1
|
Wang H, Xia H, Bai J, Wang Z, Wang Y, Lin J, Cheng C, Chen W, Zhang J, Zhang Q, Liu Q. H4K12 lactylation-regulated NLRP3 is involved in cigarette smoke-accelerated Alzheimer-like pathology through mTOR-regulated autophagy and activation of microglia. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137310. [PMID: 39862777 DOI: 10.1016/j.jhazmat.2025.137310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/10/2025] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
Cigarette smoke (CS), an indoor environmental pollution, is an environmental risk factor for diverse neurological disorders. However, the neurotoxicological effects and mechanisms of CS on Alzheimer's disease (AD) progression remain unclear. We found that CS accelerated the progression of AD, including increasing β-amyloid (Aβ) plaque deposition and exacerbating cognitive decline. Mechanistically, CS exposure increased the levels of NOD-like receptor protein 3 (NLRP3), which impaired autophagic flux in microglia by activating the mammalian target of rapamycin (mTOR) signal. Metabolomics analysis revealed an upregulation of lactate levels and an increase in global protein lysine lactylation in the brain tissue of CS-exposed AD-transgenic mice. Immunoprecipitation-Mass Spectrometry and chromatin immunoprecipitation assays demonstrated that CS elevates H4K12 lactylation (H4K12la) levels, which accumulate at the promoter region of NLRP3, leading to the activation of its transcription. Via inhibiting lactate or NLRP3 activation, oxamate and MCC950 alleviates these CS-induced effects. Therefore, our data suggest that the CS-induced increase in lactate levels triggers NLRP3 transcriptional activation through H4K12la, which subsequently leads to mTOR-mediated autophagy dysfunction in microglia, promoting microglial activation and resulting in Aβ plaque accumulation in AD-transgenic mice. This provides a new mechanism and potential therapeutic target for AD associated with environmental factors.
Collapse
Affiliation(s)
- Hailan Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Haibo Xia
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Jun Bai
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Zhongyue Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Yue Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Jiaheng Lin
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Cheng Cheng
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Weiyong Chen
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Jingshu Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Qingbi Zhang
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou 646000, Sichuan, PR China.
| | - Qizhan Liu
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China.
| |
Collapse
|
2
|
Qin Y, Wu F, Wang R, Wang J, Zhang J, Pan Y. Modulation of Autophagy on Cinnamaldehyde Induced THP-1 Cell Activation. Int J Mol Sci 2025; 26:2377. [PMID: 40141022 PMCID: PMC11941762 DOI: 10.3390/ijms26062377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Cinnamaldehyde (CIN), which is a cosmetic fragrance allergen regulated by the European Union, can induce allergic contact dermatitis in consumers, reducing their quality of life. Autophagy may be associated with the dendritic cell (DC) response to chemical sensitizers. We hypothesized that CIN would activate DCs through autophagy during skin sensitization. In this study, Tohoku Hospital Pediatrics-1 cells (THP-1 cells) were used as an in vitro DC model, and we evaluated the expression of cell activation markers, intracellular oxidative stress, and autophagy pathway-related genes in response to CIN in THP-1 cells. CIN exposure activated THP-1 cells, which presented increases in CD54 and CD86 expression and ROS generation. Transcriptomic analysis revealed that the genes that were differentially expressed after CIN stimulation were mostly associated with autophagy. The autophagy markers LC3B, p62, and ATG5 had upregulated mRNA and protein levels after CIN exposure. Furthermore, the effects of the autophagy inhibitor Baf-A1 and the autophagy activator rapamycin were investigated on CIN-treated cells. Pretreatment with Baf-A1 in THP-1 cells impaired autophagic flux and dramatically promoted cell activation and oxidative stress triggered by CIN. Conversely, rapamycin inhibited cell activation and the ROS content in CIN-challenged cells while increasing autophagy levels via a reduction in mTOR expression. These results suggest that the autophagy pathway has a pivotal influence on the regulation of CIN-induced activation in THP-1 cells, which provides new insight into the pathogenesis and precise therapeutic strategies for ACD.
Collapse
Affiliation(s)
- Yi Qin
- Department of Cosmetics, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Q.); (F.W.); (R.W.); (J.W.); (J.Z.)
- Beijing Key Laboratory of Plant Research and Development, Beijing 100048, China
| | - Fan Wu
- Department of Cosmetics, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Q.); (F.W.); (R.W.); (J.W.); (J.Z.)
- Beijing Key Laboratory of Plant Research and Development, Beijing 100048, China
| | - Rui Wang
- Department of Cosmetics, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Q.); (F.W.); (R.W.); (J.W.); (J.Z.)
- Beijing Key Laboratory of Plant Research and Development, Beijing 100048, China
| | - Jun Wang
- Department of Cosmetics, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Q.); (F.W.); (R.W.); (J.W.); (J.Z.)
- Beijing Key Laboratory of Plant Research and Development, Beijing 100048, China
| | - Jiaqi Zhang
- Department of Cosmetics, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Q.); (F.W.); (R.W.); (J.W.); (J.Z.)
- Beijing Key Laboratory of Plant Research and Development, Beijing 100048, China
| | - Yao Pan
- Department of Cosmetics, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Q.); (F.W.); (R.W.); (J.W.); (J.Z.)
- Beijing Key Laboratory of Plant Research and Development, Beijing 100048, China
| |
Collapse
|
3
|
Li X, Guan W, Liu H, Yuan J, Wang F, Guan B, Chen J, Lu Q, Zhang L, Xu G. Targeting PNPO to suppress tumor growth via inhibiting autophagic flux and to reverse paclitaxel resistance in ovarian cancer. Apoptosis 2024; 29:1546-1563. [PMID: 38615082 PMCID: PMC11416418 DOI: 10.1007/s10495-024-01956-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2024] [Indexed: 04/15/2024]
Abstract
Our previous study showed that pyridoxine 5'-phosphate oxidase (PNPO) is a tissue biomarker of ovarian cancer (OC) and has a prognostic implication but detailed mechanisms remain unclear. The current study focused on PNPO-regulated lysosome/autophagy-mediated cellular processes and the potential role of PNPO in chemoresistance. We found that PNPO was overexpressed in OC cells and was a prognostic factor in OC patients. PNPO significantly promoted cell proliferation via the regulation of cyclin B1 and phosphorylated CDK1 and shortened the G2M phase in a cell cycle. Overexpressed PNPO enhanced the biogenesis and perinuclear distribution of lysosomes, promoting the degradation of autophagosomes and boosting the autophagic flux. Further, an autolysosome marker LAMP2 was upregulated in OC cells. Silencing LAMP2 suppressed cell growth and induced cell apoptosis. LAMP2-siRNA blocked PNPO action in OC cells, indicating that the function of PNPO on cellular processes was mediated by LAMP2. These data suggest the existence of the PNPO-LAMP2 axis. Moreover, silencing PNPO suppressed xenographic tumor formation. Chloroquine counteracted the promotion effect of PNPO on autophagic flux and inhibited OC cell survival, facilitating the inhibitory effect of PNPO-shRNA on tumor growth in vivo. Finally, PNPO was overexpressed in paclitaxel-resistant OC cells. PNPO-siRNA enhanced paclitaxel sensitivity in vitro and in vivo. In conclusion, PNPO has a regulatory effect on lysosomal biogenesis that in turn promotes autophagic flux, leading to OC cell proliferation, and tumor formation, and is a paclitaxel-resistant factor. These data imply a potential application by targeting PNPO to suppress tumor growth and reverse PTX resistance in OC.
Collapse
Affiliation(s)
- Xin Li
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wencai Guan
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, China
| | - Huiqiang Liu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jia Yuan
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fanchen Wang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bin Guan
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Junyu Chen
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qi Lu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Lingyun Zhang
- Department of Medical Oncology, Shanghai Geriatric Medical Center, Shanghai, China.
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Lei X, Wang J, Zhang F, Tang X, He F, Cheng S, Zou F, Yan W. Micheliolide ameliorates lipopolysaccharide-induced acute kidney injury through suppression of NLRP3 activation by promoting mitophagy via Nrf2/PINK1/Parkin axis. Int Immunopharmacol 2024; 138:112527. [PMID: 38950457 DOI: 10.1016/j.intimp.2024.112527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/05/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Sepsis-associated acute kidney injury (SA-AKI) represents a frequent complication of in critically ill patients. The objective of this study is to illuminate the potential protective activity of Micheliolide (MCL) and its behind mechanism against SA-AKI. METHODS The protective potential of MCL on SA-AKI was investigated in lipopolysaccharide (LPS) treated HK2 cells and SA-AKI mice model. The mitochondrial damage was determined by detection of reactive oxygen species and membrane potential. The Nrf2 silencing was achieved by transfection of Nrf2-shRNA in HK2 cells, and Nrf2 inhibitor, ML385 was employed in SA-AKI mice. The mechanism of MCL against SA-AKI was evaluated through detecting hallmarks related to inflammation, mitophagy and Nrf2 pathway via western blotting, immunohistochemistry, and enzyme linked immunosorbent assay. RESULTS MCL enhanced viability, suppressed apoptosis, decreased inflammatory cytokine levels and improved mitochondrial damage in LPS-treated HK2 cells, and ameliorated renal injury in SA-AKI mice. Moreover, MCL could reduce the activation of NLRP3 inflammasome via enhancing mitophagy. Additionally, Nrf2 deficiency reduced the suppression effect of MCL on NLRP3 inflammasome activation and blocked the facilitation effect of MCL on mitophagy in LPS-treated HK2 cells, the consistent is true for ML385 treatment in SA-AKI mice. CONCLUSIONS MCL might target Nrf2 and further reduce the NLRP3 inflammasome activation via enhancing mitophagy, which alleviated SA-AKI.
Collapse
Affiliation(s)
- Xianghong Lei
- Department of Nephrology, The First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province 341000, China.
| | - Jiyang Wang
- Department of Nephrology, The First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province 341000, China
| | - Fengxia Zhang
- Department of Nephrology, The First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province 341000, China
| | - Xianhu Tang
- Department of Nephrology, The First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province 341000, China
| | - Fengxia He
- Department of Nephrology, The First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province 341000, China
| | - Shengyu Cheng
- Department of Nephrology, The First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province 341000, China
| | - Fangqin Zou
- Department of Nephrology, The First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province 341000, China
| | - Wenjun Yan
- Department of Nephrology, The First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province 341000, China
| |
Collapse
|
5
|
Zou T, Xie R, Huang S, Lu D, Liu J. Potential role of modulating autophagy levels in sensorineural hearing loss. Biochem Pharmacol 2024; 222:116115. [PMID: 38460910 DOI: 10.1016/j.bcp.2024.116115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/20/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
In recent years, extensive research has been conducted on the pathogenesis of sensorineural hearing loss (SNHL). Apoptosis and necrosis have been identified to play important roles in hearing loss, but they cannot account for all hearing loss. Autophagy, a cellular process responsible for cell self-degradation and reutilization, has emerged as a significant factor contributing to hearing loss, particularly in cases of autophagy deficiency. Autophagy plays a crucial role in maintaining cell health by exerting cytoprotective and metabolically homeostatic effects in organisms. Consequently, modulating autophagy levels can profoundly impact the survival, death, and regeneration of cells in the inner ear, including hair cells (HCs) and spiral ganglion neurons (SGNs). Abnormal mitochondrial autophagy has been demonstrated in animal models of SNHL. These findings indicate the profound significance of comprehending autophagy while suggesting that our perspective on this cellular process holds promise for advancing the treatment of SNHL. Thus, this review aims to clarify the pathogenic mechanisms of SNHL and the role of autophagy in the developmental processes of various cochlear structures, including the greater epithelial ridge (GER), SGNs, and the ribbon synapse. The pathogenic mechanisms of age-related hearing loss (ARHL), also known as presbycusis, and the latest research on autophagy are also discussed. Furthermore, we underscore recent findings on the modulation of autophagy in SNHL induced by ototoxic drugs. Additionally, we suggest further research that might illuminate the complete potential of autophagy in addressing SNHL, ultimately leading to the formulation of pioneering therapeutic strategies and approaches for the treatment of deafness.
Collapse
Affiliation(s)
- Ting Zou
- Department of Otorhinolaryngology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Renwei Xie
- Department of Otorhinolaryngology, Renhe Hospital, Baoshan District, Shanghai, China
| | - Sihan Huang
- Department of Otorhinolaryngology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dingkun Lu
- Cardiac Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Liu
- Department of Otorhinolaryngology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|