1
|
Zhao CY, Liu F, Dong JM, Du CP, Zhang CL, Wang CY, Zhang XY, Zhou Q, Liu W, Yang AJ, Zhou YN, Dang Y, Shang LN, Wang M, Li M. SDCBP Orchestrated Gastric Cancer Aggression Through Epithelial- Mesenchymal Transition and Macrophages M2 Polarization. Mol Carcinog 2025. [PMID: 40256939 DOI: 10.1002/mc.23923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/13/2025] [Accepted: 03/24/2025] [Indexed: 04/22/2025]
Abstract
Gastric cancer remains a significant global health burden with limited treatment options and high mortality. Syndecan-binding protein (SDCBP), a scaffolding protein involved in tumor differentiation, has attracted attention as a potential therapeutic target in cancers. However, its precise role in gastric cancer progression is not fully understood. In this study, through bioinformatics analysis and gastric cancer samples detection, we discovered that SDCBP was highly expressed in gastric cancer tissues, which was correlated with clinicopathological features such as tumor invasion depth and distant metastasis, and exhibited heterogeneity across histological or molecular subtypes. Elevated SDCBP expression promoted the proliferation, invasion and migration of gastric cancer cells, and modulated epithelial-mesenchymal transition (EMT) via the ERK signaling pathway. Xenograft experiments in mice confirmed that inhibiting SDCBP or ERK signaling could delay cancer progression. We also found that gastric cancer cells with SDCBP knockdown were able to inhibit the M2 polarization of cocultured macrophages, reduce chemotaxis and enhance phagocytosis of macrophages. Therefore, SDCBP plays a crucial role in driving gastric cancer progression. Targeting SDCBP in gastric cancer can partially reverse the malignant phenotype, and SDCBP is expected to be a promising therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Chan-Yuan Zhao
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Feng Liu
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- The Forensic Identification Unit of Lanzhou University, Lanzhou, China
| | - Jia-Ming Dong
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Cun-Pu Du
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Chen-Li Zhang
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- The Forensic Identification Unit of Lanzhou University, Lanzhou, China
| | - Chen-Yu Wang
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- The Forensic Identification Unit of Lanzhou University, Lanzhou, China
| | - Xiao-Yu Zhang
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Quan Zhou
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Wei Liu
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- The Forensic Identification Unit of Lanzhou University, Lanzhou, China
| | - Ai-Jun Yang
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- The Forensic Identification Unit of Lanzhou University, Lanzhou, China
| | - Yong-Ning Zhou
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yun Dang
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Gansu Provincial Maternity and Child-care Hospital/Gansu Provincial Central Hospital, Lanzhou, China
| | - Li-Na Shang
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Medical College of Northwest Minzu University, Lanzhou, China
| | - Min Wang
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- The Forensic Identification Unit of Lanzhou University, Lanzhou, China
- Experimental Teaching Center of Basic Medicine, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Min Li
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- The Forensic Identification Unit of Lanzhou University, Lanzhou, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, China
| |
Collapse
|
2
|
Roskoski R. Properties of FDA-approved small molecule protein kinase inhibitors: a 2025 update. Pharmacol Res 2025:107723. [PMID: 40252783 DOI: 10.1016/j.phrs.2025.107723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 03/31/2025] [Accepted: 03/31/2025] [Indexed: 04/21/2025]
Abstract
Because of the deregulation of protein kinase action in many inflammatory diseases and cancer, the protein kinase family has become one of the most significant drug targets in the 21st century. There are 85 FDA-approved protein kinase antagonists that target about two dozen different enzymes and four of these drugs were approved in 2024 and a fifth was approved in 2025. Of these drugs, five target dual specificity protein kinases (MEK1/2), fourteen inhibit protein-serine/threonine protein kinases, twenty-one block nonreceptor protein-tyrosine kinases, and 45 target receptor protein-tyrosine kinases. The data indicate that 75 of these drugs are prescribed for the treatment of neoplasms. Seven drugs (abrocitinib, baricitinib, deucravacitinib, deuruxolitinib, ritlecitinib, tofacitinib, upadacitinib) are prescribed for the management of inflammatory diseases (atopic dermatitis, rheumatoid arthritis, psoriasis, alopecia areata, and ulcerative colitis). Of the 85 FDA-approved agents, about two dozen are used in the treatment of multiple diseases. The following four drugs received FDA approval in 2024 - deuruxolitinib (alopecia areata), ensartinib and lazertinib (non-small cell lung cancer), and tovorafenib (pediatric glioma) while mirdametinib was approved in 2025 for the treatment of type I neurofibromatosis (von Recklinghausen disease). Apart from netarsudil, temsirolimus, and trilaciclib, the approved protein kinase blockers are orally bioavailable. This article summarizes the physicochemical properties of all 85 FDA-approved small molecule protein kinase inhibitors including the molecular weight, number of hydrogen bond donors/acceptors, ligand efficiency, lipophilic efficiency, polar surface area, and solubility. A total of 39 of the 85 FDA-approved drugs have a least one Lipinski rule of 5 violation.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 221 Haywood Knolls Drive, Hendersonville, North Carolina 28791, United States.
| |
Collapse
|
3
|
Rastogi S, Perino S, Lal-Nag M, Wang Y, Blackman SC, Venetsanakos E. Preclinical Activity of the Type II RAF Inhibitor Tovorafenib in Tumor Models Harboring Either a BRAF Fusion or an NF1 Loss-of-Function Mutation. CANCER RESEARCH COMMUNICATIONS 2025; 5:668-679. [PMID: 40111124 DOI: 10.1158/2767-9764.crc-24-0451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/18/2024] [Accepted: 03/04/2025] [Indexed: 03/22/2025]
Abstract
SIGNIFICANCE Tovorafenib demonstrated efficacy in BRAF fusion but not in NF1-LOF mutant tumor models. Vertical pathway inhibition by combining type II RAF plus MEK inhibitors may have clinical relevance in NF1-LOF mutant tumors.
Collapse
Affiliation(s)
| | | | - Madhu Lal-Nag
- Day One Biopharmaceuticals, Inc., Brisbane, California
| | - Yujin Wang
- Day One Biopharmaceuticals, Inc., Brisbane, California
| | | | | |
Collapse
|
4
|
Palachai N, Buranrat B, Noisa P, Mairuae N. Oroxylum indicum (L.) Leaf Extract Attenuates β-Amyloid-Induced Neurotoxicity in SH-SY5Y Cells. Int J Mol Sci 2025; 26:2917. [PMID: 40243521 PMCID: PMC11988460 DOI: 10.3390/ijms26072917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 04/18/2025] Open
Abstract
Alzheimer's disease (AD) is characterized by the presence of amyloid-beta (Aβ) plaques, which trigger oxidative stress and neuronal cell death. The present study investigated the neuroprotective effects of Oroxylum indicum (L.) leaf (OIL) extract against Aβ-induced oxidative stress and cellular damage in SH-SY5Y cells. The cells were treated with OIL extract with and without Aβ25-35, and their viability was investigated. Moreover, the mechanism of action of OIL was assessed by determining caspase-3 levels, reactive oxygen species (ROS) and malondialdehyde (MDA) levels, enzymatic activity of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px), phosphorylation of phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt), extracellular signal-regulated kinase 1 and 2 (ERK1/2), and cAMP-responsive element-binding protein (CREB), and expression of B-cell lymphoma-2 (Bcl-2) proteins. The results indicated that OIL reduced Aβ-induced neurotoxicity in a concentration-dependent manner, improving cell viability, reducing ROS levels and MDA production, increasing antioxidant enzyme activity of CAT, SOD, and GSH-Px, and decreasing caspase-3 expression. In addition, OIL enhanced phosphorylation of Akt, ERK1/2, and CREB and upregulated Bcl-2 protein expression. High-performance liquid chromatography (HPLC) analysis identified oroxylin A, baicalein, and chrysin as the major phenolic constituents of the OIL extract. The findings suggest that the extract holds promise as a therapeutic intervention against Aβ-induced neurotoxicity, offering potential implications for the treatment of AD. Further studies are needed to investigate the activity of OIL in primary neurons or in vivo.
Collapse
Affiliation(s)
- Nut Palachai
- Biomedical Research Unit, Faculty of Medicine, Mahasarakham University, Maha Sarakham 44000, Thailand; (N.P.); (B.B.)
| | - Benjaporn Buranrat
- Biomedical Research Unit, Faculty of Medicine, Mahasarakham University, Maha Sarakham 44000, Thailand; (N.P.); (B.B.)
| | - Parinya Noisa
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
| | - Nootchanat Mairuae
- Biomedical Research Unit, Faculty of Medicine, Mahasarakham University, Maha Sarakham 44000, Thailand; (N.P.); (B.B.)
| |
Collapse
|
5
|
Zhou L, Zhang J, Zhao K, Chen B, Sun Z. Natural products modulating MAPK for CRC treatment: a promising strategy. Front Pharmacol 2025; 16:1514486. [PMID: 40110122 PMCID: PMC11919913 DOI: 10.3389/fphar.2025.1514486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/03/2025] [Indexed: 03/22/2025] Open
Abstract
Colorectal cancer (CRC) is a common malignant tumor of the digestive system, and the pathogenic mechanism is still unclear, mostly related to genetics, immunity, inflammation, and abnormal activation of tumor-related signaling pathways. MAPK belongs to the Ser/Thr kinase family, which plays an important role in complex cellular programs such as the regulation of cell proliferation, differentiation, apoptosis, angiogenesis, and tumor metastasis. Increasing evidence supports that MAPK activation is highly correlated with the risk of CRC. Targeting MAPK may be a therapeutic strategy, and natural products show great therapeutic potential in regulating MAPK-related proteins. In this paper, we searched PubMed, Web of Science and CNKI databases with keywords "colorectal cancer, natural products, MAPK pathway, ERK, P38, JNK" for relevant studies in the last 14 years from 2010 to 2024. This work retrieved 47 studies, aiming to provide new therapeutic strategies for CRC patients and lay the foundation for new drug development.
Collapse
Affiliation(s)
- Lin Zhou
- The First Clinical Medical College, Shandong University of traditional Chinese medicine, Jinan, China
| | - Jinlong Zhang
- The First Clinical Medical College, Shandong University of traditional Chinese medicine, Jinan, China
| | - Kangning Zhao
- The First Clinical Medical College, Shandong University of traditional Chinese medicine, Jinan, China
| | - Bo Chen
- Department of Gastroenterology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhen Sun
- The Second Gastroenterology Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
6
|
Liu F, Gu Z, Yi F, Liu X, Zou W, Xu Q, Yuan Y, Chen N, Tang J. Potential of Glycyrrhiza in the prevention of colitis-associated colon cancer. Fitoterapia 2025; 181:106398. [PMID: 39842555 DOI: 10.1016/j.fitote.2025.106398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 01/24/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Glycyrrhiza, a legume native to the Mediterranean region, has a long history of ethnomedicinal use in China. Due to its antiviral, antibacterial, anti-inflammatory, antioxidant, antitumor, anti-ulcer, and hepatoprotective properties, Glycyrrhiza is widely utilized in the treatment of gastrointestinal disorders. THE AIM OF THE REVIEW The specific mechanisms of the main active constituents of glycyrrhiza in the treatment of inflammatory bowel disease, precancerous lesions and colorectal cancer at all stages of the colitis-associated colon cancer "Inflammation-Dysplasia-Cancer" sequence, as well as its pharmacokinetics, toxicology, formulation improvements, and application studies, are reviewed to provide new insights and perspectives on glycyrrhiza as a dietary supplement to treat and prevent colitis-associated colon cancer. MATERIALS AND METHODS Information on Glycyrrhiza was retrieved from electronic databases, including PubMed and Web of Science. RESULTS Glycyrrhiza is a well-established medicinal plant with significant potential for applications in both the food and pharmaceutical industries. Over 400 active constituents have been identified in Glycyrrhiza, including terpenoids, flavonoids, isoflavones, coumarins, and polyphenols. Numerous studies have demonstrated that Glycyrrhiza and its active compounds can inhibit the "Inflammation-Dysplasia-Cancer" progression of colitis-associated colon cancer by mitigating inflammatory bowel disease, reducing the number of intestinal precancerous lesions, and counteracting colorectal cancer. Furthermore, derivatives and nanocarriers are crucial for the effective treatment of colitis-associated colon cancer using Glycyrrhiza and its active constituents. CONCLUSION In conclusion, Glycyrrhiza is a plant with both medicinal and nutritional value, making it a potential food ingredient and dietary supplement for the treatment of colitis-associated colon cancer.
Collapse
Affiliation(s)
- Fang Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China; North Sichuan Medical College, Nanchong, China.
| | - Zhili Gu
- North Sichuan Medical College, Nanchong, China
| | - Feiyang Yi
- North Sichuan Medical College, Nanchong, China
| | - Xue Liu
- North Sichuan Medical College, Nanchong, China
| | - Wenxuan Zou
- North Sichuan Medical College, Nanchong, China
| | - Qingxia Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yun Yuan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Nianzhi Chen
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Jianyuan Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
7
|
de la Fuente‐Vivas D, Cappitelli V, García‐Gómez R, Valero‐Díaz S, Amato C, Rodriguéz J, Duro‐Sánchez S, von Kriegsheim A, Grusch M, Lozano J, Arribas J, Casar B, Crespo P. ERK1/2 mitogen-activated protein kinase dimerization is essential for the regulation of cell motility. Mol Oncol 2025; 19:452-473. [PMID: 39263917 PMCID: PMC11792999 DOI: 10.1002/1878-0261.13732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/12/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024] Open
Abstract
ERK1/2 mitogen-activated protein kinases (ERK) are key regulators of basic cellular processes, including proliferation, survival, and migration. Upon phosphorylation, ERK becomes activated and a portion of it dimerizes. The importance of ERK activation in specific cellular events is generally well documented, but the role played by dimerization is largely unknown. Here, we demonstrate that impeding ERK dimerization precludes cellular movement by interfering with the molecular machinery that executes the rearrangements of the actin cytoskeleton. We also show that a constitutively dimeric ERK mutant can drive cell motility per se, demonstrating that ERK dimerization is both necessary and sufficient for inducing cellular migration. Importantly, we unveil that the scaffold protein kinase suppressor of Ras 1 (KSR1) is a critical element for endowing external agonists, acting through tyrosine kinase receptors, with the capacity to induce ERK dimerization and, subsequently, to unleash cellular motion. In agreement, clinical data disclose that high KSR1 expression levels correlate with greater metastatic potential and adverse evolution of mammary tumors. Overall, our results portray both ERK dimerization and KSR1 as essential factors for the regulation of cell motility and mammary tumor dissemination.
Collapse
Affiliation(s)
- Dalia de la Fuente‐Vivas
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC)Consejo Superior de Investigaciones Científicas (CSIC) – Universidad de CantabriaSantanderSpain
- Present address:
Universidad de BurgosBurgosSpain
| | - Vincenzo Cappitelli
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC)Consejo Superior de Investigaciones Científicas (CSIC) – Universidad de CantabriaSantanderSpain
| | - Rocío García‐Gómez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC)Consejo Superior de Investigaciones Científicas (CSIC) – Universidad de CantabriaSantanderSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)Instituto de Salud Carlos IIIMadridSpain
| | - Sara Valero‐Díaz
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC)Consejo Superior de Investigaciones Científicas (CSIC) – Universidad de CantabriaSantanderSpain
| | - Camilla Amato
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC)Consejo Superior de Investigaciones Científicas (CSIC) – Universidad de CantabriaSantanderSpain
| | - Javier Rodriguéz
- Cancer Research UK Scotland Centre, Institute of Genetics and CancerUniversity of EdinburghUK
| | - Santiago Duro‐Sánchez
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)Instituto de Salud Carlos IIIMadridSpain
- Cancer Research ProgramHospital del Mar Medical Research Institute (IMIM)BarcelonaSpain
- Department of Biochemistry and Molecular BiologyUniversitat Autónoma de BarcelonaSpain
- Preclinical and Translational Research ProgramVall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
| | | | - Michael Grusch
- Center for Cancer ResearchMedical University of ViennaAustria
| | - José Lozano
- Universidad de Málaga and Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina – IBIMA, Plataforma BionandSpain
| | - Joaquín Arribas
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)Instituto de Salud Carlos IIIMadridSpain
- Cancer Research ProgramHospital del Mar Medical Research Institute (IMIM)BarcelonaSpain
- Department of Biochemistry and Molecular BiologyUniversitat Autónoma de BarcelonaSpain
- Preclinical and Translational Research ProgramVall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
| | - Berta Casar
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC)Consejo Superior de Investigaciones Científicas (CSIC) – Universidad de CantabriaSantanderSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)Instituto de Salud Carlos IIIMadridSpain
| | - Piero Crespo
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC)Consejo Superior de Investigaciones Científicas (CSIC) – Universidad de CantabriaSantanderSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
8
|
Fonseca AC, Colavite PM, Azevedo MDCS, Passadori DC, Melchiades JL, Ortiz RC, Rodini CO, Trombone APF, Garlet GP. Inhibition of MEK1/2 Signaling Pathway Limits M2 Macrophage Polarization and Interferes in the Dental Socket Repair Process in Mice. BIOLOGY 2025; 14:107. [PMID: 40001875 PMCID: PMC11851886 DOI: 10.3390/biology14020107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/27/2024] [Accepted: 01/16/2025] [Indexed: 02/27/2025]
Abstract
Dental socket repair theoretically involves a constructive inflammatory immune response, which evolves from an initial M1 prevalence to a subsequent M2 dominance. In this scenario, the MEK1/2 signaling pathway is allegedly involved in M2 polarization. This study aimed to evaluate the impact of MEK1/2 pharmacological inhibition in the local host response and repair outcome. C57Bl/6-WT 8-week-old male mice were submitted to the extraction of the right upper incisor and treated (or not, control group) with MEK1/2 inhibitor PD0325901 (10 mg/kg/24 h/IP, MEK1/2i group) and analyzed at 0, 3, 7, and 14 days using microcomputed tomography, histomorphometry, birefringence, immunohistochemistry, and PCR array analysis. The results demonstrate that MEK1/2 inhibition limits the development of M2 response over time, being associated with lower expression of M2, MSCs, and bone markers, lower levels of growth and osteogenic factors, along with a higher expression of iNOS, IL-1b, IL-6, and TNF-α, as well inflammatory chemokines, indicating a predominantly M1 pro-inflammatory environment. This modulation of local inflammatory immune response is associated with impaired bone formation as demonstrated by microtomographic and histomorphometric data. The results show that MEK1/2 inhibition delays bone repair after tooth extraction, supporting the concept that M2 macrophages are essential elements for host response regulation and proper repair.
Collapse
Affiliation(s)
- Angélica Cristina Fonseca
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisola, 9-75, Bauru 17012-901, SP, Brazil; (A.C.F.); (P.M.C.); (M.d.C.S.A.); (D.C.P.); (J.L.M.); (R.C.O.); (C.O.R.)
| | - Priscila Maria Colavite
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisola, 9-75, Bauru 17012-901, SP, Brazil; (A.C.F.); (P.M.C.); (M.d.C.S.A.); (D.C.P.); (J.L.M.); (R.C.O.); (C.O.R.)
| | - Michelle de Campos Soriani Azevedo
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisola, 9-75, Bauru 17012-901, SP, Brazil; (A.C.F.); (P.M.C.); (M.d.C.S.A.); (D.C.P.); (J.L.M.); (R.C.O.); (C.O.R.)
| | - Daniela Carignatto Passadori
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisola, 9-75, Bauru 17012-901, SP, Brazil; (A.C.F.); (P.M.C.); (M.d.C.S.A.); (D.C.P.); (J.L.M.); (R.C.O.); (C.O.R.)
| | - Jessica Lima Melchiades
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisola, 9-75, Bauru 17012-901, SP, Brazil; (A.C.F.); (P.M.C.); (M.d.C.S.A.); (D.C.P.); (J.L.M.); (R.C.O.); (C.O.R.)
| | - Rafael Carneiro Ortiz
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisola, 9-75, Bauru 17012-901, SP, Brazil; (A.C.F.); (P.M.C.); (M.d.C.S.A.); (D.C.P.); (J.L.M.); (R.C.O.); (C.O.R.)
| | - Camila Oliveira Rodini
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisola, 9-75, Bauru 17012-901, SP, Brazil; (A.C.F.); (P.M.C.); (M.d.C.S.A.); (D.C.P.); (J.L.M.); (R.C.O.); (C.O.R.)
| | - Ana Paula Favaro Trombone
- Department of Health Sciences, Centro Universitário Sagrado Coração—UNISAGRADO, Bauru 17011-160, SP, Brazil;
| | - Gustavo Pompermaier Garlet
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisola, 9-75, Bauru 17012-901, SP, Brazil; (A.C.F.); (P.M.C.); (M.d.C.S.A.); (D.C.P.); (J.L.M.); (R.C.O.); (C.O.R.)
| |
Collapse
|
9
|
Al Ali HS, Rodrigo GC, Lambert DG. Signalling pathways involved in urotensin II induced ventricular myocyte hypertrophy. PLoS One 2025; 20:e0313119. [PMID: 39820183 PMCID: PMC11737703 DOI: 10.1371/journal.pone.0313119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/20/2024] [Indexed: 01/19/2025] Open
Abstract
Sustained pathologic myocardial hypertrophy can result in heart failure(HF); a significant health issue affecting a large section of the population worldwide. In HF there is a marked elevation in circulating levels of the peptide urotensin II(UII) but it is unclear whether this is a result of hypertrophy or whether the high levels contribute to the development of hypertrophy. The aim of this study is to investigate a role of UII and its receptor UT in the development of cardiac hypertrophy and the signalling molecules involved. Ventricular myocytes isolated from adult rat hearts were treated with 200nM UII for 48hours and hypertrophy was quantified from measurements of length/width (L/W) ratio. UII resulted in a change in L/W ratio from 4.53±0.10 to 3.99±0.06; (p<0.0001) after 48hours. The response is reversed by the UT-antagonist SB657510 (1μM). UT receptor activation by UII resulted in the activation of ERK1/2, p38 and CaMKII signalling pathways measured by Western blotting; these are involved in the induction of hypertrophy. JNK was not involved. Moreover, ERK1/2, P38 and CaMKII inhibitors completely blocked UII-induced hypertrophy. Sarcoplasmic reticulum (SR) Ca2+-leak was investigated in isolated myocytes. There was no significant increase in SR Ca2+-leak. Our results suggest that activation of MAPK and CaMKII signalling pathways are involved in the hypertrophic response to UII. Collectively our data suggest that increased circulating UII may contribute to the development of left ventricular hypertrophy and pharmacological inhibition of the UII/UT receptor system may prove beneficial in reducing adverse remodeling and alleviating contractile dysfunction in heart disease.
Collapse
Affiliation(s)
- Hadeel S. Al Ali
- Department of Cardiovascular Sciences, Clinical Sciences Wing, Glenfield Hospital, University of Leicester, Leicester, United Kingdom
- Department of Physiology, Al-Zahraa College of Medicine, University of Basrah, Basrah, Iraq
| | - Glenn C. Rodrigo
- Department of Cardiovascular Sciences, Clinical Sciences Wing, Glenfield Hospital, University of Leicester, Leicester, United Kingdom
| | - David G. Lambert
- Department of Cardiovascular Sciences, Anaesthesia, Critical Care and Pain Management, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
10
|
Liu R, Wang Z, Luo Q, Song G. Hot air injures human alveolar epithelial cells through ERK1/2 signaling-mediated ferroptosis. J Therm Biol 2025; 127:104065. [PMID: 39893824 DOI: 10.1016/j.jtherbio.2025.104065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 01/16/2025] [Accepted: 01/21/2025] [Indexed: 02/04/2025]
Abstract
Inhalation lung injury is an acute pulmonary impairment resulting from inhalation of hot air and/or toxic gases. However, the molecular mechanisms involved in hot air-induced heat stress (HS) response of alveolar epithelial cells are not fully understood. In this study, employing a cell heat loading device, we found that HS at 50 °C resulted in significant ferroptosis and injury of human alveolar epithelial cells (BEAS-2B cells), supported by increased lipid peroxidation, reactive oxygen species (ROS), and decreased ferritin heavy chain 1 (FTH1), glutathione peroxidase 4 (GPX4), solute carrier family 7 member 11 (SLC7A11). Ferrostatin-1 (Fer-1), a targeted inhibitor of ferroptosis, could suppress HS-induced ferroptosis and injury of BEAS-2B cells. Moreover, HS activated extracellular signal-regulated kinase 1/2 (ERK1/2) in BEAS-2B cells. Nevertheless, blockage of ERK1/2 activation by U0126, an inhibitor of ERK1/2 phosphorylation, repressed HS-induced ferroptosis and injury of BEAS-2B cells. Taken together, this study demonstrates that HS injures alveolar epithelial cells through ERK1/2 signaling-mediated ferroptosis, which provides a novel potential strategy for the treatment of HS-induced inhalation lung injury.
Collapse
Affiliation(s)
- Ruihan Liu
- Key Laboratory of Biorheological Science and Technology, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Zhihui Wang
- Key Laboratory of Biorheological Science and Technology, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, College of Bioengineering, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
11
|
Liu X, Zhang G, Zhao L. Detection of transmembrane protein 100 in breast cancer: Correlation with malignant progression and chemosensitivity. Cytojournal 2024; 21:65. [PMID: 39917003 PMCID: PMC11801651 DOI: 10.25259/cytojournal_107_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/15/2024] [Indexed: 02/09/2025] Open
Abstract
Objective With increased incidence, breast cancer has become the most common malignant tumor in women. Transmembrane protein 100 (TMEM100) is a key factor affecting the progression of malignant tumors. The aim of the study is to examine the molecular mechanism of TMEM100 in malignant progression. Material and Methods TMEM100 expression was analyzed by Western blot, immunohistochemistry, and real-time quantitative polymerase chain reaction. Cell migration and invasiveness after transfection with TMEM100 were investigated by Transwell assay. 5-ethynyl-2-deoxyuridine staining and cell colony-formation assay were utilized to the exploration of cell proliferation. Flow cytometry was adopted to detect whether TMEM100 affected the effect of Docetaxel on cell apoptosis. The effects of TMEM100 on the Ras-extracellular signal-regulated kinase (RAS/ERK) pathway were explored by Western blot assay. Results Downregulated TMEM100 expression was in breast cancer tissues (P < 0.01). TMEM100 overexpression hindered the invasion (P < 0.01), migration (P < 0.01), and proliferation (P < 0.01) of breast cancer cells. Chemotherapy sensitivity of breast cancer cells to docetaxel was enhanced by TMEM100 (P < 0.01). TMEM100 inhibited Ras expression and ERK1/2 phosphorylation (P < 0.01). Furthermore, ERK agonist TertButylhydroquinone neutralized the effects of TMEM100 (P < 0.01). Conclusion TMEM100 blocked malignant progression of breast cancer and enhanced docetaxel chemosensitivity by suppressing RAS/ERK pathway. These data manifested that regulation of TMEM100 expression may affect the progression of breast cancer, and its prognostic value and mechanism deserve further investigation.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Ultrasound, Zibo Central Hospital, Zibo, Shandong, China
| | - Guiqian Zhang
- Department of Health Management Center, Zibo Central Hospital, Zibo, Shandong, China
| | - Ling Zhao
- Department of Ultrasound, Zibo Central Hospital, Zibo, Shandong, China
| |
Collapse
|
12
|
Alharbi HO, Sugden PH, Clerk A. Mitogen-activated protein kinase signalling in rat hearts during postnatal development: MAPKs, MAP3Ks, MAP4Ks and DUSPs. Cell Signal 2024; 124:111397. [PMID: 39251052 DOI: 10.1016/j.cellsig.2024.111397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Mammalian cardiomyocytes become terminally-differentiated during the perinatal period. In rodents, cytokinesis ceases after a final division cycle immediately after birth. Nuclear division continues and most cardiomyocytes become binucleated by ∼11 days. Subsequent growth results from an increase in cardiomyocyte size. The mechanisms involved remain under investigation. Mitogen-activated protein kinases (MAPKs) regulate cell growth/death: extracellular signal-regulated kinases 1/2 (ERK1/2) promote proliferation, whilst c-Jun N-terminal kinases (JNKs) and p38-MAPKs respond to cellular stresses. We assessed their regulation in rat hearts during postnatal development (2, 7, 14, and 28 days, 12 weeks) during which time there was rapid, substantial downregulation of mitosis/cytokinesis genes (Cenpa/e/f, Aurkb, Anln, Cdca8, Orc6) with lesser downregulation of DNA replication genes (Orcs1-5, Mcms2-7). MAPK activation was assessed by immunoblotting for total and phosphorylated (activated) kinases. Total ERK1/2 was downregulated, but not JNKs or p38-MAPKs, whilst phosphorylation of all MAPKs increased relative to total protein albeit transiently for JNKs. These profiles differed from activation of Akt (also involved in cardiomyocyte growth). Dual-specificity phosphatases, upstream MAPK kinase kinases (MAP3Ks), and MAP3K kinases (MAP4Ks) identified in neonatal rat cardiomyocytes by RNASeq were differentially regulated during postnatal cardiac development. The MAP3Ks that we could assess by immunoblotting (RAF kinases and Map3k3) showed greater downregulation of the protein than mRNA. MAP3K2/MAP3K3/MAP4K5 were upregulated in human failing heart samples and may be part of the "foetal gene programme" of re-expressed genes in disease. Thus, MAPKs, along with kinases and phosphatases that regulate them, potentially play a significant role in postnatal remodelling of the heart.
Collapse
Affiliation(s)
- Hajed O Alharbi
- Department of Medical Laboratory, College of Applied Medical Sciences, Quassim University, Buraydah, Saudi Arabia; School of Biological Sciences, University of Reading, Reading, UK
| | - Peter H Sugden
- School of Biological Sciences, University of Reading, Reading, UK
| | - Angela Clerk
- School of Biological Sciences, University of Reading, Reading, UK.
| |
Collapse
|
13
|
Spirrison AN, Lannigan DA. RSK1 and RSK2 as therapeutic targets: an up-to-date snapshot of emerging data. Expert Opin Ther Targets 2024; 28:1047-1059. [PMID: 39632509 PMCID: PMC11801519 DOI: 10.1080/14728222.2024.2433123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION The four members of the p90 ribosomal S6 kinase (RSK) family are serine/threonine protein kinases, which are phosphorylated and activated by ERK1/2. RSK1/2/3 are further phosphorylated by PDK1. Receiving inputs from two major signaling pathways places RSK as a key signaling node in numerous pathologies. A plethora of RSK1/2 substrates have been identified, and in the majority of cases the causative roles these RSK substrates play in the pathology are unknown. AREAS COVERED The majority of studies have focused on RSK1/2 and their functions in a diverse group of cancers. However, RSK1/2 are known to have important functions in cardiovascular disease and neurobiological disorders. Based on the literature, we identified substrates that are common in these pathologies with the goal of identifying fundamental physiological responses to RSK1/2. EXPERT OPINION The core group of targets in pathologies driven by RSK1/2 are associated with the immune response. However, there is a paucity of the literature addressing RSK function in inflammation, which is critical to know as the pan RSK inhibitor, PMD-026, is entering phase II clinical trials for metastatic breast cancer. A RSK inhibitor has the potential to be used in numerous diverse diseases and disorders.
Collapse
Affiliation(s)
| | - Deborah A. Lannigan
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
14
|
Zhang Y, Ojalill M, Boyer A, Chen XL, Tahon E, Thivolle Lioux G, Xia M, Abbas M, Soylu HM, Flieder DB, Connolly DC, Molinolo AA, McHale MT, Stupack DG, Schlaepfer DD. Nuclear Focal Adhesion Kinase Protects against Cisplatin Stress in Ovarian Carcinoma. CANCER RESEARCH COMMUNICATIONS 2024; 4:3165-3179. [PMID: 39585085 PMCID: PMC11659947 DOI: 10.1158/2767-9764.crc-24-0382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/21/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
SIGNIFICANCE FAK inhibitors are in combinatorial clinical testing with agents that prevent Ras-Raf-MAPK pathway activation in various cancers. This study suggests that nuclear FAK limits ERK/MAPK activation in supporting HGSOC cell survival to cisplatin stress. Overall, it is likely that targets of FAK-mediated survival signaling may be tumor type- and context-dependent.
Collapse
Affiliation(s)
- Yichi Zhang
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Marjaana Ojalill
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Antonia Boyer
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Xiao Lei Chen
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Elise Tahon
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Gaëtan Thivolle Lioux
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Marvin Xia
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Maryam Abbas
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Halime Meryem Soylu
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | | | | | - Alfredo A. Molinolo
- Department of Pathology, Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Michael T. McHale
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Dwayne G. Stupack
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - David D. Schlaepfer
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, Moores Cancer Center, University of California, San Diego, La Jolla, California
| |
Collapse
|
15
|
Jiang MZ, Li C, Mao CM, Yu H, Zhou YC, Pu SQ, Li RZ, Liao YJ, Zhang DY, Yang P, Li MH, Li M. The MAPK/ERK signaling pathway involved in Raddeanin A induces apoptosis via the mitochondrial pathway and G2 phase arrest in multiple myeloma. Sci Rep 2024; 14:29061. [PMID: 39580496 PMCID: PMC11585587 DOI: 10.1038/s41598-024-76465-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 10/14/2024] [Indexed: 11/25/2024] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy characterized by the unrestricted proliferation of plasma cells that secrete immunoglobulin in the bone marrow. Extracted primarily from Anemone raddeana regel, Raddeanin A (RA) is a natural triterpenoid saponin compound with anti-inflammatory and anti-tumor activities. However, most research on the anti-tumor effects of RA has concentrated on solid tumors, with little exploration into non-solid tumors like MM. Furthermore, there is a dearth of research investigating the interplay between RA and MM, encompassing their interaction targets and mechanisms. This study aims to delve into the biological activity and molecular mechanism of RA's anti-MM properties through the lens of network pharmacology and experimental validation. The findings from GO enrichment analysis, KEGG enrichment analysis, and molecular docking prediction suggested a potential correlation between the MAPK signaling pathway, including the MAPK1 gene (also known as ERK2), and the impact of RA on MM. Results from the CCK-8 assay revealed a time-dependent and concentration-dependent inhibition of proliferation in MM cell lines treated with RA. Notably, in the cell lines used for the test, the IC50 values for MM.1 S cells were 1.616 µM at 24 H and 1.058 µM at 48 H, for MM.1R cells were 3.905 µM at 24 H and 2.18 µM at 48 H, while for RPMI 8226 cells, they were 6.091 µM at 24 H and 3.438 µM at 48 H. The PI, Annexin V-FITC/PI, and JC-1 staining showed that RA could arrest the cell cycle in the G2 phase, cause apoptosis, and induce the change of mitochondrial membrane potential (MMP) in MM cells. Treated with RA, the Western blot analysis showed that the expression levels of Bim, Cleaved Caspase 3/9, and Cleaved PARP were increased, and the expression level of Mcl-1 was decreased in MM cells. Concurrently, the phosphorylated protein expression levels of p-ERK1/2, p-MSK1, p-P90RSK, and p-MEK1/2 were diminished following RA treatment. These results suggest that RA has the activity of anti-MM, and the MAPK/ERK signaling pathway is involved in the growth inhibition effect of RA on MM cells via cycle arrest and mitochondrial-pathway-dependent apoptosis.
Collapse
Affiliation(s)
- Ming-Zheng Jiang
- School of Basic Medicine, Chengdu Medical College, Chengdu, 610500, China
- Department of Laboratory Medicine, People's Hospital of Xingwen County, Xingwen, 644400, China
| | - Chen Li
- School of Basic Medicine, Chengdu Medical College, Chengdu, 610500, China
| | - Chun-Mei Mao
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500, China
| | - Huan Yu
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500, China
| | - Yi-Chuan Zhou
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, 610500, China
| | - Shi-Qi Pu
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, 610500, China
| | - Run-Zi Li
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, China
| | - Yu-Jiao Liao
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, China
| | - Dan-Yin Zhang
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, China
| | - Ping Yang
- School of Basic Medicine, Chengdu Medical College, Chengdu, 610500, China.
- Academic Office, Chengdu Medical College, Chengdu, 610500, China.
| | - Min-Hui Li
- School of Basic Medicine, Chengdu Medical College, Chengdu, 610500, China.
- Center of Scientific Research and Experiment, Chengdu Medical College, Chengdu, 610500, China.
| | - Minhui Li
- School of Basic Medicine, Chengdu Medical College, Chengdu, 610500, China
| |
Collapse
|
16
|
Lima JFC, Santos FM, de Miranda TB, Ramos GG, Andia DC, Lima AF, Ciotti DL. Inflammatory and adhesion profile of gingival fibroblasts to lithium disilicate ceramic surfaces. Dent Mater 2024; 40:2025-2033. [PMID: 39358190 DOI: 10.1016/j.dental.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/15/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
OBJECTIVES Lithium disilicate (LS) ceramic emerges as a compelling option for customized implant abutments. However, ensuring its safety and reliability requires clarification on key aspects, notably its impact on inflammation and potential for cell adhesion. This study delves into these considerations, examining the influence of LS ceramic on cytokine release and the transcriptional profile of human gingival fibroblasts (hGFs) in direct contact with various LS surfaces. METHODS hGFs were cultured on LS disks featuring three distinct surfaces (unpolished, polished, and polished glaze), while titanium disks served as reference material and cells cultured directly on plates as controls. The surface of the disks was analyzed using a scanning electron microscope. The cell metabolism was analyzed by MTT test, cytokine release by MAGPIX and the expression of genes related to cell adhesion was evaluated by qPCR. RESULTS The disks exhibited similar topography with smooth surfaces, except for the unpolished LS disks, which had an irregular surface. Contact with LS surfaces did not substantially reduce cell metabolism. Moreover, it generally decreased cytokine release compared to controls, particularly pro-inflammatory mediators like IL-1β, IL-6, and TNF-α. Significantly increased expression of genes related to cell adhesion to LS was observed, comparable to titanium, the gold standard material for implant abutments. SIGNIFICANCE This study unveils that LS ceramic not only fails to trigger pro-inflammatory cytokine release, but also significantly enhances gene expression associated with cell adhesion. These mechanisms are closely linked to gene pathways such as PTK2, SRC, MAPK1, and transcription factors ELK-1 and MYC. In summary, the findings underscore LS ceramic's potential as a biocompatible material for implant abutments, shedding light on its favorable inflammatory response and enhanced cell adhesion properties.
Collapse
Affiliation(s)
| | - Filipe Milazzo Santos
- Dental Research Division, Paulista University, Rua Doutor Bacelar, 1212, Sao Paulo 04026-002, Brazil
| | - Taís Browne de Miranda
- Dental Research Division, Paulista University, Rua Doutor Bacelar, 1212, Sao Paulo 04026-002, Brazil
| | - Guilherme Gama Ramos
- São Leopoldo Mandic Institute and Dental Research Center, Campinas, São Paulo, Brazil
| | - Denise Carleto Andia
- Dental Research Division, Paulista University, Rua Doutor Bacelar, 1212, Sao Paulo 04026-002, Brazil.
| | - Adriano F Lima
- Dental Research Division, Paulista University, Rua Doutor Bacelar, 1212, Sao Paulo 04026-002, Brazil.
| | - Danilo Lazzari Ciotti
- São Leopoldo Mandic Institute and Dental Research Center, Campinas, São Paulo, Brazil.
| |
Collapse
|
17
|
Seger R. Special Issue: MAPK Signaling Cascades in Human Health and Diseases. Int J Mol Sci 2024; 25:11226. [PMID: 39457006 PMCID: PMC11509016 DOI: 10.3390/ijms252011226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
In order to survive and fulfil their functions, cells of any organism need to be able to respond to a large number of extracellular factors, also termed extracellular stimuli [...].
Collapse
Affiliation(s)
- Rony Seger
- Department of Immunology and Regenerative Biology, The Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
18
|
Wang LY, Zhang L, Bai XY, Qiang RR, Zhang N, Hu QQ, Cheng JZ, Yang YL, Xiang Y. The Role of Ferroptosis in Amyotrophic Lateral Sclerosis Treatment. Neurochem Res 2024; 49:2653-2667. [PMID: 38864944 DOI: 10.1007/s11064-024-04194-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/17/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rare neurodegenerative disease with a challenging treatment landscape, due to its complex pathogenesis and limited availability of clinical drugs. Ferroptosis, an iron-dependent form of programmed cell death (PCD), stands distinct from apoptosis, necrosis, autophagy, and other cell death mechanisms. Recent studies have increasingly highlighted the role of iron deposition, reactive oxygen species (ROS) accumulation, oxidative stress, as well as systemic Xc- and glutamate accumulation in the antioxidant system in the pathogenesis of amyotrophic lateral sclerosis. Therefore, targeting ferroptosis emerges as a promising strategy for amyotrophic lateral sclerosis treatment. This review introduces the regulatory mechanism of ferroptosis, the relationship between amyotrophic lateral sclerosis and ferroptosis, and the drugs used in the clinic, then discusses the current status of amyotrophic lateral sclerosis treatment, hoping to provide new directions and targets for its treatment.
Collapse
Affiliation(s)
- Le Yi Wang
- Yan 'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Lei Zhang
- Yan 'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Xin Yue Bai
- Yan 'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Rong Rong Qiang
- Yan 'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Ning Zhang
- Yan 'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Qian Qian Hu
- Yan 'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Jun Zhi Cheng
- Yan 'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Yan Ling Yang
- Yan 'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Yang Xiang
- College of Physical Education, Yan'an University, Shaanxi, 716000, China.
| |
Collapse
|
19
|
Shin YC, Cho M, Hwang JM, Myung K, Kweon HS, Lee ZW, Seong HA, Lee KB. Imaging the Raf-MEK-ERK Signaling Cascade in Living Cells. Int J Mol Sci 2024; 25:10587. [PMID: 39408915 PMCID: PMC11477372 DOI: 10.3390/ijms251910587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Conventional biochemical methods for studying cellular signaling cascades have relied on destructive cell disruption. In contrast, the live cell imaging of fluorescent-tagged transfected proteins offers a non-invasive approach to understanding signal transduction events. One strategy involves monitoring the phosphorylation-dependent shuttling of a fluorescent-labeled kinase between the nucleus and cytoplasm using nuclear localization, export signals, or both. In this paper, we introduce a simple method to visualize intracellular signal transduction in live cells by exploring the translocation properties of PKC from the cytoplasm to the membrane. We fused bait protein to PKC, allowing the bait (RFP-labeled) and target (GFP-labeled) proteins to co-translocate from the cytoplasm to the membrane. However, in non-interacting protein pairs, only the bait protein was translocated to the plasma membrane. To verify our approach, we examined the Raf-MEK-ERK signaling cascade (ERK pathway). We successfully visualized direct Raf1/MEK2 interaction and the KSR1-containing ternary complex (Raf1/MEK2/KSR1). However, the interaction between MEK and ERK was dependent on the presence of the KSR1 scaffold protein under our experimental conditions.
Collapse
Affiliation(s)
- Young-Chul Shin
- Department of Biochemistry, School of Life Science, Chungbuk National University, Cheongju 28644, Republic of Korea; (Y.-C.S.); (M.C.)
- bHLBIO, Cheongju 28119, Republic of Korea;
| | - Minkyung Cho
- Department of Biochemistry, School of Life Science, Chungbuk National University, Cheongju 28644, Republic of Korea; (Y.-C.S.); (M.C.)
| | - Jung Me Hwang
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea; (J.M.H.); (K.M.)
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea; (J.M.H.); (K.M.)
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hee-Seok Kweon
- Center for Bio-Imaging & Translational Research and Bioimaging Data Curation Center, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea;
| | | | - Hyun-A. Seong
- Department of Biochemistry, School of Life Science, Chungbuk National University, Cheongju 28644, Republic of Korea; (Y.-C.S.); (M.C.)
| | - Kyung-Bok Lee
- Center for Bio-Imaging & Translational Research and Bioimaging Data Curation Center, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea;
| |
Collapse
|
20
|
Dahm K, Vijayarangakannan P, Wollscheid HP, Schild H, Rajalingam K. Atypical MAPKs in cancer. FEBS J 2024. [PMID: 39348153 DOI: 10.1111/febs.17283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/28/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024]
Abstract
Impaired kinase signalling leads to various diseases, including cancer. At the same time, kinases make up the majority of the druggable genome and targeting kinase activity has proven to be a successful first-line therapy for many cancers. Among the best-studied kinases are the mitogen-activated protein kinases (MAPKs), which regulate cell proliferation, differentiation, motility, and survival. However, the MAPK family also contains the atypical members ERK3 (MAPK6), ERK4 (MAPK4), ERK7/ERK8 (MAPK15), and NLK that are functionally and structurally different from their conventional family members and have long been neglected. Nevertheless, in recent years, important roles in carcinogenesis, actin cytoskeleton regulation and the immune system have been discovered, underlining the physiological importance of atypical MAPKs and the need to better understand their functions. This review highlights the distinctive features of the atypical MAPKs and summarizes the evidence on their regulation, physiological roles, and potential targeting strategies for cancer therapies.
Collapse
Affiliation(s)
- Katrin Dahm
- Cell Biology Unit, University Medical Center Mainz, JGU-Mainz, Germany
| | | | | | - Hansjörg Schild
- Institute of Immunology, University Medical Center Mainz, JGU-Mainz, Germany
| | | |
Collapse
|
21
|
Tomuleasa C, Tigu AB, Munteanu R, Moldovan CS, Kegyes D, Onaciu A, Gulei D, Ghiaur G, Einsele H, Croce CM. Therapeutic advances of targeting receptor tyrosine kinases in cancer. Signal Transduct Target Ther 2024; 9:201. [PMID: 39138146 PMCID: PMC11323831 DOI: 10.1038/s41392-024-01899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 08/15/2024] Open
Abstract
Receptor tyrosine kinases (RTKs), a category of transmembrane receptors, have gained significant clinical attention in oncology due to their central role in cancer pathogenesis. Genetic alterations, including mutations, amplifications, and overexpression of certain RTKs, are critical in creating environments conducive to tumor development. Following their discovery, extensive research has revealed how RTK dysregulation contributes to oncogenesis, with many cancer subtypes showing dependency on aberrant RTK signaling for their proliferation, survival and progression. These findings paved the way for targeted therapies that aim to inhibit crucial biological pathways in cancer. As a result, RTKs have emerged as primary targets in anticancer therapeutic development. Over the past two decades, this has led to the synthesis and clinical validation of numerous small molecule tyrosine kinase inhibitors (TKIs), now effectively utilized in treating various cancer types. In this manuscript we aim to provide a comprehensive understanding of the RTKs in the context of cancer. We explored the various alterations and overexpression of specific receptors across different malignancies, with special attention dedicated to the examination of current RTK inhibitors, highlighting their role as potential targeted therapies. By integrating the latest research findings and clinical evidence, we seek to elucidate the pivotal role of RTKs in cancer biology and the therapeutic efficacy of RTK inhibition with promising treatment outcomes.
Collapse
Affiliation(s)
- Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania.
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania.
| | - Adrian-Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Raluca Munteanu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Cristian-Silviu Moldovan
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - David Kegyes
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Anca Onaciu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gulei
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriel Ghiaur
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Department of Leukemia, Sidney Kimmel Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hermann Einsele
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Universitätsklinikum Würzburg, Medizinische Klinik II, Würzburg, Germany
| | - Carlo M Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
22
|
Tabei Y, Nakajima Y. IL-1β-activated PI3K/AKT and MEK/ERK pathways coordinately promote induction of partial epithelial-mesenchymal transition. Cell Commun Signal 2024; 22:392. [PMID: 39118068 PMCID: PMC11308217 DOI: 10.1186/s12964-024-01775-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a cellular process in embryonic development, wound healing, organ fibrosis, and cancer metastasis. Previously, we and others have reported that proinflammatory cytokine interleukin-1β (IL-1β) induces EMT. However, the exact mechanisms, especially the signal transduction pathways, underlying IL-1β-mediated EMT are not yet completely understood. Here, we found that IL-1β stimulation leads to the partial EMT-like phenotype in human lung epithelial A549 cells, including the gain of mesenchymal marker (vimentin) and high migratory potential, without the complete loss of epithelial marker (E-cadherin). IL-1β-mediated partial EMT induction was repressed by PI3K inhibitor LY294002, indicating that the PI3K/AKT pathway plays a significant role in the induction. In addition, ERK1/2 inhibitor FR180204 markedly inhibited the IL-1β-mediated partial EMT induction, demonstrating that the MEK/ERK pathway was also involved in the induction. Furthermore, we found that the activation of the PI3K/AKT and MEK/ERK pathways occurred downstream of the epidermal growth factor receptor (EGFR) pathway and the IL-1 receptor (IL-1R) pathway, respectively. Our findings suggest that the PI3K/AKT and MEK/ERK pathways coordinately promote the IL-1β-mediated partial EMT induction. The inhibition of not one but both pathways is expected yield clinical benefits by preventing partial EMT-related disorders such as organ fibrosis and cancer metastasis.
Collapse
Affiliation(s)
- Yosuke Tabei
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-Cho, Takamatsu, Kagawa, 761-0395, Japan.
| | - Yoshihiro Nakajima
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-Cho, Takamatsu, Kagawa, 761-0395, Japan
| |
Collapse
|
23
|
Ferrito N, Báez-Flores J, Rodríguez-Martín M, Sastre-Rodríguez J, Coppola A, Isidoro-García M, Prieto-Matos P, Lacal J. Biomarker Landscape in RASopathies. Int J Mol Sci 2024; 25:8563. [PMID: 39201250 PMCID: PMC11354534 DOI: 10.3390/ijms25168563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
RASopathies are a group of related genetic disorders caused by mutations in genes within the RAS/MAPK signaling pathway. This pathway is crucial for cell division, growth, and differentiation, and its disruption can lead to a variety of developmental and health issues. RASopathies present diverse clinical features and pose significant diagnostic and therapeutic challenges. Studying the landscape of biomarkers in RASopathies has the potential to improve both clinical practices and the understanding of these disorders. This review provides an overview of recent discoveries in RASopathy molecular profiling, which extend beyond traditional gene mutation analysis. mRNAs, non-coding RNAs, protein expression patterns, and post-translational modifications characteristic of RASopathy patients within pivotal signaling pathways such as the RAS/MAPK, PI3K/AKT/mTOR, and Rho/ROCK/LIMK2/cofilin pathways are summarized. Additionally, the field of metabolomics holds potential for uncovering metabolic signatures associated with specific RASopathies, which are crucial for developing precision medicine. Beyond molecular markers, we also examine the role of histological characteristics and non-invasive physiological assessments in identifying potential biomarkers, as they provide evidence of the disease's effects on various systems. Here, we synthesize key findings and illuminate promising avenues for future research in RASopathy biomarker discovery, underscoring rigorous validation and clinical translation.
Collapse
Affiliation(s)
- Noemi Ferrito
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007 Salamanca, Spain; (N.F.); (J.B.-F.); (J.S.-R.); (A.C.)
- GIR of Biomedicine of Rare Diseases, University of Salamanca (USAL), 37007 Salamanca, Spain;
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Juan Báez-Flores
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007 Salamanca, Spain; (N.F.); (J.B.-F.); (J.S.-R.); (A.C.)
- GIR of Biomedicine of Rare Diseases, University of Salamanca (USAL), 37007 Salamanca, Spain;
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Mario Rodríguez-Martín
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007 Salamanca, Spain; (N.F.); (J.B.-F.); (J.S.-R.); (A.C.)
- GIR of Biomedicine of Rare Diseases, University of Salamanca (USAL), 37007 Salamanca, Spain;
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Julián Sastre-Rodríguez
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007 Salamanca, Spain; (N.F.); (J.B.-F.); (J.S.-R.); (A.C.)
| | - Alessio Coppola
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007 Salamanca, Spain; (N.F.); (J.B.-F.); (J.S.-R.); (A.C.)
- GIR of Biomedicine of Rare Diseases, University of Salamanca (USAL), 37007 Salamanca, Spain;
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - María Isidoro-García
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain;
- Clinical Biochemistry Department, University Hospital of Salamanca, 37007 Salamanca, Spain
- Clinical Rare Diseases Reference Unit DiERCyL, 37007 Castilla y León, Spain
- Department of Medicine, University of Salamanca (USAL), 37007 Salamanca, Spain
| | - Pablo Prieto-Matos
- GIR of Biomedicine of Rare Diseases, University of Salamanca (USAL), 37007 Salamanca, Spain;
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain;
- Department of Pediatrics, University Hospital of Salamanca, 37007 Salamanca, Spain
- Department of Biomedical and Diagnostics Science, University of Salamanca (USAL), 37007 Salamanca, Spain
| | - Jesus Lacal
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007 Salamanca, Spain; (N.F.); (J.B.-F.); (J.S.-R.); (A.C.)
- GIR of Biomedicine of Rare Diseases, University of Salamanca (USAL), 37007 Salamanca, Spain;
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain;
| |
Collapse
|
24
|
Zhang J, Wang S, Zhang H, Yang Y, Yuan M, Yang X, Wen Y. The role of the AMPK/ERK1/2 signaling pathway in neuronal oxidative stress damage following cerebral ischemia-reperfusion. Tissue Cell 2024; 89:102472. [PMID: 39003914 DOI: 10.1016/j.tice.2024.102472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Cerebral ischemia-reperfusion injury involves a series of pathophysiological processes that occur when blood supply is restored after cerebral vascular obstruction, leading to neuronal damage. The AMPK/ERK1/2 signaling pathway has been identified as crucial in this process, although the exact mechanisms underlying the induction of ischemia-reperfusion injury remain unclear. In this study, we investigated the involvement of the AMPK/ERK1/2 signaling pathway in neuronal oxidative stress damage following cerebral ischemia-reperfusion by establishing animal and cell models. Our experimental results demonstrated that cerebral ischemia-reperfusion leads to oxidative stress damage, including cell apoptosis and mitochondrial dysfunction. Moreover, further experiments showed that inhibition of AMPK and ERK1/2 activity, using U0126 and Compound C respectively, could alleviate oxidative stress-induced cellular injury, improve mitochondrial morphology and function, reduce reactive oxygen species levels, increase superoxide dismutase levels, and suppress apoptosis. These findings clearly indicate the critical role of the AMPK/ERK1/2 signaling pathway in regulating oxidative stress damage and cerebral ischemia-reperfusion injury. The discoveries in this study provide a theoretical basis for further research and development of neuroprotective therapeutic strategies targeting the AMPK/ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Jiejie Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China; Key Laboratory of Clinical Neurology Ministry of Education, Shijiazhuang, Hebei, China
| | - Shan Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China; Key Laboratory of Clinical Neurology Ministry of Education, Shijiazhuang, Hebei, China
| | - Haitao Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China; Key Laboratory of Clinical Neurology Ministry of Education, Shijiazhuang, Hebei, China
| | - Yihan Yang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China; Key Laboratory of Clinical Neurology Ministry of Education, Shijiazhuang, Hebei, China
| | - Mu Yuan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China; Key Laboratory of Clinical Neurology Ministry of Education, Shijiazhuang, Hebei, China
| | - Xiaotong Yang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China; Key Laboratory of Clinical Neurology Ministry of Education, Shijiazhuang, Hebei, China
| | - Ya Wen
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China; Key Laboratory of Clinical Neurology Ministry of Education, Shijiazhuang, Hebei, China.
| |
Collapse
|
25
|
Dalle S, Abderrahmani A. Receptors and Signaling Pathways Controlling Beta-Cell Function and Survival as Targets for Anti-Diabetic Therapeutic Strategies. Cells 2024; 13:1244. [PMID: 39120275 PMCID: PMC11311556 DOI: 10.3390/cells13151244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 08/10/2024] Open
Abstract
Preserving the function and survival of pancreatic beta-cells, in order to achieve long-term glycemic control and prevent complications, is an essential feature for an innovative drug to have clinical value in the treatment of diabetes. Innovative research is developing therapeutic strategies to prevent pathogenic mechanisms and protect beta-cells from the deleterious effects of inflammation and/or chronic hyperglycemia over time. A better understanding of receptors and signaling pathways, and of how they interact with each other in beta-cells, remains crucial and is a prerequisite for any strategy to develop therapeutic tools aimed at modulating beta-cell function and/or mass. Here, we present a comprehensive review of our knowledge on membrane and intracellular receptors and signaling pathways as targets of interest to protect beta-cells from dysfunction and apoptotic death, which opens or could open the way to the development of innovative therapies for diabetes.
Collapse
Affiliation(s)
- Stéphane Dalle
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), 34094 Montpellier, France
| | - Amar Abderrahmani
- Université Lille, Centre National de la Recherche Scientifique (CNRS), Centrale Lille, Université Polytechnique Hauts-de-France, UMR 8520, IEMN, F59000 Lille, France
| |
Collapse
|
26
|
Xiao Z, Zhao J, Ji G, Song X, Xue X, Zhang W, Sha G, Zhou Y, Zhou J, Tian Z, Zhao X, Jiang N. miR-493-5p Silenced by DNA Methylation Promotes Angiogenesis via Exosomes and VEGF-A-Mediated Intracellular Cross-Talk Between ESCC Cells and HUVECs. Int J Nanomedicine 2024; 19:7165-7183. [PMID: 39050873 PMCID: PMC11268713 DOI: 10.2147/ijn.s464403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
Background Exosomal microRNAs (miRNAs) in the tumor microenvironment play crucial roles in tumorigenesis and tumor progression by participating in intercellular cross-talk. However, the functions of exosomal miRNAs and the mechanisms by which they regulate esophageal squamous cell carcinoma (ESCC) progression are unclear. Methods RNA sequencing and GEO analysis were conducted to identify candidate exosomal miRNAs involved in ESCC development. Receiver operating characteristic curve analysis was performed to assess the diagnostic value of plasma exosomal miR-493-5p. EdU, tube formation and Transwell assays were used to investigate the effects of exosomal miR-493-5p on human umbilical vein endothelial cells (HUVECs). A subcutaneous xenograft model was used to evaluate the antitumor effects of miR-493-5p and decitabine (a DNA methyltransferase inhibitor). The relationship between miR-493-5p and SP1/SP3 was revealed via a dual-luciferase reporter assay. A series of rescue assays were subsequently performed to investigate whether SP1/SP3 participate in exosomal miR-493-5p-mediated ESCC angiogenesis. Results We found that miR-493-5p expression was notably reduced in the plasma exosomes of ESCC patients, which showed the high potential value in early ESCC diagnosis. Additionally, miR-493-5p, as a candidate tumor suppressor, inhibited the proliferation, migration and tube formation of HUVECs by suppressing the expression of VEGFA and exerted its angiostatic effect via exosomes. Moreover, we found that SP1/SP3 are direct targets of miR-493-5p and that re-expression of SP1/SP3 could reverse the inhibitory effects of miR-493-5p. Further investigation revealed that miR-493-5p expression could be regulated by DNA methyltransferase 3A (DNMT3A) and DNMT3B, and either miR-493-5p overexpression or restoration of miR-493-5p expression with decitabine increased the antitumor effects of bevacizumab. Conclusion Exosomal miR-493-5p is a highly valuable ESCC diagnosis marker and inhibits ESCC-associated angiogenesis. miR-493-5p can be silenced via DNA methylation, and restoration of miR-493-5p expression with decitabine increases the antitumor effects of bevacizumab, suggesting its potential as a therapeutic target for ESCC treatment.
Collapse
Affiliation(s)
- Zhaohua Xiao
- Department of Thoracic Surgery, the Second Hospital of Shandong University, Jinan, 250033, People’s Republic of China
| | - Jiangfeng Zhao
- Department of Thoracic Surgery, the Second Hospital of Shandong University, Jinan, 250033, People’s Republic of China
| | - Guanhong Ji
- Department of Thoracic Surgery, the Second Hospital of Shandong University, Jinan, 250033, People’s Republic of China
| | - Xiangqing Song
- Department of Thoracic Surgery, the Second Hospital of Shandong University, Jinan, 250033, People’s Republic of China
| | - Xia Xue
- Department of Pharmacy, the Second Hospital of Shandong University, Jinan, People’s Republic of China
| | - Wenhao Zhang
- Department of Thoracic Surgery, the Second Hospital of Shandong University, Jinan, 250033, People’s Republic of China
| | - Guomeng Sha
- Department of Thoracic Surgery, the Second Hospital of Shandong University, Jinan, 250033, People’s Republic of China
| | - Yongjia Zhou
- Department of Thoracic Surgery, the Second Hospital of Shandong University, Jinan, 250033, People’s Republic of China
| | - Jie Zhou
- Department of Thoracic Surgery, the Second Hospital of Shandong University, Jinan, 250033, People’s Republic of China
| | - Zhongxian Tian
- Department of Thoracic Surgery, the Second Hospital of Shandong University, Jinan, 250033, People’s Republic of China
- Key Laboratory of Chest Cancer, Shandong University, the Second Hospital of Shandong University, Jinan, People’s Republic of China
| | - Xiaogang Zhao
- Department of Thoracic Surgery, the Second Hospital of Shandong University, Jinan, 250033, People’s Republic of China
- Key Laboratory of Chest Cancer, Shandong University, the Second Hospital of Shandong University, Jinan, People’s Republic of China
| | - Ning Jiang
- Department of Thoracic Surgery, the Second Hospital of Shandong University, Jinan, 250033, People’s Republic of China
| |
Collapse
|
27
|
Alsharoh H, Chiroi P, Isachesku E, Tanasa RA, Pop OL, Pirlog R, Berindan-Neagoe I. Personalizing Therapy Outcomes through Mitogen-Activated Protein Kinase Pathway Inhibition in Non-Small Cell Lung Cancer. Biomedicines 2024; 12:1489. [PMID: 39062063 PMCID: PMC11275062 DOI: 10.3390/biomedicines12071489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/18/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Lung cancer (LC) is a highly invasive malignancy and the leading cause of cancer-related deaths, with non-small cell lung cancer (NSCLC) as its most prevalent histological subtype. Despite all breakthroughs achieved in drug development, the prognosis of NSCLC remains poor. The mitogen-activated protein kinase signaling cascade (MAPKC) is a complex network of interacting molecules that can drive oncogenesis, cancer progression, and drug resistance when dysregulated. Over the past decades, MAPKC components have been used to design MAPKC inhibitors (MAPKCIs), which have shown varying efficacy in treating NSCLC. Thus, recent studies support the potential clinical use of MAPKCIs, especially in combination with other therapeutic approaches. This article provides an overview of the MAPKC and its inhibitors in the clinical management of NSCLC. It addresses the gaps in the current literature on different combinations of selective inhibitors while suggesting two particular therapy approaches to be researched in NSCLC: parallel and aggregate targeting of the MAPKC. This work also provides suggestions that could serve as a potential guideline to aid future research in MAPKCIs to optimize clinical outcomes in NSCLC.
Collapse
Affiliation(s)
- Hasan Alsharoh
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (H.A.); (P.C.); (E.I.); (I.B.-N.)
| | - Paul Chiroi
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (H.A.); (P.C.); (E.I.); (I.B.-N.)
| | - Ekaterina Isachesku
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (H.A.); (P.C.); (E.I.); (I.B.-N.)
| | | | - Ovidiu-Laurean Pop
- Department of Morphology Sciences, University of Oradea, 410087 Oradea, Romania;
| | - Radu Pirlog
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (H.A.); (P.C.); (E.I.); (I.B.-N.)
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (H.A.); (P.C.); (E.I.); (I.B.-N.)
| |
Collapse
|
28
|
Hecker M, Fitzner B, Koczan D, Klehmet J, Grothe M, Schwab M, Winkelmann A, Meister S, Dudesek A, Ludwig-Portugall I, Eulitz K, Zettl UK. Differential gene expression in B cells and T helper cells following high-dose glucocorticoid therapy for multiple sclerosis relapse. Biomed Pharmacother 2024; 175:116721. [PMID: 38749180 DOI: 10.1016/j.biopha.2024.116721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Despite remarkable advances in the therapy of multiple sclerosis (MS), patients with MS may still experience relapses. High-dose short-term methylprednisolone (MP) remains the standard treatment in the acute management of MS relapses due to its potent anti-inflammatory and immunosuppressive properties. However, there is a lack of studies on the cell type-specific transcriptome changes that are induced by this synthetic glucocorticoid (GC). Moreover, it is not well understood why some patients do not benefit adequately from MP therapy. METHODS We collected peripheral blood from MS patients in relapse immediately before and after ∼3-5 days of therapy with MP at 4 study centers. CD19+ B cells and CD4+ T cells were then isolated for profiling the transcriptome with high-density arrays. The patients' improvement of neurological symptoms was evaluated after ∼2 weeks by the treating physicians. We finally analyzed the data to identify genes that were differentially expressed in response to the therapy and whose expression differed between clinical responders and non-responders. RESULTS After MP treatment, a total of 33 genes in B cells and 55 genes in T helper cells were significantly up- or downregulated. The gene lists overlap in 10 genes and contain genes that have already been described as GC-responsive genes in the literature on other cell types and diseases. Their differential expression points to a rapid and coordinated modulation of multiple signaling pathways that influence transcription. Genes that were previously suggested as potential prognostic biomarkers of the clinical response to MP therapy could not be confirmed in our data. However, a greater increase in the expression of genes encoding proteins with antimicrobial activity was detected in CD4+ T cells from non-responders compared to responders. CONCLUSION Our study delved into the cell type-specific effects of MP at the transcriptional level. The data suggest a therapy-induced ectopic expression of some genes (e.g., AZU1, ELANE and MPO), especially in non-responders. The biological consequences of this remain to be explored in greater depth. A better understanding of the molecular mechanisms underlying clinical recovery from relapses in patients with MS will help to optimize future treatment decisions.
Collapse
Affiliation(s)
- Michael Hecker
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Rostock, Germany.
| | - Brit Fitzner
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Rostock, Germany
| | - Dirk Koczan
- Institute of Immunology, Rostock University Medical Center, Rostock, Germany
| | - Juliane Klehmet
- Center for Multiple Sclerosis, Department of Neurology, Jüdisches Krankenhaus Berlin, Berlin, Germany
| | - Matthias Grothe
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Matthias Schwab
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Alexander Winkelmann
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Rostock, Germany
| | - Stefanie Meister
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Rostock, Germany
| | - Ales Dudesek
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Rostock, Germany
| | | | | | - Uwe Klaus Zettl
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
29
|
Zhang W, Wang X, Dong J, Wang K, Jiang W, Fan C, Liu H, Fan L, Zhao L, Li G. Single-cell analysis uncovers high-proliferative tumour cell subtypes and their interactions in the microenvironment of gastric cancer. J Cell Mol Med 2024; 28:e18373. [PMID: 38894657 PMCID: PMC11187953 DOI: 10.1111/jcmm.18373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/07/2024] [Accepted: 04/18/2024] [Indexed: 06/21/2024] Open
Abstract
Gastric cancer (GC) remains a prominent malignancy that poses a significant threat to human well-being worldwide. Despite advancements in chemotherapy and immunotherapy, which have effectively augmented patient survival rates, the mortality rate associated with GC remains distressingly high. This can be attributed to the elevated proliferation and invasive nature exhibited by GC. Our current understanding of the drivers behind GC cell proliferation remains limited. Hence, in order to reveal the molecular biological mechanism behind the swift advancement of GC, we employed single-cell RNA-sequencing (scRNA-seq) to characterize the tumour microenvironment in this study. The scRNA-seq data of 27 patients were acquired from the Gene Expression Omnibus database. Differential gene analysis, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes and Gene Set Enrichment Analysis were employed to investigate 38 samples. The copy number variation level exhibited by GC cells was determined using InferCNV. The CytoTRACE, Monocle and Slingshot analysis were used to discern the cellular stemness and developmental trajectory of GC cells. The CellChat package was utilized for the analysis of intercellular communication crosstalk. Moreover, the findings of the data analysis were validated through cellular functional tests conducted on the AGS cell line and SGC-7901 cell line. Finally, this study constructed a risk scoring model to evaluate the differences of different risk scores in clinical characteristics, immune infiltration, immune checkpoints, functional enrichment, tumour mutation burden and drug sensitivity. Within the microenvironment of GC, we identified the presence of 8 cell subsets, encompassing NK_T cells, B_Plasma cells, epithelial cells, myeloid cells, endothelial cells, mast cells, fibroblasts, pericytes. By delving deeper into the characterization of GC cells, we identified 6 specific tumour cell subtypes: C0 PSCA+ tumour cells, C1 CLDN7+ tumour cells, C2 UBE2C+ tumour cells, C3 MUC6+ tumour cells, C4 CHGA+ tumour cells and C5 MUC2+ tumour cells. Notably, the C2 UBE2C+ tumour cells demonstrated a close association with cell mitosis and the cell cycle, exhibiting robust proliferative capabilities. Our findings were fortified through enrichment analysis, pseudotime analysis and cell communication analysis. Meanwhile, knockdown of the transcription factor CREB3, which is highly active in UBE2C+ tumour cells, significantly impedes the proliferation, migration and invasion of GC cells. And the prognostic score model constructed with CREB3-related genes showcased commendable clinical predictive capacity, thus providing valuable guidance for patients' prognosis and clinical treatment decisions. We have identified a highly proliferative cellular subgroup C2 UBE2C+ tumour cells in GC for the first time. The employment of a risk score model, which is based on genes associated with UBE2C expression, exhibits remarkable proficiency in predicting the prognosis of GC patients. In our investigation, we observed that the knockdown of the transcription factor CREB3 led to a marked reduction in cellular proliferation, migration and invasion in GC cell line models. Implementing a stratified treatment approach guided by this model represents a judicious and promising methodology.
Collapse
Affiliation(s)
- Wenjia Zhang
- Department of Respiratory Medicine, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Xiaojing Wang
- Department of Rheumatology and Immunology, Tongren Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Jiaxing Dong
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Kai Wang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of MedicineTongji UniversityShanghaiChina
| | - Wanju Jiang
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Chenchen Fan
- Department of Respiratory Medicine, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Haitao Liu
- Department of Respiratory Medicine, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Lihong Fan
- Department of Respiratory Medicine, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Lei Zhao
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of MedicineTongji UniversityShanghaiChina
| | - Guoshu Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of MedicineTongji UniversityShanghaiChina
| |
Collapse
|
30
|
Cao B, Kong H, Shen C, She G, Tian S, Liu H, Cui L, Zhang Y, He Q, Xia Q, Liu K. Dimethyl phthalate induced cardiovascular developmental toxicity in zebrafish embryos by regulating MAPK and calcium signaling pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171902. [PMID: 38521262 DOI: 10.1016/j.scitotenv.2024.171902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Dimethyl phthalate (DMP), the lowest-molecular-weight phthalate ester (PAE), is one of the most commonly detected persistent organic pollutants in the environment, but its toxic effects, especially cardiovascular developmental toxicity, are largely unknown. In this study, zebrafish embryos were exposed to sublethal concentrations of DMP from 4 to 96 hpf. Our results showed that DMP treatment induced yolk retention, pericardial edema, and swim bladder deficiency, as well as increased SV-BA distance and decreased heart rate, stroke volume, ventricular axis shortening rate and ejection fraction. In addition, oxidative stress and apoptosis were found to be highly involved in this process. The results of transcriptome sequencing and mRNA expression of related genes indicated that MAPK and calcium signaling pathways were perturbed by DMP. These findings have the potential to provide new insights into the potential developmental toxicity and cardiovascular disease risk of DMP.
Collapse
Affiliation(s)
- Bianneng Cao
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China
| | - Haotian Kong
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China
| | - Chuanlin Shen
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China
| | - Gaimei She
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shuimiao Tian
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China
| | - Haojie Liu
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China
| | - Lishuang Cui
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China
| | - Qiuxia He
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China
| | - Qing Xia
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China.
| | - Kechun Liu
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China.
| |
Collapse
|
31
|
Chen Y, Jiang L, Li M, Shen Y, Liu S, Yang D. Huanglian Jiedu decoction alleviates neurobehavioral damage in mice with chronic alcohol exposure through the RAS-RAF-MEK-ERK pathway. Heliyon 2024; 10:e29556. [PMID: 38644875 PMCID: PMC11033144 DOI: 10.1016/j.heliyon.2024.e29556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/23/2024] Open
Abstract
Objective Long-term alcohol consumption can cause organic damage to the brain, resulting in mental and nervous system abnormalities and intellectual impairment. Huanglian Jiedu decoction (HLJDD) is the classic representative of clearing heat and detoxifying. This study aimed to explore the effects and possible mechanisms of HLJDD on brain injury in chronic alcohol-exposed mice. Methods The alcohol-exposed mice were treated with different doses of HLJDD to observe behavioral changes, hippocampal Aβ1-42 deposition, number and ultrastructural changes of neurons in the hippocampus and prefrontal cortex, and expressions of synaptic proteins. On this basis, transcriptome sequencing was used to analyze the differentially expressed genes in different treatment groups, and functional enrichment analysis was performed. Then, WB and RT-PCR were used to verify the expression of the pathway. Results Chronic alcohol exposure reduced body weight in mice, led to motor cognitive impairment, increased Aβ1-42 in the hippocampus, decreased the number of neurons in the hippocampus and prefrontal cortex, and the expression of PSD95 and SYN in the hippocampus. HLJDD significantly improved the cognitive dysfunction of mice and alleviated the damage of the hippocampus and prefrontal cortex. Transcriptome sequencing results showed that the regulatory effects of HLJDD on chronic alcohol-exposed mice may be related to the RAS pathway. Further experiments confirmed that chronic alcohol exposure caused a significant increase in protein and gene expressions of the RAS-RAF-MEK-ERK pathway in mouse, and this activation was reversed by HLJDD. Conclusion HLJDD may ameliorate brain damage caused by chronic alcohol exposure by regulating the RAS-RAF-MEK-ERK pathway.
Collapse
Affiliation(s)
- Yun Chen
- Department of Neurology, Chengdu University of Traditional Chinese Medicine, Sichuan, PR China
- Department of Neurology, The First People's Hospital of Bijie City, Guizhou, PR China
| | - Lianyan Jiang
- Department of Neurology, Chengdu University of Traditional Chinese Medicine, Sichuan, PR China
| | - Mao Li
- Department of Neurology, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, PR China
| | - Yuling Shen
- Department of Neurology, Chengdu University of Traditional Chinese Medicine, Sichuan, PR China
| | - Shanyu Liu
- Department of Neurology, Chengdu University of Traditional Chinese Medicine, Sichuan, PR China
| | - Dongdong Yang
- Department of Neurology, The Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, PR China
| |
Collapse
|
32
|
Nagaraj S, Stankiewicz-Drogon A, Darzynkiewicz E, Wojda U, Grzela R. miR-483-5p orchestrates the initiation of protein synthesis by facilitating the decrease in phosphorylated Ser209eIF4E and 4E-BP1 levels. Sci Rep 2024; 14:4237. [PMID: 38378793 PMCID: PMC10879198 DOI: 10.1038/s41598-024-54154-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 02/09/2024] [Indexed: 02/22/2024] Open
Abstract
Eukaryotic initiation factor 4E (eIF4E) is a pivotal protein involved in the regulatory mechanism for global protein synthesis in both physiological and pathological conditions. MicroRNAs (miRNAs) play a significant role in regulating gene expression by targeting mRNA. However, the ability of miRNAs to regulate eIF4E and its phosphorylation remains relatively unknown. In this study, we predicted and experimentally verified targets for miR-483-5p, including eukaryotic translation initiation factor eIF4E and its binding proteins, 4E-BPs, that regulate protein synthesis. Using the Web of Science database, we identified 28 experimentally verified miR-483-5p targets, and by the TargetScan database, we found 1818 predicted mRNA targets, including EIF4E, EIF4EBP1, and EIF4EBP2. We verified that miR-483-5p significantly reduced ERK1 and MKNK1 mRNA levels in HEK293 cells. Furthermore, we discovered that miR-483-5p suppressed EIF4EBP1 and EIF4EBP2, but not EIF4E. Finally, we found that miR-483-5p reduced the level of phosphorylated eIF4E (pSer209eIF4E) but not total eIF4E. In conclusion, our study suggests that miR-483-5p's multi-targeting effect on the ERK1/ MKNK1 axis modulates the phosphorylation state of eIF4E. Unlike siRNA, miRNA can have multiple targets in the pathway, and thereby exploring the role of miR-483-5p in various cancer models may uncover therapeutic options.
Collapse
Affiliation(s)
- Siranjeevi Nagaraj
- Interdisciplinary Laboratory of Molecular Biology and Biophysics, Centre of New Technologies, University of Warsaw, 02-097, Warsaw, Poland
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteur 3, 02-093, Warsaw, Poland
| | - Anna Stankiewicz-Drogon
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Edward Darzynkiewicz
- Interdisciplinary Laboratory of Molecular Biology and Biophysics, Centre of New Technologies, University of Warsaw, 02-097, Warsaw, Poland
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Urszula Wojda
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteur 3, 02-093, Warsaw, Poland.
| | - Renata Grzela
- Interdisciplinary Laboratory of Molecular Biology and Biophysics, Centre of New Technologies, University of Warsaw, 02-097, Warsaw, Poland.
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland.
| |
Collapse
|