural Product Drug Development Division, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (H.L.); (S.Z.); (H.R.A.); (T.K.); (J.K.)
- Natural Product Applied Science, KIST School, University of Science and Technology (UST), Gangneung 25451, Republic of Korea
| | - Siqi Zhang
- Center for Natural Product Efficacy Optimization, Natural Product Drug Development Division, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (H.L.); (S.Z.); (H.R.A.); (T.K.); (J.K.)
- Natural Product Applied Science, KIST School, University of Science and Technology (UST), Gangneung 25451, Republic of Korea
| | - Hong Ryul Ahn
- Center for Natural Product Efficacy Optimization, Natural Product Drug Development Division, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (H.L.); (S.Z.); (H.R.A.); (T.K.); (J.K.)
| | - Taejung Kim
- Center for Natural Product Efficacy Optimization, Natural Product Drug Development Division, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (H.L.); (S.Z.); (H.R.A.); (T.K.); (J.K.)
- Natural Product Applied Science, KIST School, University of Science and Technology (UST), Gangneung 25451, Republic of Korea
| | - Jiyool Kim
- Center for Natural Product Efficacy Optimization, Natural Product Drug Development Division, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (H.L.); (S.Z.); (H.R.A.); (T.K.); (J.K.)
- Natural Product Applied Science, KIST School, University of Science and Technology (UST), Gangneung 25451, Republic of Korea
| | - Heesu Lee
- College of Dentistry, Gangneung Wonju National University, Gangneung 25457, Republic of Korea;
| | - Sang Hoon Jung
- Center for Natural Product Efficacy Optimization, Natural Product Drug Development Division, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (H.L.); (S.Z.); (H.R.A.); (T.K.); (J.K.)
- Natural Product Applied Science, KIST School, University of Science and Technology (UST), Gangneung 25451, Republic of Korea
| | - Joonki Kim
- Center for Natural Product Efficacy Optimization, Natural Product Drug Development Division, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (H.L.); (S.Z.); (H.R.A.); (T.K.); (J.K.)
- Natural Product Applied Science, KIST School, University of Science and Technology (UST), Gangneung 25451, Republic of Korea
| |
Collapse
|
6
|
Lee DMW, Zhang M, Snyder VC, Rossi EA. Multi-spectral autofluorescence variability of the individual retinal pigmented epithelial cells in healthy aging eyes. Sci Rep 2024; 14:30012. [PMID: 39622926 PMCID: PMC11612473 DOI: 10.1038/s41598-024-81433-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024] Open
Abstract
The retinal pigment epithelium (RPE) is vital for the healthy function of the retina. Cellular level changes in the RPE are not visualized with current clinical techniques due to a lack of spatial resolution. Fluorescence adaptive optics scanning light ophthalmoscopy (AOSLO) can image RPE cells by utilizing their intrinsic autofluorescence (AF). The RPE AF has been imaged with only a few discrete excitation and emission bands and the multi-spectral AF has not been interrogated systematically at the level of single cells. In this study, we imaged 16 healthy eyes (ages 20-75) with AOSLO to investigate the multi-spectral AF as a function of age and wavelength with excitation from 650 - 805 nm. Quantitative analysis showed that 720 nm light produced images with the highest SNR (65.0 dB). Spatial AF variability showed a trend to increase with aging, suggesting increased heterogeneity in RPE AF with age. Spatial variability in the multi-spectral fluorescence of RPE cells with age may be a consequence of normal age-related loss of RPE cells. Multi-spectral fluorescence AOSLO provides new insight into aging related changes to RPE cells and may be a useful tool for studying diseases that affect the RPE, such as age-related macular degeneration (AMD).
Collapse
Affiliation(s)
- Daniel M W Lee
- University of Pittsburgh | Swanson School of Engineering, Department of Bioengineering, Pittsburgh, 15213, USA.
| | - Min Zhang
- University of Pittsburgh | School of Medicine, Department of Ophthalmology, Pittsburgh, 15213, USA
| | - Valerie C Snyder
- University of Pittsburgh | School of Medicine, Department of Ophthalmology, Pittsburgh, 15213, USA
| | - Ethan A Rossi
- University of Pittsburgh | Swanson School of Engineering, Department of Bioengineering, Pittsburgh, 15213, USA
- University of Pittsburgh | School of Medicine, Department of Ophthalmology, Pittsburgh, 15213, USA
| |
Collapse
|
7
|
Park BS, Bang E, Hwangbo H, Kim GY, Cheong J, Choi YH. Urban aerosol particulate matter promotes cellular senescence through mitochondrial ROS-mediated Akt/Nrf2 downregulation in human retinal pigment epithelial cells. Free Radic Res 2024; 58:841-853. [PMID: 39645666 DOI: 10.1080/10715762.2024.2438919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/28/2024] [Accepted: 12/01/2024] [Indexed: 12/10/2024]
Abstract
Urban aerosol particulate matter (UPM) is widespread in the environment, and its concentration continues to increase. Several recent studies have reported that UPM results in premature cellular senescence, but few studies have investigated the molecular basis of UPM-induced senescence in retinal pigment epithelial (RPE) cells. In this study, we primarily evaluated UPM-induced premature senescence and the protective function of nuclear factor erythroid 2-related factor 2 (Nrf2) in human RPE ARPE-19 cells. The findings indicated that UPM exposure substantially induced premature cellular senescence in ARPE-19 cells, as observed by increased β-galactosidase activity, expression levels of senescence-associated marker proteins, and senescence-associated phenotypes. Such UPM-induced senescence is associated with mitochondrial oxidative stress-mediated phosphatidylinositol 3'-kinase/Akt/Nrf2 downregulation. Sulforaphane-mediated Nrf2 activation Sulforaphane-mediated upregulation of phosphorylated Nrf2 suppressed the decrease in its target antioxidant gene, NAD(P)H quinone oxidoreductase 1, under UPM, which notably prevented ARPE-19 cells from UPM-induced cellular senescence. By contrast, Nrf2 knockdown exacerbated cellular senescence and promoted oxidative stress. Collectively, our results demonstrate the regulatory role of Nrf2 in UPM-induced senescence of RPE cells and suggest that Nrf2 is a potential molecular target.
Collapse
Affiliation(s)
- Beom Su Park
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases and Anti-Aging Research Center, Dong-eui University, Busan, Republic of Korea
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea
| | - EunJin Bang
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases and Anti-Aging Research Center, Dong-eui University, Busan, Republic of Korea
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Republic of Korea
| | - Hyun Hwangbo
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases and Anti-Aging Research Center, Dong-eui University, Busan, Republic of Korea
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Science, Jeju National University, Jeju, Republic of Korea
| | - JaeHun Cheong
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea
| | - Yung Hyun Choi
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases and Anti-Aging Research Center, Dong-eui University, Busan, Republic of Korea
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Republic of Korea
| |
Collapse
|
8
|
Klochkov V, Chan CM, Lin WW. Methylglyoxal: A Key Factor for Diabetic Retinopathy and Its Effects on Retinal Damage. Biomedicines 2024; 12:2512. [PMID: 39595078 PMCID: PMC11592103 DOI: 10.3390/biomedicines12112512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Diabetic retinopathy is the most common retinal vascular disease, affecting the retina's blood vessels and causing chronic inflammation, oxidative stress, and, ultimately, vision loss. Diabetes-induced elevated glucose levels increase glycolysis, the main methylglyoxal (MGO) formation pathway. MGO is a highly reactive dicarbonyl and the most rapid glycation compound to form endogenous advanced glycation end products (AGEs). MGO can act both intra- and extracellularly by glycating molecules and activating the receptor for AGEs (RAGE) pathway. Conclusions: This review summarizes the sources of MGO formation and its actions on various cell pathways in retinal cells such as oxidative stress, glycation, autophagy, ER stress, and mitochondrial dysfunction. Finally, the detoxification of MGO by glyoxalases is discussed.
Collapse
Affiliation(s)
- Vladlen Klochkov
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Ophthalmology, Cardinal Tien Hospital, New Taipei City 23148, Taiwan
| | - Chi-Ming Chan
- Department of Ophthalmology, Cardinal Tien Hospital, New Taipei City 23148, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Wan-Wan Lin
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| |
Collapse
|
9
|
Özkan Karasu Y, Öner F, Kantarci A. Neutrophil response to Porphyromonas gingivalis is modulated by low-level laser application. Oral Dis 2024; 30:5268-5273. [PMID: 38591787 DOI: 10.1111/odi.14954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024]
Abstract
OBJECTIVES Neutrophil response is critical in inflammatory regulation and immune response to bacterial infections. During periodontal disease, pathogenic bacteria lead to exaggerated neutrophil responses. We hypothesized that low-level laser application (LLLT), therapeutic strategy for dampening inflammatory processes, will regulate neutrophil activity in response to periodontopathogens. MATERIALS AND METHODS The impact of LLLT on neutrophil responses was measured by light delivered at wavelength of 850 nm. The direct effect of LLLT on P. gingivalis A7436 was determined by flow cytometry using LIVE/DEADTM Cell Vitality kit. The phagocytosis of P. gingivalis A7436 by human neutrophils was measured using flow cytometry. Superoxide generation was measured by cytochrome-C-reduction in the presence of N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP; 1 mM). Cytokine release by neutrophils was measured by multiplex immunoassay. RESULTS The phagocytosis of P. gingivalis by primary human neutrophils was significantly reduced in response to LLLT (p < 0.05). While LLLT led to increased superoxide production in neutrophils that were not challenged by P. gingivalis, it dampened the increased superoxide and IL-6 release by the neutrophils in response to P. gingivalis. LLLT did not directly affect the viability of P. gingivalis. CONCLUSION These results suggested that LLLT can provide therapeutic strategy in periodontal disease, regulating the neutrophil response to P. gingivalis.
Collapse
Affiliation(s)
- Yerda Özkan Karasu
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Faculty of Dentistry, Department of Periodontology, Ataturk University, Erzurum, Turkey
| | - Fatma Öner
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Faculty of Dentistry, Department of Periodontology, Bahcesehir University, Istanbul, Turkey
| | - Alpdogan Kantarci
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- School of Dental Medicine, Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Wen C, Yu X, Zhu J, Zeng J, Kuang X, Zhang Y, Tang S, Zhang Q, Yan J, Shen H. Gastrodin ameliorates oxidative stress-induced RPE damage by facilitating autophagy and phagocytosis through PPARα-TFEB/CD36 signal pathway. Free Radic Biol Med 2024; 224:103-116. [PMID: 39173893 DOI: 10.1016/j.freeradbiomed.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
Age-related macular degeneration (AMD), the leading cause of irreversible blindness in the elderly, is primarily characterized by the degeneration of the retinal pigment epithelium (RPE). However, effective therapeutic options for dry AMD are currently lacking, necessitating further exploration into preventive and pharmaceutical interventions. This study aimed to investigate the protective effects of gastrodin on RPE cells exposed to oxidative stress. We constructed an in vitro oxidative stress model of 4-hydroxynonenal (4-HNE) and performed RNA-seq, and demonstrated the protective effect of gastrodin through mouse experiments. Our findings reveal that gastrodin can inhibit 4-HNE-induced oxidative stress, effectively improving the mitochondrial and lysosomal dysfunction of RPE cells. We further elucidated that gastrodin promotes autophagy and phagocytosis through activating the PPARα-TFEB/CD36 signaling pathway. Interestingly, these outcomes were corroborated in a mouse model, in which gastrodin maintained retinal integrity and reduced RPE disorganization and degeneration under oxidative stress. The accumulation of LC3B and SQSTM1 in mouse RPE-choroid was also reduced. Moreover, activating PPARα and downstream pathways to restore autophagy and phagocytosis, thereby countering RPE injury from oxidative stress. In conclusion, this study demonstrated that gastrodin maintains the normal function of RPE cells by reducing oxidative stress, enhancing their phagocytic function, and restoring the level of autophagic flow. These findings suggest that gastrodin is a novel formulation with potential applications in the development of AMD disease.
Collapse
Affiliation(s)
- Chaojuan Wen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xinyue Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jingya Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jingshu Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xielan Kuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; Eye Biobank, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Youao Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Shiyu Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jianhua Yan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| | - Huangxuan Shen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; Eye Biobank, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| |
Collapse
|
11
|
Spaide RF. PATHWAYS TO GEOGRAPHIC ATROPHY IN NONNEOVASCULAR AGE-RELATED MACULAR DEGENERATION. Retina 2024; 44:1655-1665. [PMID: 39121492 DOI: 10.1097/iae.0000000000004242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
PURPOSE To characterize and quantify the precursor lesions of geographic atrophy in eyes with age-related macular degeneration. METHODS A retrospective study of eyes with a minimum of 6-month follow-up before developing geographic atrophy. Evaluations included color and autofluorescence imaging, along with spectral-domain optical coherence tomography, employing definitions from the Consensus of Atrophy Meeting Group and Consensus on Neovascular Age-Related Macular Degeneration Nomenclature Study Group. RESULTS There were 55 eyes of 44 patients, who had a mean age of 81.3 years at onset of atrophy; 35 (63.6%) were female. The mean duration of follow-up before and after the advent of geographic atrophy was 4.9 years and 1.2 years, respectively. Geographic atrophy was preceded by collapse of a druse in 41 eyes (74.5%). Of these, 29 (70.7%) were drusenoid pigment epithelial detachments. Among the eyes with regressing drusen, there were 9 with overlying vitelliform deposit, and all had concurrent subretinal drusenoid deposit; however, 19 of 30 eyes with no vitelliform deposit overlying the druse had concurrent subretinal drusenoid deposit, a difference that was significant ( P < 0.001). Regression of subretinal drusenoid deposit was found in 4 eyes (7.3%), regression of vitelliform deposit associated with subretinal drusenoid deposit in 5 (9.1%), and regression of vitelliform deposit in eyes concurrently harboring drusen was found in 3 (5.4%) and regression of vitelliform deposit alone in 2 (3.6%) at the site of eventual development of geographic atrophy. CONCLUSION Geographic atrophy appears to develop from multiple pathways as manifested by the many precursor lesions, all various forms of extracellular deposit, that upon regression, result in a common end-stage appearance.
Collapse
Affiliation(s)
- Richard F Spaide
- Vitreous, Retina, Macula Consultants of New York, New York, New York
| |
Collapse
|
12
|
Wojciechowski AM, Bell BA, Song Y, Anderson BD, Conomikes A, Petruconis C, Dunaief JL. Inducible RPE-specific GPX4 knockout causes oxidative stress and retinal degeneration with features of age-related macular degeneration. Exp Eye Res 2024; 247:110028. [PMID: 39128667 PMCID: PMC11392608 DOI: 10.1016/j.exer.2024.110028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/11/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
Age-related macular degeneration (AMD) is one of the leading causes of vision loss in the elderly. This disease involves oxidative stress burden in the retina leading to death of retinal pigment epithelial (RPE) cells and photoreceptors. The retina is susceptible to oxidative stress, in part due to high metabolic activity and high concentration of polyunsaturated fatty acids that undergo lipid peroxidation chain reactions. Antioxidant enzymes exist in the retina to combat this stress, including glutathione peroxidase 4 (GPX4). GPX4 specifically reduces oxidized lipids, protecting against lipid peroxidation-induced oxidative stress, which is noted in dry AMD. We hypothesize that Gpx4 knockout within the RPE will result in an environment of chronic oxidative stress yielding degeneration akin to AMD. C57BL/6J mice with a floxed Gpx4 gene were mated with Rpe65Cre/ER mice. Offspring containing Rpe65Cre ± alleles and either Gpx4 WT or Gpx4 fl/fl alleles were administered tamoxifen to induce Gpx4 knockout in Gpx4 fl/fl mice. At sequential timepoints, retinal phenotypes were assessed via in vivo imaging utilizing confocal scanning laser ophthalmoscopy and optical coherence tomography (OCT), and visual function was probed by electroretinography. Retinas were studied post-mortem by immunohistochemical analyses, electron microscopy, plastic sectioning, and quantitative polymerase chain reaction and Western analyses. The RPE-specific Gpx4 knockout model was validated via Western analysis indicating diminished GPX4 protein only within the RPE and not the neural retina. Following Gpx4 knockout, RPE cells became dysfunctional and died, with significant cell loss occurring 2 weeks post-knockout. Progressive thinning of the photoreceptor layer followed RPE degeneration and was accompanied by loss of visual function. OCT and light microscopy showed hyperreflective foci and enlarged, pigmented cells in and above the RPE layer. Electron microscopy revealed decreased mitochondrial cristae and loss of basal and apical RPE ultrastructure. Finally, there was increased carboxyethylpyrrole staining, indicating oxidation of docosahexaenoic acid, and increased levels of mRNAs encoding oxidative stress-associated genes in the RPE and photoreceptors. Overall, we show that RPE-localized GPX4 is necessary for the health of the RPE and outer retina, and that knockout recapitulates phenotypes of dry AMD.
Collapse
Affiliation(s)
- Alaina M Wojciechowski
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Brent A Bell
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Ying Song
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Brandon D Anderson
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Alexa Conomikes
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Cecilia Petruconis
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Joshua L Dunaief
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
13
|
Hu ZL, Wang YX, Lin ZY, Ren WS, Liu B, Zhao H, Qin Q. Regulatory factors of Nrf2 in age-related macular degeneration pathogenesis. Int J Ophthalmol 2024; 17:1344-1362. [PMID: 39026906 PMCID: PMC11246936 DOI: 10.18240/ijo.2024.07.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/06/2024] [Indexed: 07/20/2024] Open
Abstract
Age-related macular degeneration (AMD) is a complicated disease that causes irreversible visual impairment. Increasing evidences pointed retinal pigment epithelia (RPE) cells as the decisive cell involved in the progress of AMD, and the function of anti-oxidant capacity of PRE plays a fundamental physiological role. Nuclear factor erythroid 2 related factor 2 (Nrf2) is a significant transcription factor in the cellular anti-oxidant system as it regulates the expression of multiple anti-oxidative genes. Its functions of protecting RPE cells against oxidative stress (OS) and ensuing physiological changes, including inflammation, mitochondrial damage and autophagy dysregulation, have already been elucidated. Understanding the roles of upstream regulators of Nrf2 could provide further insight to the OS-mediated AMD pathogenesis. For the first time, this review summarized the reported upstream regulators of Nrf2 in AMD pathogenesis, including proteins and miRNAs, and their underlying molecular mechanisms, which may help to find potential targets via regulating the Nrf2 pathway in the future research and further discuss the existing Nrf2 regulators proved to be beneficial in preventing AMD.
Collapse
Affiliation(s)
- Zi-Ling Hu
- Five Year Program of Ophthalmology and Optometry 2019, Beijing Tong Ren Hospital, Capital Medical University, Beijing 100054, China
| | - Yu-Xuan Wang
- Four Year Program of Traditional Chinese Pharmacy 2020, School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Zi-Yue Lin
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Wen-Shuo Ren
- Four Year Program of Traditional Chinese Pharmacy 2020, School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Bo Liu
- Five Year Program of Ophthalmology and Optometry 2021, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Hui Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing 100069, China
| | - Qiong Qin
- Biochemistry & Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
14
|
He J, Xiong S, Zhou W, Qiu H, Rao Y, Liu Y, Shen G, Zhao P, Chen G, Li J. Long-term polystyrene nanoparticles exposure reduces electroretinal responses and exacerbates retinal degeneration induced by light exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134586. [PMID: 38776811 DOI: 10.1016/j.jhazmat.2024.134586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
The impact of plastic pollution on living organisms have gained significant research attention. However, the effects of nanoplastics (NPs) on retina remain unclear. This study aimed to investigate the effect of long-term polystyrene nanoparticles (PS-NPs) exposure on mouse retina. Eight weeks old C57BL/6 J mice were exposed to PS-NPs at the diameter of 100 nm and concentration of 10 mg/L in drinking water for 3 months. PS-NPs were able to penetrate the blood-retina barrier, accumulated at retinal tissue, caused increased oxidative stress level and reduced scotopic electroretinal responses without remarkable structural damage. PS-NPs exposure caused cytotoxicity and reactive oxygen species accumulation in cultured photoreceptor cell. PS-NPs exposure increased oxidative stress level in retinal pigment epithelial (RPE) cells, leading to changes of gene and protein expression indicative of compromised phagocytic activity and cell junction formation. Long-term PS-NPs exposure also aggravated light-induced photoreceptor cell degeneration and retinal inflammation. The transcriptomic profile of PS-NPs-exposed, light-challenged retinal tissue shared similar features with those of age-related macular degeneration (AMD) patients in the activation of complement-mediated phagocytic and proinflammatory responses. Collectively, these findings demonstrated the oxidative stress- and inflammation-mediated detrimental effect of PS-NPs on retinal function, suggested that long-term PS-NPs exposure could be an environmental risk factor contributing to retinal degeneration.
Collapse
Affiliation(s)
- Jincan He
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092 China
| | - Shiyi Xiong
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China
| | - Wenchuan Zhou
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092 China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuqing Rao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092 China
| | - Ya Liu
- Institute of Traditional Chinese Medicine and Stem Cell Research, College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Guiyan Shen
- Institute of Traditional Chinese Medicine and Stem Cell Research, College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092 China
| | - Guangquan Chen
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China.
| | - Jing Li
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092 China.
| |
Collapse
|
15
|
Li Q, Peng G, Liu H, Wang L, Lu R, Li L. Molecular mechanisms of secretory autophagy and its potential role in diseases. Life Sci 2024; 347:122653. [PMID: 38663839 DOI: 10.1016/j.lfs.2024.122653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
Autophagy is a cellular degradation system that recycles or degrades damaged organelles, viral particles, and aggregated proteins through the lysosomal pathway. Autophagy plays an indispensable role in cellular homeostasis and communication processes. An interesting aspect is that autophagy also mediates the secretion of cellular contents, a process known as secretory autophagy. Secretory autophagy differs from macroautophagy, which sequesters recruited proteins, organelles, or viral particles into autophagosomes and degrades these sequesters in lysosomes, while the secretory autophagy pathway participates in the extracellular export of cellular contents sequestered by autophagosomes through autophagy and endosomal modulators. Recent evidence reveals that secretory autophagy is pivotal in the occurrence and progression of diseases. In this review, we summarize the molecular mechanisms of secretory autophagy. Furthermore, we review the impact of secretory autophagy on diseases, including cancer, viral infectious diseases, neurodegenerative diseases, and cardiovascular diseases. Considering the pleiotropic actions of secretory autophagy on diseases, studying the mechanism of secretory autophagy may help to understand the relevant pathophysiological processes.
Collapse
Affiliation(s)
- Qin Li
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, Hunan, China
| | - Guolong Peng
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, Hunan, China
| | - Huimei Liu
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, Hunan, China
| | - Liwen Wang
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, Hunan, China
| | - Ruirui Lu
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, Hunan, China.
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
16
|
Messner A, Aranha dos Santos V, Puchner S, Stegmann H, Schlatter A, Schmidl D, Leitgeb R, Schmetterer L, Werkmeister RM. The Impact of Photopigment Bleaching on the Human Rod Photoreceptor Subretinal Space Measured Via Optical Coherence Tomography. Invest Ophthalmol Vis Sci 2024; 65:20. [PMID: 38470325 PMCID: PMC10941995 DOI: 10.1167/iovs.65.3.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/27/2024] [Indexed: 03/13/2024] Open
Abstract
Purpose The purpose of this study was to investigate rod photopigment bleaching-driven intrinsic optical signals (IOS) in the human outer retina and its measurement repeatability based on a commercial optical coherence tomography (OCT) platform. Methods The optical path length of the rod photoreceptor subretinal space (SRS), that is, the distance between signal bands of rod outer segment tips and retinal pigment epithelium, was measured in 15 healthy subjects in ambient light and during a long-duration bleaching white-light exposure. Results On 2 identical study days (day 1 and day 2 [D1 and D2]), light stimulation resulted in a significant decrease in rod SRS by 21.3 ± 7.6% and 19.8 ± 8.5% (both P < 0.001), respectively. The test-retest reliability of the SRS maximum change of an individual subject was moderate for single measures (intraclass correlation coefficient [ICC] = 0.730, 95% confidence interval [CI] = 0.376, 0.900, P < 0.001) and good for average measures (ICC = 0.844, 95% CI = 0.546, 0.947, P < 0.001). The mean area under the stimulus response curve with values of 14.8 ± 9.4 and 15.5 ± 7.5 µm × minutes (P = 0.782) showed excellent agreement between the stimulus response on D1 and D2. Intermittent dark adaptation of the retina led to an initial increase of the SRS by 6.1% (P = 0.018) and thereafter showed a decrease toward baseline, despite continued dark adaptation. Conclusions The data indicate the potential of commercial OCT in measuring slow IOS in the outer retina suggesting that the rod SRS could serve as a biomarker for photoreceptor function. The presented approach could provide an easily implementable clinical tool for the early detection of diseases affecting photoreceptor health.
Collapse
Affiliation(s)
- Alina Messner
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | - Stefan Puchner
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Hannes Stegmann
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Andreas Schlatter
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Vienna Institute for Research in Ocular Surgery (VIROS), Department of Ophthalmology, Hanusch Hospital, Vienna, Austria
| | - Doreen Schmidl
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Rainer Leitgeb
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Leopold Schmetterer
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Singapore Eye Research Institute, The Academia, Singapore, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
- SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - René M. Werkmeister
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
17
|
Zhao Y, Li M, Mao J, Su Y, Huang X, Xia W, Leng X, Zan T. Immunomodulation of wound healing leading to efferocytosis. SMART MEDICINE 2024; 3:e20230036. [PMID: 39188510 PMCID: PMC11235971 DOI: 10.1002/smmd.20230036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/18/2023] [Indexed: 08/28/2024]
Abstract
Effectively eliminating apoptotic cells is precisely controlled by a variety of signaling molecules and a phagocytic effect known as efferocytosis. Abnormalities in efferocytosis may bring about the development of chronic conditions, including angiocardiopathy, chronic inflammatory diseases and autoimmune diseases. During wound healing, failure of efferocytosis leads to the collection of apoptosis, the release of necrotic material and chronic wounds that are difficult to heal. In addition to the traditional phagocytes-macrophages, other important cell species including dendritic cells, neutrophils, vascular endothelial cells, fibroblasts and keratinocytes contribute to wounding healing. This review summarizes how efferocytosis-mediated immunomodulation plays a repair-promoting role in wound healing, providing new insights for patients suffering from various cutaneous wounds.
Collapse
Affiliation(s)
- Yun Zhao
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Cosmetic and Plastic SurgeryAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Minxiong Li
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jiayi Mao
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yinghong Su
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xin Huang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wenzheng Xia
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiangfeng Leng
- Department of Cosmetic and Plastic SurgeryAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Tao Zan
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|