1
|
Huang J, Wang L, Zhou J, Dai T, Zhu W, Wang T, Wang H, Zhang Y. Unveiling the ageing-related genes in diagnosing osteoarthritis with metabolic syndrome by integrated bioinformatics analysis and machine learning. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2025; 53:57-68. [PMID: 40022676 DOI: 10.1080/21691401.2025.2471762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/16/2024] [Accepted: 02/16/2025] [Indexed: 03/03/2025]
Abstract
Ageing significantly contributes to osteoarthritis (OA) and metabolic syndrome (MetS) pathogenesis, yet the underlying mechanisms remain unknown. This study aimed to identify ageing-related biomarkers in OA patients with MetS. OA and MetS datasets and ageing-related genes (ARGs) were retrieved from public databases. The limma package was used to identify differentially expressed genes (DEGs), and weighted gene coexpression network analysis (WGCNA) screened gene modules, and machine learning algorithms, such as random forest (RF), support vector machine (SVM), generalised linear model (GLM), and extreme gradient boosting (XGB), were employed. The nomogram and receiver operating characteristic (ROC) curve assess the diagnostic value, and CIBERSORT analysed immune cell infiltration. We identified 20 intersecting genes among DEGs of OA, key module genes of MetS, and ARGs. By comparing the accuracy of the four machine learning models for disease prediction, the SVM model, which includes CEBPB, PTEN, ARPC1B, PIK3R1, and CDC42, was selected. These hub ARGs not only demonstrated strong diagnostic values based on nomogram data but also exhibited a significant correlation with immune cell infiltration. Building on these findings, we have identified five hub ARGs that are associated with immune cell infiltration and have constructed a nomogram aimed at early diagnosing OA patients with MetS.
Collapse
Affiliation(s)
- Jian Huang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lu Wang
- Department of Neurology, The Central Hospital of Xiaogan, Xiaogan, China
| | - Jiangfei Zhou
- Department of Orthopedics, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Tianming Dai
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Weicong Zhu
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Tianrui Wang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongde Wang
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Yingze Zhang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Li Z, Han Q, Shao Y, Huang SB, Wang R, Rong XZ, Wang S, Liu Y. RPUSD1 enhances the expression of eIF4E through RluA catalytic domain, activates PI3K/AKT signaling pathway, and promotes the cell proliferation and invasion in non-small cell lung cancer. Int J Biol Macromol 2025; 306:141410. [PMID: 40010477 DOI: 10.1016/j.ijbiomac.2025.141410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 02/28/2025]
Abstract
RNA pseudouridylate synthase domain containing 1 (RPUSD1) is a pseudouridine synthase, and its role in human solid tumors remains unknown. We found that RPUSD1 showed enhanced cytoplasmic expression in non-small cell lung cancer (NSCLC) using immunohistochemistry and western blotting. Its increased expression is associated with tumor malignant phenotypes. The RluA catalytic domain of RPUSD1 activated the phosphoinositide 3-kinase (PI3K)/ Protein Kinase B (AKT) pathway, which promoted cell proliferation, migration, and invasion. Following transfection with full-length RPUSD1, the eukaryotic translation initiation factor 4E (eIF4E) mRNA enrichment increased. Moreover, full-length RPUSD1 enhanced eIF4E and Nijmegen breakage syndrome protein 1 (NBS1) proteins, whereas RPUSD1-ΔRluA did not significantly enhance eIF4E and NBS1 proteins. Moreover, NBS1 overexpression increased binding between NBS1 and PI3K-p110, whereas PI3K-p110/PI3K-p85 binding was diminished. RPUSD1 is an oncogene in NSCLC. RPUSD1 binds to eIF4E mRNA and stabilizes eIF4E mRNA through its RluA catalytic domain. EIF4E increases NBS1 expression, promoting its binding to PI3K p110. It competitively inhibits the interaction of PI3K p110 with PI3K p85, which leads to the dissociation of PI3K p85 from PI3K p110. This dissociation increases PI3K activity and activates downstream AKT. Thus, it promotes the ability of cell proliferation, migration, and invasion in NSCLC.
Collapse
Affiliation(s)
- Zhen Li
- Department of Pathology, the First Hospital of China Medical University, and College of Basic Medical Sciences of China Medical University, Shenyang 110122, PR China
| | - Qiang Han
- Department of Pathology, the First Hospital of China Medical University, and College of Basic Medical Sciences of China Medical University, Shenyang 110122, PR China
| | - Yang Shao
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang 110004, PR China
| | - Shao-Bing Huang
- Department of Pathology, the First Hospital of China Medical University, and College of Basic Medical Sciences of China Medical University, Shenyang 110122, PR China
| | - Rui Wang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| | - Xue-Zhu Rong
- Department of Pathology, the First Hospital of China Medical University, Shenyang 110001, PR China.
| | - Si Wang
- Department of Medical Microbiology and Human Parasitology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, PR China.
| | - Yang Liu
- Department of Pathology, the First Hospital of China Medical University, and College of Basic Medical Sciences of China Medical University, Shenyang 110122, PR China.
| |
Collapse
|
3
|
Jia W, Cheng X. In Silico Discovery of a Novel Natural Product Targeting PI3Kα for the Treatment of Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2025; 26:3565. [PMID: 40332095 PMCID: PMC12027195 DOI: 10.3390/ijms26083565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/05/2025] [Accepted: 04/06/2025] [Indexed: 05/08/2025] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) remains a major health burden, with abnormal activation of phosphatidylinositol 3-kinase alpha (PI3Kα) strongly implicated in its pathogenesis. Targeting PI3Kα represents a promising therapeutic strategy. In this study, we employed structure-based virtual screening to identify natural small-molecule inhibitors of PI3Kα. A total of 12,800 molecules were screened, and five compounds were selected for further evaluation based on binding affinity and interaction patterns. Pharmacokinetic properties were assessed using ADMET predictions, and molecular dynamics (MD) simulations were conducted to validate the binding stability. Among the candidates, Apigetrin demonstrated favorable ADMET properties, a high safety profile, and stable binding within the ATP-binding pocket of PI3Kα. These findings suggest that Apigetrin is a promising natural PI3Kα inhibitor with potential therapeutic relevance for HNSCC.
Collapse
Affiliation(s)
- Wenqing Jia
- College of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, China
| | - Xianchao Cheng
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
4
|
Sun J, Zalejski J, Song S, Sharma A, Wang W, Hu Y, Lo WT, Koch PA, Singh J, Singaram I, An B, Zhao JJ, Gong LW, Haucke V, Gao R, Cho W. PI(3,5)P 2 Controls the Signaling Activity of Class I PI3K. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.01.25.525550. [PMID: 36747849 PMCID: PMC9900776 DOI: 10.1101/2023.01.25.525550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
3-Phosphoinositides are ubiquitous cellular lipids that play pivotal regulatory roles in health and disease. Among 3-phosphoinositides, phosphatidylinositol-3,5-bisphosphate (PI(3,5)P 2 ) remains the least understood species in terms of its spatiotemporal dynamics and physiological function due to the lack of a specific sensor that allows spatiotemporally resolved quantitative imaging of PI(3,5)P 2 . Using a newly developed ratiometric PI(3,5)P 2 sensor engineered from the C-terminal SH2 domain of Class I phosphoinositide 3-kinases (PI3K)-p85α subunit we demonstrate that a unique pool of PI(3,5)P 2 is generated on lysosomes and late endosomes in response to growth factor stimulation. This PI(3,5)P 2 , the formation of which is mediated sequentially by Class II PI3KC2β and PIKfyve, plays a crucial role in terminating the activity of growth factor-stimulated Class I PI3K, one of the most frequently mutated proteins in cancer, via specific interaction with its regulatory p85 subunit. A small molecule inhibitor of p85α-PI(3,5)P 2 binding specifically blocks the feedback inhibition of Class I PI3K by PI(3,5)P 2 and thus serves as a PI3K activator that promotes neurite growth. Furthermore, cancer-causing mutations of the Class I PI3K-p85 subunit inhibit p85-PI(3,5)P 2 interaction and thereby induce sustained activation of Class I PI3K. Our results unravel a hitherto unknown spatiotemporally specific regulatory function of PI(3,5)P 2 that links Class I and II PI3Ks and modulates the magnitude of PI3K-mediated growth factor signaling. These results also suggest new therapeutic possibilities for treating cancer patients with p85 mutations and promoting wound healing and tissue regeneration.
Collapse
|
5
|
Gupta I, Gaykalova DA. Unveiling the role of PIK3R1 in cancer: A comprehensive review of regulatory signaling and therapeutic implications. Semin Cancer Biol 2024; 106-107:58-86. [PMID: 39197810 DOI: 10.1016/j.semcancer.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/11/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
Phosphoinositide 3-kinase (PI3K) is responsible for phosphorylating phosphoinositides to generate secondary signaling molecules crucial for regulating various cellular processes, including cell growth, survival, and metabolism. The PI3K is a heterodimeric enzyme complex comprising of a catalytic subunit (p110α, p110β, or p110δ) and a regulatory subunit (p85). The binding of the regulatory subunit, p85, with the catalytic subunit, p110, forms an integral component of the PI3K enzyme. PIK3R1 (phosphoinositide-3-kinase regulatory subunit 1) belongs to class IA of the PI3K family. PIK3R1 exhibits structural complexity due to alternative splicing, giving rise to distinct isoforms, prominently p85α and p55α. While the primary p85α isoform comprises multiple domains, including Src homology 3 (SH3) domains, a Breakpoint Cluster Region Homology (BH) domain, and Src homology 2 (SH2) domains (iSH2 and nSH2), the shorter isoform, p55α, lacks certain domains present in p85α. In this review, we will highlight the intricate regulatory mechanisms governing PI3K signaling along with the impact of PIK3R1 alterations on cellular processes. We will further delve into the clinical significance of PIK3R1 mutations in various cancer types and their implications for prognosis and treatment outcomes. Additionally, we will discuss the evolving landscape of targeted therapies aimed at modulating PI3K-associated pathways. Overall, this review will provide insights into the dynamic interplay of PIK3R1 in cancer, fostering advancements in precision medicine and the development of targeted interventions.
Collapse
Affiliation(s)
- Ishita Gupta
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA
| | - Daria A Gaykalova
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
6
|
Simón L, Torres K, Contreras P, Díaz-Valdivia N, Leyton L, Quest AFG. Inhibition of glycolysis and Src/Akt signaling reduces Caveolin-1-enhanced metastasis. Biomed Pharmacother 2024; 176:116841. [PMID: 38834004 DOI: 10.1016/j.biopha.2024.116841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/06/2024] Open
Abstract
Metastasis is the leading cause of cancer-related deaths, making the development of novel, more effective therapies imperative to alleviate patient suffering. Metabolic switching is a hallmark of cancer cells that facilitates metastasis. Cancer cells obtain most of their energy and intermediate metabolites, which are required to proliferate and metastasize, through aerobic glycolysis. Previous work from our laboratory has shown that Caveolin-1 (CAV1) expression in cancer cells promotes glycolysis and metastasis. Here, we sought to determine if limiting glycolysis reduced CAV1-enhanced metastasis and to identify the mechanism(s) involved. We evaluated the effects of the glycolysis inhibitor 2-deoxy-D-glucose (2-DG) in metastatic melanoma and breast cancer cell lines expressing or not CAV1. Non-cytotoxic concentrations of 2-DG (1 mM) inhibited the migration of B16-F10 melanoma and MDA-MB-231 breast cancer cells. CAV1-mediated activation of Src/Akt signaling was required for CAV1-enhanced migration and was blocked in the presence of 2-DG. Moreover, inhibition of Akt reduced CAV1-enhanced lung metastasis of B16-F10 cells. Collectively, these findings highlight the importance of CAV1-induced metabolic reprogramming for metastasis and point towards possible therapeutic approaches to prevent metastatic disease by inhibiting glycolysis and Src/Akt signaling.
Collapse
Affiliation(s)
- Layla Simón
- Nutrition and Dietetic School, Universidad Finis Terrae, Santiago, Chile; Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Keila Torres
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pamela Contreras
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Natalia Díaz-Valdivia
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Lisette Leyton
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Andrew F G Quest
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
7
|
Zhang C, Yu M, Hepperla AJ, Zhang Z, Raj R, Zhong H, Zhou J, Hu L, Fang J, Liu H, Liang Q, Jia L, Liao C, Xi S, Simon JM, Xu K, Liu Z, Nam Y, Kapur P, Zhang Q. Von Hippel Lindau tumor suppressor controls m6A-dependent gene expression in renal tumorigenesis. J Clin Invest 2024; 134:e175703. [PMID: 38618952 PMCID: PMC11014668 DOI: 10.1172/jci175703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/01/2024] [Indexed: 04/16/2024] Open
Abstract
N6-Methyladenosine (m6A) is the most abundant posttranscriptional modification, and its contribution to cancer evolution has recently been appreciated. Renal cancer is the most common adult genitourinary cancer, approximately 85% of which is accounted for by the clear cell renal cell carcinoma (ccRCC) subtype characterized by VHL loss. However, it is unclear whether VHL loss in ccRCC affects m6A patterns. In this study, we demonstrate that VHL binds and promotes METTL3/METTL14 complex formation while VHL depletion suppresses m6A modification, which is distinctive from its canonical E3 ligase role. m6A RNA immunoprecipitation sequencing (RIP-Seq) coupled with RNA-Seq allows us to identify a selection of genes whose expression may be regulated by VHL-m6A signaling. Specifically, PIK3R3 is identified to be a critical gene whose mRNA stability is regulated by VHL in a m6A-dependent but HIF-independent manner. Functionally, PIK3R3 depletion promotes renal cancer cell growth and orthotopic tumor growth while its overexpression leads to decreased tumorigenesis. Mechanistically, the VHL-m6A-regulated PIK3R3 suppresses tumor growth by restraining PI3K/AKT activity. Taken together, we propose a mechanism by which VHL regulates m6A through modulation of METTL3/METTL14 complex formation, thereby promoting PIK3R3 mRNA stability and protein levels that are critical for regulating ccRCC tumorigenesis.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Miaomiao Yu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Austin J. Hepperla
- Lineberger Comprehensive Cancer Center, University of North Carolina (UNC) School of Medicine, Chapel Hill, North Carolina, USA
- Department of Genetics, Neuroscience Center and
- UNC Neuroscience Center, Carolina Institute for Developmental Disabilities, UNC, Chapel Hill, North Carolina, USA
| | - Zhao Zhang
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Rishi Raj
- Department of Biochemistry, Department of Biophysics, Simmons Comprehensive Cancer Center and
| | - Hua Zhong
- Department of Pathology, Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jin Zhou
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lianxin Hu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jun Fang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Hongyi Liu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Qian Liang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Liwei Jia
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chengheng Liao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sichuan Xi
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeremy M. Simon
- Lineberger Comprehensive Cancer Center, University of North Carolina (UNC) School of Medicine, Chapel Hill, North Carolina, USA
- Department of Genetics, Neuroscience Center and
- UNC Neuroscience Center, Carolina Institute for Developmental Disabilities, UNC, Chapel Hill, North Carolina, USA
| | - Kexin Xu
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Zhijie Liu
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Yunsun Nam
- Department of Biochemistry, Department of Biophysics, Simmons Comprehensive Cancer Center and
| | - Payal Kapur
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, Department of Urology
| | - Qing Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
8
|
Jia W, Luo S, Guo H, Kong D. Development of PI3Kα inhibitors for tumor therapy. J Biomol Struct Dyn 2023; 41:8587-8604. [PMID: 36221910 DOI: 10.1080/07391102.2022.2132293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 09/28/2022] [Indexed: 10/17/2022]
Abstract
The PI3K/AKT/mTOR signaling pathway is well known to be involved in cell growth, proliferation, metabolism and other cellular physiological processes. Abnormal activation of this pathway is closely related to tumorigenesis and metastasis. As the starting node of the pathway, PI3K is known to contain 4 isoforms, including PI3Kα, a heterodimer composed of the catalytic subunit p110α and the regulatory subunit p85. PIK3CA, which encodes p110α, is frequently mutated in cancer, especially breast cancer. Abnormal activation of PI3Kα promotes cancer cell proliferation, migration, invasion, and angiogenesis; therefore, PI3Kα has become a key target for the development of anticancer drugs. The hinge region and the region of the mutation site in the PI3Kα protein are important for designing PI3Kα-specific inhibitors. As the group shared by the most PI3Kα-specific inhibitors reported thus far, carboxamide can produce hydrogen bonds with Gln859 and Ser854. Gln859 is specific to the p110α protein in producing hydrogen bond interactions with PI3Kα-specific inhibitors and this is a key point for designing PI3Kα inhibitors. To date, alpelisib is the only PI3Kα inhibitor approved for the treatment of breast cancer. Several other PI3Kα inhibitors are under evaluation in clinical trials. In this review, we briefly describe PI3Kα and its role in tumorigenesis, summarize the clinical trial results of some PI3Kα inhibitors as well as the synthetic routes of alpelisib, and finally give our proposal for the development of novel PI3Kα inhibitors for tumor therapy. HighlightsWe summarize the progress of PI3Kα and PI3Kα inhibitors in cancer from the second half of the 20th century to the present.We describe the clinical trial results of PI3Kα inhibitors as well as the synthetic routes of the only approved PI3Kα inhibitor alpelisib.Crystal structure of alpelisib bound to the PI3Kα receptor binding domain.This review gives proposal for the development of novel PI3Kα inhibitors and will serve as a complementary summary to other reviews in the research field of PI3K inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Wenqing Jia
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Shuyu Luo
- School of Stomatology, Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Han Guo
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Dexin Kong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| |
Collapse
|
9
|
Tsay A, Wang JC. The Role of PIK3R1 in Metabolic Function and Insulin Sensitivity. Int J Mol Sci 2023; 24:12665. [PMID: 37628845 PMCID: PMC10454413 DOI: 10.3390/ijms241612665] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
PIK3R1 (also known as p85α) is a regulatory subunit of phosphoinositide 3-kinases (PI3Ks). PI3K, a heterodimer of a regulatory subunit and a catalytic subunit, phosphorylates phosphatidylinositol into secondary signaling molecules involved in regulating metabolic homeostasis. PI3K converts phosphatidylinositol 4,5-bisphosphate (PIP2) to phosphatidylinositol 3,4,5-triphosphate (PIP3), which recruits protein kinase AKT to the inner leaflet of the cell membrane to be activated and to participate in various metabolic functions. PIK3R1 stabilizes and inhibits p110 catalytic activity and serves as an adaptor to interact with insulin receptor substrate (IRS) proteins and growth factor receptors. Thus, mutations in PIK3R1 or altered expression of PIK3R1 could modulate the activity of PI3K and result in significant metabolic outcomes. Interestingly, recent studies also found PI3K-independent functions of PIK3R1. Overall, in this article, we will provide an updated review of the metabolic functions of PIK3R1 that includes studies of PIK3R1 in various metabolic tissues using animal models, the mechanisms modulating PIK3R1 activity, and studies on the mutations of human PIK3R1 gene.
Collapse
Affiliation(s)
- Ariel Tsay
- Metabolic Biology Graduate Program, University of California Berkeley, Berkeley, CA 94720, USA;
- Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Jen-Chywan Wang
- Metabolic Biology Graduate Program, University of California Berkeley, Berkeley, CA 94720, USA;
- Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, CA 94720, USA
- Endocrinology Graduate Program, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
10
|
Gupta MN, Uversky VN. Moonlighting enzymes: when cellular context defines specificity. Cell Mol Life Sci 2023; 80:130. [PMID: 37093283 PMCID: PMC11073002 DOI: 10.1007/s00018-023-04781-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/13/2023] [Accepted: 04/15/2023] [Indexed: 04/25/2023]
Abstract
It is not often realized that the absolute protein specificity is an exception rather than a rule. Two major kinds of protein multi-specificities are promiscuity and moonlighting. This review discusses the idea of enzyme specificity and then focusses on moonlighting. Some important examples of protein moonlighting, such as crystallins, ceruloplasmin, metallothioniens, macrophage migration inhibitory factor, and enzymes of carbohydrate metabolism are discussed. How protein plasticity and intrinsic disorder enable the removing the distinction between enzymes and other biologically active proteins are outlined. Finally, information on important roles of moonlighting in human diseases is updated.
Collapse
Affiliation(s)
- Munishwar Nath Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC07, Tampa, FL, 33612-4799, USA.
| |
Collapse
|
11
|
Chakraborty G, Nandakumar S, Hirani R, Nguyen B, Stopsack KH, Kreitzer C, Rajanala SH, Ghale R, Mazzu YZ, Pillarsetty NVK, Mary Lee GS, Scher HI, Morris MJ, Traina T, Razavi P, Abida W, Durack JC, Solomon SB, Vander Heiden MG, Mucci LA, Wibmer AG, Schultz N, Kantoff PW. The Impact of PIK3R1 Mutations and Insulin-PI3K-Glycolytic Pathway Regulation in Prostate Cancer. Clin Cancer Res 2022; 28:3603-3617. [PMID: 35670774 PMCID: PMC9438279 DOI: 10.1158/1078-0432.ccr-21-4272] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/07/2022] [Accepted: 06/03/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Oncogenic alterations of the PI3K/AKT pathway occur in >40% of patients with metastatic castration-resistant prostate cancer, predominantly via PTEN loss. The significance of other PI3K pathway components in prostate cancer is largely unknown. EXPERIMENTAL DESIGN Patients in this study underwent tumor sequencing using the MSK-IMPACT clinical assay to capture single-nucleotide variants, insertions, and deletions; copy-number alterations; and structural rearrangements, or were profiled through The Cancer Genome Atlas. The association between PIK3R1 alteration/expression and survival was evaluated using univariable and multivariable Cox proportional-hazards regression models. We used the siRNA-based knockdown of PIK3R1 for functional studies. FDG-PET/CT examinations were performed with a hybrid positron emission tomography (PET)/CT scanner for some prostate cancer patients in the MSK-IMPACT cohort. RESULTS Analyzing 1,417 human prostate cancers, we found a significant enrichment of PIK3R1 alterations in metastatic cancers compared with primary cancers. PIK3R1 alterations or reduced mRNA expression tended to be associated with worse clinical outcomes in prostate cancer, particularly in primary disease, as well as in breast, gastric, and several other cancers. In prostate cancer cell lines, PIK3R1 knockdown resulted in increased cell proliferation and AKT activity, including insulin-stimulated AKT activity. In cell lines and organoids, PIK3R1 loss/mutation was associated with increased sensitivity to AKT inhibitors. PIK3R1-altered patient prostate tumors had increased uptake of the glucose analogue 18F-fluorodeoxyglucose in PET imaging, suggesting increased glycolysis. CONCLUSIONS Our findings describe a novel genomic feature in metastatic prostate cancer and suggest that PIK3R1 alteration may be a key event for insulin-PI3K-glycolytic pathway regulation in prostate cancer.
Collapse
Affiliation(s)
- Goutam Chakraborty
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Subhiksha Nandakumar
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Rahim Hirani
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Bastien Nguyen
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Konrad H. Stopsack
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Christoph Kreitzer
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Romina Ghale
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ying Z. Mazzu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Gwo-Shu Mary Lee
- Department of Medicine, Dana-Farber Cancer Institute, Boston, MA
| | - Howard I. Scher
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Biomarker Development Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michael J. Morris
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Tiffany Traina
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Pedram Razavi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Wassim Abida
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jeremy C. Durack
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Stephen B. Solomon
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Matthew G. Vander Heiden
- Koch Institute for Integrative Cancer Research and the Department of Biology at Massachusetts Institute of Technology, Cambridge, MA
| | - Lorelei A. Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Andreas G. Wibmer
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nikolaus Schultz
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Philip W. Kantoff
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
12
|
Development of New Thiophene-Containing Triaryl Pyrazoline Derivatives as PI3Kγ Inhibitors. Molecules 2022; 27:molecules27082404. [PMID: 35458602 PMCID: PMC9027920 DOI: 10.3390/molecules27082404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
A series of new thiophene-containing triaryl pyrazoline derivatives, 3a–3t, were synthesized and evaluated regarding PI3K inhibition activity and anti-tumor potency based on a trial of introducing significant moieties, including pyrazoline and thiophene, and simplifying the parallel ring structures. Most of the tested compounds indicated potent PI3K inhibitory potency, with this series of compounds showing more potency for PI3Kγ than PI3Kα. The top hit 3s seemed more potent than the positive control LY294002 on inhibiting PI3Kγ (IC50 values: 0.066 μM versus 0.777 μM) and more selective from PI3Kα (Index values: 645 versus 1.74). It could be inferred that the combination of para- and meta-, as well as the modification of the electron-donating moieties, led to the improvement in potency. The anti-proliferation inhibitory activity and the enzymatic inhibition potency indicated consistent tendencies. The top hit 3s could inhibit the phosphorylation of Akt by inhibiting PI3K through the PI3K-Akt-mTOR pathway. The molecular docking simulation indicated that the binding pattern of 3s into PI3Kγ was preferable than that of PI3Kα, with more hydrogen bond, more π-involved interactions, and fewer π-sulfur interactions. The information in this work is referable for the further development of selective inhibitors for specific isoforms of PI3K.
Collapse
|
13
|
Tang X, Chen F, Xie LC, Liu SX, Mai HR. Targeting metabolism: A potential strategy for hematological cancer therapy. World J Clin Cases 2022; 10:2990-3004. [PMID: 35647127 PMCID: PMC9082716 DOI: 10.12998/wjcc.v10.i10.2990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/01/2021] [Accepted: 02/27/2022] [Indexed: 02/06/2023] Open
Abstract
Most hematological cancer-related relapses and deaths are caused by metastasis; thus, the importance of this process as a target of therapy should be considered. Hematological cancer is a type of cancer in which metabolism plays an essential role in progression. Therefore, we are required to block fundamental metastatic processes and develop specific preclinical and clinical strategies against those biomarkers involved in the metabolic regulation of hematological cancer cells, which do not rely on primary tumor responses. To understand progress in this field, we provide a summary of recent developments in the understanding of metabolism in hematological cancer and a general understanding of biomarkers currently used and under investigation for clinical and preclinical applications involving drug development. The signaling pathways involved in cancer cell metabolism are highlighted and shed light on how we could identify novel biomarkers involved in cancer development and treatment. This review provides new insights into biomolecular carriers that could be targeted as anticancer biomarkers.
Collapse
Affiliation(s)
- Xue Tang
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen 518038, Guangdong Province, China
| | - Fen Chen
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen 518038, Guangdong Province, China
| | - Li-Chun Xie
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen 518038, Guangdong Province, China
| | - Si-Xi Liu
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen 518038, Guangdong Province, China
| | - Hui-Rong Mai
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen 518038, Guangdong Province, China
| |
Collapse
|
14
|
CaMKK2 Promotes the Progression of Ovarian Carcinoma through the PI3K/PDK1/Akt Axis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7187940. [PMID: 35309839 PMCID: PMC8933102 DOI: 10.1155/2022/7187940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/11/2022] [Accepted: 01/15/2022] [Indexed: 11/18/2022]
Abstract
Objective. To explore the functional role of Calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) in the progression of ovarian carcinoma (OC). Methods. RT-qPCR analysis and western blot were conducted to detect the mRNA and protein expression of CaMKK2, PI3K, PDK1 and Akt in OC tissues and cells, respectively. CCK-8 assay, transwell migration assay and flow cytometry were used to measure cell proliferation, migration and apoptosis, respectively. Results. CaMKK2, PI3K, PDK1 and Akt were highly expressed in OC tissues compared with the corresponding controls. CaMKK2 knockdown significantly suppressed the mRNA and protein expression of PI3K, PDK1 and Akt in HO8910 and OV90 cells. Moreover, CaMKK2 knockdown could dramatically repress cell proliferation, migration, and markedly elevate cell apoptosis in HO8910 and OV90 cells. Conclusions. CaMKK2 played a promotion role in OC progression via activating the PI3K/PDK1/Akt axis.
Collapse
|
15
|
Zhang M, Jang H, Nussinov R. PI3K Driver Mutations: A Biophysical Membrane-Centric Perspective. Cancer Res 2021; 81:237-247. [PMID: 33046444 PMCID: PMC7855922 DOI: 10.1158/0008-5472.can-20-0911] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/24/2020] [Accepted: 10/07/2020] [Indexed: 11/16/2022]
Abstract
Ras activates its effectors at the membrane. Active PI3Kα and its associated kinases/phosphatases assemble at membrane regions enriched in signaling lipids. In contrast, the Raf kinase domain extends into the cytoplasm and its assembly is away from the crowded membrane surface. Our structural membrane-centric outlook underscores the spatiotemporal principles of membrane and signaling lipids, which helps clarify PI3Kα activation. Here we focus on mechanisms of activation driven by PI3Kα driver mutations, spotlighting the PI3Kα double (multiple) activating mutations. Single mutations can be potent, but double mutations are stronger: their combination is specific, a single strong driver cannot fully activate PI3K, and two weak drivers may or may not do so. In contrast, two strong drivers may successfully activate PI3K, where one, for example, H1047R, modulates membrane interactions facilitating substrate binding at the active site (km) and the other, for example, E542K and E545K, reduces the transition state barrier (ka), releasing autoinhibition by nSH2. Although mostly unidentified, weak drivers are expected to be common, so we ask here how common double mutations are likely to be and why PI3Kα with double mutations responds effectively to inhibitors. We provide a structural view of hotspot and weak driver mutations in PI3Kα activation, explain their mechanisms, compare these with mechanisms of Raf activation, and point to targeting cell-specific, chromatin-accessible, and parallel (or redundant) pathways to thwart the expected emergence of drug resistance. Collectively, our biophysical outlook delineates activation and highlights the challenges of drug resistance.
Collapse
Affiliation(s)
- Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland.
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
16
|
Jiang N, Dai Q, Su X, Fu J, Feng X, Peng J. Role of PI3K/AKT pathway in cancer: the framework of malignant behavior. Mol Biol Rep 2020; 47:4587-4629. [PMID: 32333246 PMCID: PMC7295848 DOI: 10.1007/s11033-020-05435-1] [Citation(s) in RCA: 369] [Impact Index Per Article: 73.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022]
Abstract
Given that the PI3K/AKT pathway has manifested its compelling influence on multiple cellular process, we further review the roles of hyperactivation of PI3K/AKT pathway in various human cancers. We state the abnormalities of PI3K/AKT pathway in different cancers, which are closely related with tumorigenesis, proliferation, growth, apoptosis, invasion, metastasis, epithelial-mesenchymal transition, stem-like phenotype, immune microenvironment and drug resistance of cancer cells. In addition, we investigated the current clinical trials of inhibitors against PI3K/AKT pathway in cancers and found that the clinical efficacy of these inhibitors as monotherapy has so far been limited despite of the promising preclinical activity, which means combinations of targeted therapy may achieve better efficacies in cancers. In short, we hope to feature PI3K/AKT pathway in cancers to the clinic and bring the new promising to patients for targeted therapies.
Collapse
Affiliation(s)
- Ningni Jiang
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Qijie Dai
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Xiaorui Su
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Jianjiang Fu
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Xuancheng Feng
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Juan Peng
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| |
Collapse
|
17
|
The Emerging Role of Rab5 in Membrane Receptor Trafficking and Signaling Pathways. Biochem Res Int 2020; 2020:4186308. [PMID: 32104603 PMCID: PMC7036122 DOI: 10.1155/2020/4186308] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/16/2019] [Accepted: 12/07/2019] [Indexed: 02/06/2023] Open
Abstract
Ras analog in brain (Rab) proteins are small guanosine triphosphatases (GTPases) that belong to the Ras-like GTPase superfamily, and they can regulate vesicle trafficking. Rab proteins alternate between an activated (GTP-bound) state and an inactivated (GDP-bound) state. Early endosome marker Rab5 GTPase, a key member of the Rab family, plays a crucial role in endocytosis and membrane transport. The activated-state Rab5 recruits its effectors and regulates the internalization and trafficking of membrane receptors by regulating vesicle fusion and receptor sorting in the early endosomes. In this review, we summarize the role of small Rab GTPases Rab5 in membrane receptor trafficking and the activation of signaling pathways, such as Ras/MAPK and PI3K/Akt, which ultimately affect cell growth, apoptosis, tumorigenesis, and tumor development. This review may provide some insights for our future research and novel therapeutic targets for diseases.
Collapse
|
18
|
Bilanges B, Posor Y, Vanhaesebroeck B. PI3K isoforms in cell signalling and vesicle trafficking. Nat Rev Mol Cell Biol 2019; 20:515-534. [PMID: 31110302 DOI: 10.1038/s41580-019-0129-z] [Citation(s) in RCA: 348] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PI3Ks are a family of lipid kinases that phosphorylate intracellular inositol lipids to regulate signalling and intracellular vesicular traffic. Mammals have eight isoforms of PI3K, divided into three classes. The class I PI3Ks generate 3-phosphoinositide lipids, which directly activate signal transduction pathways. In addition to being frequently genetically activated in cancer, similar mutations in class I PI3Ks have now also been found in a human non-malignant overgrowth syndrome and a primary immune disorder that predisposes to lymphoma. The class II and class III PI3Ks are regulators of membrane traffic along the endocytic route, in endosomal recycling and autophagy, with an often indirect effect on cell signalling. Here, we summarize current knowledge of the different PI3K classes and isoforms, focusing on recently uncovered biological functions and the mechanisms by which these kinases are activated. Deeper insight into the PI3K isoforms will undoubtedly continue to contribute to a better understanding of fundamental cell biological processes and, ultimately, of human disease.
Collapse
Affiliation(s)
- Benoit Bilanges
- UCL Cancer Institute, University College London, London, UK.
| | - York Posor
- UCL Cancer Institute, University College London, London, UK.
| | | |
Collapse
|
19
|
PI3K-AKT-mTOR and NFκB Pathways in Ovarian Cancer: Implications for Targeted Therapeutics. Cancers (Basel) 2019; 11:cancers11070949. [PMID: 31284467 PMCID: PMC6679095 DOI: 10.3390/cancers11070949] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/10/2019] [Accepted: 06/30/2019] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer is the most lethal gynecologic malignancy in the United States, with an estimated 22,530 new cases and 13,980 deaths in 2019. Recent studies have indicated that the phosphoinositol 3 kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR), as well as the nuclear factor-κ light chain enhancer of activated B cells (NFκB) pathways are highly mutated and/or hyper-activated in a majority of ovarian cancer patients, and are associated with advanced grade and stage disease and poor prognosis. In this review, we will investigate PI3K/AKT/mTOR and their interconnection with NFκB pathway in ovarian cancer cells.
Collapse
|