1
|
Michałowska-Sawczyn M, Humińska-Lisowska K, Chmielowiec K, Chmielowiec J, Strońska-Pluta A, Suchanecka A, Zadroga Ł, Massidda M, Calò CM, Recław R, Grzywacz A. Association analysis of the dopaminergic receptor 2 gene Tag1B rs1079597 and personality traits among a cohort of professional athletes. Biol Sport 2025; 42:35-43. [PMID: 40182709 PMCID: PMC11963129 DOI: 10.5114/biolsport.2025.139470] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 04/24/2024] [Accepted: 06/08/2024] [Indexed: 04/05/2025] Open
Abstract
Research into sports participation has increasingly pointed to inherent biological mechanisms as influential factors alongside psychosocial and environmental elements. The dopaminergic D2 receptor is a strong candidate gene for physical activity behaviour, given its role in locomotor control and reward mechanisms. Hence, this study aimed to analyse the association of the DRD2 gene Tag1B rs1079597 polymorphism with personality traits in elite athletes. The study group consisted of 395 volunteers. Of these, 163 were professional athletes (22.56 ± 5.9; M = 114, F = 49), and 232 were controls (22.07 ± 4.3; M = 150, F = 82). The MINI-International Neuropsychiatric Interview and the NEO Five-Factor Inventory were administered in both groups. Genotyping was performed using the real-time PCR method. Statistical analysis was performed: genotypes and alleles frequencies were compared using the chi-square test and the relations between DRD2 Tag1B rs1079597 variants, professional athletes and control participants and the NEO Five-Factor Inventory were analysed with the factorial ANOVA. Statistically significant differences were found in the frequency of DRD2 Tag1B rs1079597 genotypes and alleles in the group of professional athletes group compared to the control group. The GG genotype and G allele were significantly more frequent in the group of professional athletes (G/G 0.79 vs G/G 0.66; A/A 0.04 vs A/A 0.03; A/G 0.17 vs A/G 0.31, p = 0.0056; G 0.87 vs. G 0.81; A 0.13 vs. A 0.19, p = 0.0281) compared to the control group. The professional athletes' participants, compared to the controls, obtained significantly higher scores in the assessment of NEO-FFI Extraversion (p = 0.0369) and Conscientiousness (p < 0.0001) scales. Additionally, there was a statistically significant effect of DRD2 rs1079597 genotype association with being a professional athlete on the Openness scale (F2.3389 = 3.07; p = 0.0475; η2 = 0.015) and on the Conscientiousness scale (F2.3389 = 3.23; p = 0.0406; η2 = 0.016). This study highlights the significant associations between the DRD2 Taq1B polymorphic site and personality traits in a group of professional athletes. It also demonstrates the association of Taq1B polymorphism and professional sportsmanship with personality traits measured by NEO-FFI. The results suggest that genetic factors and professional sportsmanship both shape an athlete's personality traits.
Collapse
Affiliation(s)
| | | | - Krzysztof Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, 28 Zyty St., 65-046 Zielona Góra, Poland
| | - Jolanta Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, 28 Zyty St., 65-046 Zielona Góra, Poland
| | - Aleksandra Strońska-Pluta
- Independent Laboratory of Behavioral Genetics and Epigenetics, Pomeranian Medical University in Szczecin, Poland
| | - Aleksandra Suchanecka
- Independent Laboratory of Behavioral Genetics and Epigenetics, Pomeranian Medical University in Szczecin, Poland
| | - Łukasz Zadroga
- Student Scientific Club of Independent Laboratory of Genetics and Behavioral Epigenetics, Pomeranian Medical University in Szczecin, Poland
| | - Myosotis Massidda
- Department of Medical Sciences and Public Health, University of Cagliari, Italy
| | - Carla Maria Calò
- Department of Life and Environmental Sciences, University of Cagliari, Italy
| | - Remigiusz Recław
- Independent Laboratory of Behavioral Genetics and Epigenetics, Pomeranian Medical University in Szczecin, Poland
| | - Anna Grzywacz
- Independent Laboratory of Behavioral Genetics and Epigenetics, Pomeranian Medical University in Szczecin, Poland
| |
Collapse
|
2
|
Godina E, Khromov-Borisov N, Bondareva E. Prediction of success in sports based on assumed individual genetic predisposition: lack of association with the C > T variant in the ACTN3 gene. J Physiol Anthropol 2025; 44:6. [PMID: 39953630 PMCID: PMC11829376 DOI: 10.1186/s40101-025-00386-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/25/2024] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Prediction of sports success (sports talent) based on individual genetic characteristics is the main goal of sports genetics/genomics. Most often, markers of predisposition to speed-strength sports, or endurance, are single-nucleotide variants in various parts of DNA. One of the most studied variants is the C/T variant in the ACTN3 gene. The accumulated data on the association of this variant with success in various sports is sufficient to conduct a meta-analysis. The purpose of the present review is to analyze the prognostic utility of the data presented in the literature on molecular genetic markers of genetic predisposition to achieve outstanding sports results using the example of the C > T variant of ACTN3 (rs1815739). MAIN BODY A total of 42 studies were included in the analysis, with a total number of 41,054 individuals (of which 10,442 were in the athlete group and 30,612 in the control group). For each study included in the analysis, the agreement of genotype frequencies with Hardy-Weinberg equilibrium was tested, as well as the presence of an excess or deficit of heterozygotes. Prediction intervals for the overall effect size (OR-odds ratio) was estimated. Both in the subgroups of athletes and controls, a significant difference FIS from zero was found, suggesting inbreeding or outbreeding, as well as a very wide 95% CI for FIS. A meta-analysis was conducted for dominant, codominant, and recessive inheritance models. The obtained ORs and their 95% CIs were in the range of almost negligible values or have very wide CIs. The evaluation for the recessive model showed 95% PI for the OR lies between 0.74 to 1.92. Statistically, it does not differ from zero, which means that in some 95% of studies comparable to those in the analysis, the true effect size will fall in this interval. CONCLUSION Despite numerous attempts to identify genetic variants associated with success in elite sports, progress in this direction remains insignificant. Thus, no sports or sports roles were found for which the C > T variant of the ACTN3 gene would be a reliable prognostic marker for assessing an individual predisposition to achieve high sports performance. The results of the present meta-analysis support the conclusion that neutral gene polymorphism-from evolutionary or adaptive point of view-is not a trait that can be selected or used as a predictive tool in sports.
Collapse
Affiliation(s)
- Elena Godina
- Anuchin Research Institute and Museum of Anthropology, Lomonosov Moscow State University, Mokhovaya St., 11, Moscow, 125009, Russia.
- Russian University of Sports (GTSOLIFK), Syrenevy Blvd., 4. Moscow 105122, Moscow, Russia.
| | - Nikita Khromov-Borisov
- Commission On Pseudoscience of Russian Academy of Sciences, Leninsky Prospect, Moscow, 119991, Russia
| | - Elvira Bondareva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya St., 1a, Moscow, 119435, Russia
| |
Collapse
|
3
|
John G, AlNadwi A, Georges Abi Antoun T, Ahmetov II. Injury Prevention Strategies in Female Football Players: Addressing Sex-Specific Risks. Sports (Basel) 2025; 13:39. [PMID: 39997970 PMCID: PMC11860710 DOI: 10.3390/sports13020039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 02/26/2025] Open
Abstract
There has been rapid growth in women's football worldwide; however, research on injury prevention strategies and physiological considerations specific to female athletes remains insufficient. Women's football has experienced an increase in injury prevalence, despite being underrepresented in sports literature, with less than 25% of research focused on this demographic. The incidence of injuries, particularly among young elite female footballers, is notably high, impacting long-term health outcomes such as osteoarthritis and contributing to shorter playing careers. Certain injuries, such as anterior cruciate ligament (ACL) ruptures, occur at significantly higher rates in women compared to men, underscoring sex-specific risk factors that must be addressed in injury prevention programs (IPPs). This narrative review aims to evaluate the effectiveness of IPPs tailored for female football players and to address their heightened susceptibility to injuries compared to males. Research studies and review articles were identified using a literature search of the PubMed, SportDiscus, and Google Scholar databases from 1990 to December 2024. Biological factors, including hormonal influences-such as increased ACL laxity during the menstrual cycle-and musculoskeletal differences, such as muscle strength imbalances, reduced joint stability, and hip weakness, significantly contribute to this increased risk. Despite the existence of injury prevention protocols like FIFA 11+, their consistent application and adaptation to meet the unique needs of female footballers remain limited. In addition to physical injuries, mental health is a critical concern. Female football players exhibit higher rates of depression and anxiety compared to their male counterparts, influenced by factors such as injury-related stress and menstrual cycle variations. In conclusion, the growing participation of women in football highlights the urgent need for research and implementation of injury prevention strategies specifically tailored to female players.
Collapse
Affiliation(s)
- George John
- Transform Specialist Medical Centre, Dubai 119190, United Arab Emirates
| | - Ameen AlNadwi
- Transform Specialist Medical Centre, Dubai 119190, United Arab Emirates
| | | | - Ildus I. Ahmetov
- Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, 420012 Kazan, Russia
- Sports Genetics Laboratory, St. Petersburg Research Institute of Physical Culture, 191040 St. Petersburg, Russia
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5AF, UK
| |
Collapse
|
4
|
Hwang DJ, Yang HJ. Nutritional Strategies for Enhancing Performance and Training Adaptation in Weightlifters. Int J Mol Sci 2024; 26:240. [PMID: 39796095 PMCID: PMC11720227 DOI: 10.3390/ijms26010240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Weightlifting demands explosive power and neuromuscular coordination in brief, repeated intervals. These physiological demands underscore the critical role of nutrition, not only in optimizing performance during competitions but also in supporting athletes' rigorous training adaptations and ensuring effective recovery between sessions. As weightlifters strive to enhance their performance, well-structured nutritional strategies are indispensable. In this comprehensive review, we explored how weightlifters can optimize their performance through targeted nutritional strategies, including carbohydrate intake for glycogen replenishment and proteins for muscle growth and recovery. Additionally, the roles of key supplements, such as creatine, beta-alanine, and branch-chained amino acids in enhancing strength, delaying fatigue, and supporting muscle repair were discussed. A comprehensive literature review was conducted using PubMed, Google Scholar, and Web of Science to gather studies on nutritional strategies for weightlifting performance and training adaptation. The review focused on English-language articles relevant to weightlifters, including studies on powerlifting, while excluding those involving non-human subjects. Weightlifting requires explosive power, and proper nutrition is vital for performance and recovery, emphasizing the role of carbohydrate, protein, and fat intake. Nutrient timing and personalized strategies, informed by genetic and metabolomic analyses, enhance recovery and performance, while supplements like creatine, caffeine, and beta-alanine can significantly improve results when used correctly. Sustainable nutritional strategies are essential for enhancing weightlifter performance, emphasizing a balanced approach over extreme diets or excessive supplements. Further research is needed to refine these strategies based on individual athlete characteristics, ensuring consistent top-level performance throughout competitive seasons.
Collapse
Affiliation(s)
- Dong-Joo Hwang
- Sport Science Institute, Korea National Sport University, Seoul 05541, Republic of Korea;
| | - Hong-Jun Yang
- Institute of Health & Environment, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
5
|
Li R, Su P, Shi Y, Shi H, Ding S, Su X, Chen P, Wu D. Gene doping detection in the era of genomics. Drug Test Anal 2024; 16:1468-1478. [PMID: 38403949 DOI: 10.1002/dta.3664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/27/2024]
Abstract
Recent progress in gene editing has enabled development of gene therapies for many genetic diseases, but also made gene doping an emerging risk in sports and competitions. By delivery of exogenous transgenes into human body, gene doping not only challenges competition fairness but also places health risk on athletes. World Anti-Doping Agency (WADA) has clearly inhibited the use of gene and cell doping in sports, and many techniques have been developed for gene doping detection. In this review, we will summarize the main tools for gene doping detection at present, highlight the main challenges for current tools, and elaborate future utilizations of high-throughput sequencing for unbiased, sensitive, economic and large-scale gene doping detections. Quantitative real-time PCR assays are the widely used detection methods at present, which are useful for detection of known targets but are vulnerable to codon optimization at exon-exon junction sites of the transgenes. High-throughput sequencing has become a powerful tool for various applications in life and health research, and the era of genomics has made it possible for sensitive and large-scale gene doping detections. Non-biased genomic profiling could efficiently detect new doping targets, and low-input genomics amplification and long-read third-generation sequencing also have application potentials for more efficient and straightforward gene doping detection. By closely monitoring scientific advancements in gene editing and sport genetics, high-throughput sequencing could play a more and more important role in gene detection and hopefully contribute to doping-free sports in the future.
Collapse
Affiliation(s)
- Ruihong Li
- eHealth Program of Shanghai Anti-doping Laboratory, Shanghai University of Sport, Shanghai, China
- Shanghai Center of Agri-Products Quality and Safety, Shanghai, China
| | - Peipei Su
- Innovative Program of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Shi
- eHealth Program of Shanghai Anti-doping Laboratory, Shanghai University of Sport, Shanghai, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Shi
- eHealth Program of Shanghai Anti-doping Laboratory, Shanghai University of Sport, Shanghai, China
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengqian Ding
- eHealth Program of Shanghai Anti-doping Laboratory, Shanghai University of Sport, Shanghai, China
| | - Xianbin Su
- eHealth Program of Shanghai Anti-doping Laboratory, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Peijie Chen
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Die Wu
- eHealth Program of Shanghai Anti-doping Laboratory, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
6
|
Hall ECR, John G, Ahmetov II. Testing in Football: A Narrative Review. Sports (Basel) 2024; 12:307. [PMID: 39590909 PMCID: PMC11598473 DOI: 10.3390/sports12110307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Football clubs regularly test and monitor players, with different approaches reflecting player age and competitive level. This narrative review aims to summarise justifications for testing and commonly used testing protocols. We also aim to discuss the validity and reliability of specific tests used to assess football players and provide a holistic overview of protocols currently used in football or those demonstrating potential utility. The PubMed, SportDiscus, and Google Scholar databases were screened for relevant articles from inception to September 2024. Articles that met our inclusion criteria documented tests for several purposes, including talent identification or the assessment of growth/maturation, physiological capacity, sport-specific skill, health status, monitoring fatigue/recovery, training adaptation, and injury risk factors. We provide information on specific tests of anthropometry, physical capacity, biochemical markers, psychological indices, injury risk screening, sport-specific skills, and genetic profile and highlight where certain tests may require further evidence to support their use. The available evidence suggests that test selection and implementation are influenced by financial resources, coach perceptions, and playing schedules. The ability to conduct field-based testing at low cost and to test multiple players simultaneously appear to be key drivers of test development and implementation among practitioners working in elite football environments.
Collapse
Affiliation(s)
- Elliott C. R. Hall
- Faculty of Health Sciences and Sport, University of Stirling, Stirling FK9 4UA, UK
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - George John
- Transform Specialist Medical Centre, Dubai 119190, United Arab Emirates;
| | - Ildus I. Ahmetov
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
- Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, 420012 Kazan, Russia
- Sports Genetics Laboratory, St. Petersburg Research Institute of Physical Culture, 191040 St. Petersburg, Russia
| |
Collapse
|
7
|
Gonzalez JR, Rodas G. Response to Lolli: Predicting Injuries in Elite Female Football Players With Global-Positioning-System and Multiomics Data. Int J Sports Physiol Perform 2024; 19:1178-1179. [PMID: 39322204 DOI: 10.1123/ijspp.2024-0308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/04/2024] [Indexed: 09/27/2024]
Affiliation(s)
- Juan R Gonzalez
- ISGlobal, Institute for Global Health, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Gil Rodas
- Futbol Club Barcelona Medical Department and Barça Innovation Hub, Barcelona, Spain
- Sports and Exercise Medical Unit, Clinic Hospital and Sant Joan de Déu Hospital, Barcelona, Spain
| |
Collapse
|
8
|
Bojarczuk A. Ethical Aspects of Human Genome Research in Sports-A Narrative Review. Genes (Basel) 2024; 15:1216. [PMID: 39336807 PMCID: PMC11430849 DOI: 10.3390/genes15091216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/23/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Human genome research in sports raises complex ethical considerations regarding the intersection of genetics and athletic performance. Pursuing genetic enhancements must uphold fairness, equality, and respect for human dignity. This narrative review explores the ethical dimensions of human genome research in sports, its potential implications on athletes, and the integrity of sports. As a narrative review, this study synthesizes the existing literature and expert insights to examine the ethical aspects of human genome research in sports. This study extensively examined the current literature on genetics, sports performance, ethical concerns, human rights, and legal regulations within the European context. The literature was searched using the SPORTDiscus, Scopus, Google Scholar, and PubMed databases. Exploring human genome research in sports reveals significant ethical implications, including potential genetic discrimination, impacts on human rights, and creating a genetic underclass of athletes. There are also definite benefits surrounding genetic testing. In conclusion, this review contends that integrating ethical considerations into developing and applying genetic technologies in sports is crucial to upholding fundamental principles of fairness, equality, and respect for human dignity. It stresses the importance of open and inclusive dialogue about the potential consequences of genetic advancements on athletic performance, future generations, and the integrity of sports.
Collapse
Affiliation(s)
- Aleksandra Bojarczuk
- Biochemistry Department, Faculty of Physical Culture, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland
| |
Collapse
|
9
|
Liu T. The roles of ACE I/D and ACTN3 R577X gene variants in heat acclimation. Heliyon 2024; 10:e33172. [PMID: 38984309 PMCID: PMC11231590 DOI: 10.1016/j.heliyon.2024.e33172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/28/2024] [Accepted: 06/14/2024] [Indexed: 07/11/2024] Open
Abstract
Roles of genes in heat acclimation (HA, repeated exercise-heat exposures) had not been explored. ACE I/D and ACTN3 R577X genetic polymorphisms are closely associated with outstanding exercise performances. This study investigated whether the two polymorphisms influenced the response to HA. Fifty young Han nationality male subjects were selected and conducted HA for 2 weeks. Exercise indicators (5-km run, push-up and 100-m run) were tested and rest aural thermometry (RTau) was measured before and after HA. ACE gene was grouped by I homozygote and D carrier, and ACTN3 gene was grouped by R homozygote and X carrier. Results showed that there were no differences between groups in age, body mass index, exercise indicators and RTau before HA. After HA, RTau of ACE I homozygote was lower than that of D carrier [F (1, 48) = 9.12, p = 0.004, η = 0.40]. Compared with RTau before HA, that of I homozygote decreased after HA (Δ = -0.26 °C, 95 % CI -0.34-0.18, p < 0.001), while that of D carrier did not change. There was a ACE gene × HA interaction in RTau [F (1, 48) = 14.26, p < 0.001, η = 0.48]. No effect of ACTN3 gene on RTau was observed. For exercise indicators, there were no differences between groups after HA, and no gene × HA interactions were observed. There may be a strong interaction of ACE gene and HA in the change of rest core temperature. I homozygote may have an advantage on improving heat tolerance.
Collapse
Affiliation(s)
- Tao Liu
- Special Operations Experiment Center, Chinese People's Liberation Army Special Warfare School, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Rahimi MR, Semenova EA, John G, Fallah F, Larin AK, Generozov EV, Ahmetov II. Effect of ADORA2A Gene Polymorphism and Acute Caffeine Supplementation on Hormonal Response to Resistance Exercise: A Double-Blind, Crossover, Placebo-Controlled Study. Nutrients 2024; 16:1803. [PMID: 38931158 PMCID: PMC11206868 DOI: 10.3390/nu16121803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Previous studies have reported that TT genotype carriers of the adenosine A2a receptor (ADORA2A) gene rs5751876 polymorphism have better ergogenic and anti-inflammatory responses to caffeine intake compared to C allele carriers. The aim of the present study was twofold: (1) to investigate the association of the ADORA2A rs5751876 polymorphism with acute caffeine supplementation on hormonal (growth hormone and testosterone) response to resistance exercise (RE); (2) to examine the relationship between the rs5751876 polymorphism and the resting levels of growth hormone and testosterone in athletes who are light caffeine consumers. A double-blind, crossover, placebo-controlled study involving 30 resistance-trained men (age 21.7 ± 4.1) was conducted to assess the impact of caffeine supplementation on serum growth hormone (GH) and testosterone (TS) levels before, immediately after, and 15 min post-RE. One hour before engaging in resistance exercise, subjects were randomly administered 6 mg of caffeine per kg of body mass or a placebo (maltodextrin). After a 7-day washout period, the same protocol was repeated. Resting testosterone and growth hormone levels were examined in the sera of 94 elite athletes (31 females, age 21.4 ± 2.8; 63 males, age 22.9 ± 3.8). Caffeine consumption led to significantly greater increases in GH and TS in men with the TT genotype compared to C allele carriers. Furthermore, in the group of athletes, carriers of the TT genotype had significantly higher testosterone (p = 0.0125) and growth hormone (p = 0.0365) levels compared to C allele carriers. In conclusion, the ADORA2A gene rs5751876 polymorphism may modify the effect of caffeine intake on the hormonal response to exercise.
Collapse
Affiliation(s)
| | - Ekaterina A. Semenova
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, 420138 Kazan, Russia
| | - George John
- Transform Specialist Medical Centre, Dubai 119190, United Arab Emirates
| | - Fateme Fallah
- Department of Exercise Physiology, University of Kurdistan, Sanandaj 66177-15175, Iran
| | - Andrey K. Larin
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Edward V. Generozov
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Ildus I. Ahmetov
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, 420012 Kazan, Russia
- Sports Genetics Laboratory, St. Petersburg Research Institute of Physical Culture, 191040 St. Petersburg, Russia
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5AF, UK
| |
Collapse
|
11
|
Ahmetov II, John G, Semenova EA, Hall ECR. Genomic predictors of physical activity and athletic performance. ADVANCES IN GENETICS 2024; 111:311-408. [PMID: 38908902 DOI: 10.1016/bs.adgen.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Physical activity and athletic performance are complex phenotypes influenced by environmental and genetic factors. Recent advances in lifestyle and behavioral genomics led to the discovery of dozens of DNA polymorphisms (variants) associated with physical activity and allowed to use them as genetic instruments in Mendelian randomization studies for identifying the causal links between physical activity and health outcomes. On the other hand, exercise and sports genomics studies are focused on the search for genetic variants associated with athlete status, sports injuries and individual responses to training and supplement use. In this review, the findings of studies investigating genetic markers and their associations with physical activity and athlete status are reported. As of the end of September 2023, a total of 149 variants have been associated with various physical activity traits (of which 42 variants are genome-wide significant) and 253 variants have been linked to athlete status (115 endurance-related, 96 power-related, and 42 strength-related).
Collapse
Affiliation(s)
- Ildus I Ahmetov
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Sports Genetics Laboratory, St Petersburg Research Institute of Physical Culture, St. Petersburg, Russia; Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, Kazan, Russia; Department of Physical Education, Plekhanov Russian University of Economics, Moscow, Russia.
| | - George John
- Transform Specialist Medical Centre, Dubai, United Arab Emirates
| | - Ekaterina A Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia; Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, Kazan, Russia
| | - Elliott C R Hall
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
12
|
Silva HH, Tavares V, Neto BV, Cerqueira F, Medeiros R, Silva MRG. FAAH rs324420 Polymorphism: Biological Pathways, Impact on Elite Athletic Performance and Insights for Sport Medicine. Genes (Basel) 2023; 14:1946. [PMID: 37895295 PMCID: PMC10606937 DOI: 10.3390/genes14101946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Gene variation linked to physiological functions is recognised to affect elite athletic performance by modulating training and competition-enabling behaviour. The fatty acid amide hydrolase (FAAH) has been investigated as a good candidate for drug targeting, and recently, its single-nucleotide polymorphism (SNP) rs324420 was reported to be associated with athletic performance. Given the implications, the biological pathways of this genetic polymorphism linked to elite athletic performance, considering sport type, psychological traits and sports injuries, need to be dissected. Thus, a narrative review of the literature concerning the biological mechanisms of this SNP was undertaken. In addition to its role in athletic performance, FAAH rs324420 is also involved in important mechanisms underlying human psychopathologies, including substance abuse and neural dysfunctions. However, cumulative evidence concerning the C385A variant is inconsistent. Therefore, validation studies considering homogeneous sports modalities are required to better define the role of this SNP in elite athletic performance and its impact on stress coping, pain regulation and inflammation control.
Collapse
Affiliation(s)
- Hugo-Henrique Silva
- ICBAS-Institute of Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
- Portuguese Ministry of Education, 1399-025 Lisbon, Portugal
- Leixões Sport Clube, Senior Female Volleyball Team, 4450-277 Matosinhos, Portugal
| | - Valéria Tavares
- ICBAS-Institute of Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (B.V.N.); (F.C.)
- FMUP-Faculty of Medicine, University of Porto, 4200-072 Porto, Portugal
| | - Beatriz Vieira Neto
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (B.V.N.); (F.C.)
- LPCC, Research Department-Portuguese League Against Cancer (LPPC-NRN), 4200-172 Porto, Portugal
| | - Fátima Cerqueira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (B.V.N.); (F.C.)
- FP-I3ID, FP-BHS, CEBIMED and Faculty of Health Sciences, University Fernando Pessoa, 4200-150 Porto, Portugal;
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, 4450-208 Matosinhos, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (B.V.N.); (F.C.)
- FMUP-Faculty of Medicine, University of Porto, 4200-072 Porto, Portugal
- LPCC, Research Department-Portuguese League Against Cancer (LPPC-NRN), 4200-172 Porto, Portugal
- FP-I3ID, FP-BHS, CEBIMED and Faculty of Health Sciences, University Fernando Pessoa, 4200-150 Porto, Portugal;
- Pathology and Laboratory Medicine Department, Clinical Pathology SVIPO Porto Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
| | - Maria-Raquel G. Silva
- FP-I3ID, FP-BHS, CEBIMED and Faculty of Health Sciences, University Fernando Pessoa, 4200-150 Porto, Portugal;
- CIAS-Research Centre for Anthropology and Health-Human Biology, Health and Society, University of Coimbra, 3000-456 Coimbra, Portugal
- CHRC-Comprehensive Health Research Centre, Nova Medical School, Nova University of Lisbon, 1150-090 Lisboa, Portugal
- Scientific Committee of the Gymnastics Federation of Portugal, 1600-159 Lisboa, Portugal
| |
Collapse
|
13
|
Konopka MJ, Sperlich B, Rietjens G, Zeegers MP. Genetics and athletic performance: a systematic SWOT analysis of non-systematic reviews. Front Genet 2023; 14:1232987. [PMID: 37621703 PMCID: PMC10445150 DOI: 10.3389/fgene.2023.1232987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Exercise genetics/genomics is a growing research discipline comprising several Strengths and Opportunities but also deals with Weaknesses and Threats. This "systematic SWOT overview of non-systematic reviews" (sSWOT) aimed to identify the Strengths, Weaknesses, Opportunities, and Threats linked to exercise genetics/genomics. A systematic search was conducted in the Medline and Embase databases for non-systematic reviews to provide a comprehensive overview of the current literature/research area. The extracted data was thematically analyzed, coded, and categorized into SWOT clusters. In the 45 included reviews five Strengths, nine Weaknesses, six Opportunities, and three Threats were identified. The cluster of Strengths included "advances in technology", "empirical evidence", "growing research discipline", the "establishment of consortia", and the "acceptance/accessibility of genetic testing". The Weaknesses were linked to a "low research quality", the "complexity of exercise-related traits", "low generalizability", "high costs", "genotype scores", "reporting bias", "invasive methods", "research progress", and "causality". The Opportunities comprised of "precision exercise", "omics", "multicenter studies", as well as "genetic testing" as "commercial"-, "screening"-, and "anti-doping" detection tool. The Threats were related to "ethical issues", "direct-to-consumer genetic testing companies", and "gene doping". This overview of the present state of the art research in sport genetics/genomics indicates a field with great potential, while also drawing attention to the necessity for additional advancement in methodological and ethical guidance to mitigate the recognized Weaknesses and Threats. The recognized Strengths and Opportunities substantiate the capability of genetics/genomics to make significant contributions to the performance and wellbeing of athletes.
Collapse
Affiliation(s)
- Magdalena Johanna Konopka
- Care and Public Health Research Institute, Maastricht University, Maastricht, Netherlands
- Department of Epidemiology, Maastricht University, Maastricht, Netherlands
| | - Billy Sperlich
- Integrative and Experimental Exercise Science and Training, Institute of Sport Science, University of Würzburg, Würzburg, Germany
| | - Gerard Rietjens
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Maurice Petrus Zeegers
- Care and Public Health Research Institute, Maastricht University, Maastricht, Netherlands
- Department of Epidemiology, Maastricht University, Maastricht, Netherlands
- School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
14
|
Semenova EA, Hall ECR, Ahmetov II. Genes and Athletic Performance: The 2023 Update. Genes (Basel) 2023; 14:1235. [PMID: 37372415 PMCID: PMC10298527 DOI: 10.3390/genes14061235] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Phenotypes of athletic performance and exercise capacity are complex traits influenced by both genetic and environmental factors. This update on the panel of genetic markers (DNA polymorphisms) associated with athlete status summarises recent advances in sports genomics research, including findings from candidate gene and genome-wide association (GWAS) studies, meta-analyses, and findings involving larger-scale initiatives such as the UK Biobank. As of the end of May 2023, a total of 251 DNA polymorphisms have been associated with athlete status, of which 128 genetic markers were positively associated with athlete status in at least two studies (41 endurance-related, 45 power-related, and 42 strength-related). The most promising genetic markers include the AMPD1 rs17602729 C, CDKN1A rs236448 A, HFE rs1799945 G, MYBPC3 rs1052373 G, NFIA-AS2 rs1572312 C, PPARA rs4253778 G, and PPARGC1A rs8192678 G alleles for endurance; ACTN3 rs1815739 C, AMPD1 rs17602729 C, CDKN1A rs236448 C, CPNE5 rs3213537 G, GALNTL6 rs558129 T, IGF2 rs680 G, IGSF3 rs699785 A, NOS3 rs2070744 T, and TRHR rs7832552 T alleles for power; and ACTN3 rs1815739 C, AR ≥21 CAG repeats, LRPPRC rs10186876 A, MMS22L rs9320823 T, PHACTR1 rs6905419 C, and PPARG rs1801282 G alleles for strength. It should be appreciated, however, that elite performance still cannot be predicted well using only genetic testing.
Collapse
Affiliation(s)
- Ekaterina A. Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, 420138 Kazan, Russia
| | - Elliott C. R. Hall
- Faculty of Health Sciences and Sport, University of Stirling, Stirling FK9 4UA, UK
| | - Ildus I. Ahmetov
- Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, 420012 Kazan, Russia
- Sports Genetics Laboratory, St Petersburg Research Institute of Physical Culture, 191040 St. Petersburg, Russia
- Department of Physical Education, Plekhanov Russian University of Economics, 115093 Moscow, Russia
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5AF, UK
| |
Collapse
|
15
|
Ergun-Longmire B, Greydanus DE, Patel DR. Ergogenic Aids and Testing in Pediatric Athletes. Pediatr Ann 2023; 52:e207-e212. [PMID: 37280002 DOI: 10.3928/19382359-20230411-02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In the quest for winning the game, some athletes take various chemicals (ie, drugs, herbs, or supplements) in attempts to develop greater strength, endurance, or other elements that bring a competitive advantage. There are more than 30,000 chemicals sold throughout the world with unrestrained and unproven claims; however, some athletes consume them with hopes of increasing their athletic abilities, often without knowledge of the potential adverse effects and with limited evidence of efficacy. Complicating this picture is that research on ergogenic chemicals is typically conducted with elite adult male athletes and not with athletes who are in high school. A few of these ergogenic aids include creatine, anabolic androgenic steroids, selective androgen receptor modulators, clenbuterol, androstenedione, dehydroepiandrosterone, human growth hormone, ephedrine, gamma hydroxybutyrate, caffeine, stimulants (amphetamines or methylphenidate), and blood doping. In this article, we describe the purpose of ergogenic aids as well as the potential side effects. [Pediatr Ann. 2023;52(6):e207-e212.].
Collapse
|
16
|
Silva HH, Tavares V, Silva MRG, Neto BV, Cerqueira F, Medeiros R. Association of FAAH rs324420 (C385A) Polymorphism with High-Level Performance in Volleyball Players. Genes (Basel) 2023; 14:1164. [PMID: 37372343 DOI: 10.3390/genes14061164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Genetic variants are recognized to affect athletic performance, partially by modulating competition-facilitating behavior. In this study, the role of three genetic variants previously linked to athlete status was investigated among elite volleyball players. A total of 228 players (26.7 ± 8.1 years old) participating in the Portuguese championship and with multiple medalists in national and international competitions were evaluated in terms of anthropometrics, training regime, sports experience, and a history of sports lesions. SNP genotyping was conducted by means of TaqMan® Allelic Discrimination Methodology. Volleyball players showed significantly different anthropometric indicators and training habits according to sex (p < 0.05). The A allele of the genetic variant Fatty Acid Amide Hydrolase (FAAH) rs324420 (C385A) was shown to be significantly associated with superior athletic achievements under a dominant genetic model (AA/AC vs. CC, odds ratio (OR) = 1.70; 95% Cl, 0.93-3.13; p = 0.026; p < 0.001 after Bootstrap), which was corroborated by a multivariable analysis (AA/AC vs. CC adjusted OR = 2.00; 95% Cl, 1.04-3.82; p = 0.037). Age and hand length were also found to be independently associated with high-level performance (p < 0.05). Our results confirm the role of FAAH in athletic performance. More investigation into this polymorphism's potential impact on stress coping, pain, and inflammation regulation in sport, particularly in the scope of lesions prevention and treatment, is required.
Collapse
Affiliation(s)
- Hugo-Henrique Silva
- ICBAS-Institute of Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
- Portuguese Ministry of Education, 1399-025 Lisboa, Portugal
- Senior Rink-Hockey Team, Uniao Desportiva Oliveirense-Simoldes, 3720-256 Oliveira de Azemeis, Portugal
| | - Valéria Tavares
- ICBAS-Institute of Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
- FMUP-Faculty of Medicine, University of Porto, 4200-072 Porto, Portugal
| | - Maria-Raquel G Silva
- FP-I3ID, FP-BHS, University Fernando Pessoa, 4249-004 Porto, Portugal
- Faculty of Health Sciences, University Fernando Pessoa, 4200-150 Porto, Portugal
- CIAS-Research Centre for Anthropology and Health-Human Biology, Health and Society, University of Coimbra, 3000-456 Coimbra, Portugal
- CHRC-Comprehensive Health Research Centre, Nova Medical School, Nova University of Lisbon, 1150-090 Lisboa, Portugal
- Scientific Committee of the Gymnastics Federation of Portugal, 1600-159 Lisboa, Portugal
| | - Beatriz Vieira Neto
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
- FMUP-Faculty of Medicine, University of Porto, 4200-072 Porto, Portugal
| | - Fátima Cerqueira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
- FP-I3ID, FP-BHS, University Fernando Pessoa, 4249-004 Porto, Portugal
- Faculty of Health Sciences, University Fernando Pessoa, 4200-150 Porto, Portugal
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, 4450-208 Matosinhos, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
- FMUP-Faculty of Medicine, University of Porto, 4200-072 Porto, Portugal
- FP-I3ID, FP-BHS, University Fernando Pessoa, 4249-004 Porto, Portugal
- Faculty of Health Sciences, University Fernando Pessoa, 4200-150 Porto, Portugal
- Pathology and Laboratory Medicine Department, Clinical Pathology SVIPO Porto Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
- LPCC, Research Department, Portuguese League Against Cancer (LPPC-NRN), 4200-172 Porto, Portugal
| |
Collapse
|
17
|
Rahimi MR, Semenova EA, Larin AK, Kulemin NA, Generozov EV, Łubkowska B, Ahmetov II, Golpasandi H. The ADORA2A TT Genotype Is Associated with Anti-Inflammatory Effects of Caffeine in Response to Resistance Exercise and Habitual Coffee Intake. Nutrients 2023; 15:nu15071634. [PMID: 37049474 PMCID: PMC10097079 DOI: 10.3390/nu15071634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
Caffeine is an adenosine A2A receptor (ADORA2A) antagonist with ergogenic and anti-inflammatory effects. Previous studies have reported that the ADORA2A gene regulates glutamate metabolism and immune responses, with the ADORA2A rs5751876 TT genotype (with high sensitivity to caffeine) showing larger ergogenic effect following caffeine ingestion. We therefore hypothesized that the TT genotype would be associated with greater anti-inflammatory effects of caffeine in response to exercise, and with higher coffee intake in physically active individuals. The aim of the present study was twofold: (1) to investigate the association of the ADORA2A variant with the anti-inflammatory effects of caffeine in response to intense resistance exercise (RE), and (2) to analyze the association of the rs5751876 with coffee intake in physically active individuals (n = 134). Fifteen resistance-trained athletes participated in a randomized, double-blind, placebo-controlled cross-over study, where they consumed 6 mg/kg of caffeine or placebo one hour prior to performing an RE protocol. Blood samples were taken immediately from the arterial vein before, immediately after, and 15 min after RE for the analysis of inflammatory markers myeloperoxidase (MPO) and acetylcholinesterase (AChE). We found that the ADORA2A TT genotype carriers experienced lower exercise-induced inflammatory responses (p < 0.05 for AchE) when compared to the C allele carriers (i.e., CC/CT) one hour following the ingestion of caffeine. Furthermore, the ADORA2A TT genotype was positively associated with coffee intake (p = 0.0143; irrespective of CYP1A2 rs762551 polymorphism). In conclusion, we found that the ADORA2A gene polymorphism is associated with anti-inflammatory effects of caffeine in response to resistance exercise, as well as with habitual coffee intake in physically active individuals.
Collapse
|
18
|
Bulgay C, Kasakolu A, Kazan HH, Mijaica R, Zorba E, Akman O, Bayraktar I, Ekmekci R, Koncagul S, Ulucan K, Semenova EA, Larin AK, Kulemin NA, Generozov EV, Balint L, Badicu G, Ahmetov II, Ergun MA. Exome-Wide Association Study of Competitive Performance in Elite Athletes. Genes (Basel) 2023; 14:genes14030660. [PMID: 36980932 PMCID: PMC10048216 DOI: 10.3390/genes14030660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/27/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
The aim of the study was to identify genetic variants associated with personal best scores in Turkish track and field athletes and to compare allelic frequencies between sprint/power and endurance athletes and controls using a whole-exome sequencing (WES) approach, followed by replication studies in independent cohorts. The discovery phase involved 60 elite Turkish athletes (31 sprint/power and 29 endurance) and 20 ethnically matched controls. The replication phase involved 1132 individuals (115 elite Russian sprinters, 373 elite Russian endurance athletes (of which 75 athletes were with VO2max measurements), 209 controls, 148 Russian and 287 Finnish individuals with muscle fiber composition and cross-sectional area (CSA) data). None of the single nucleotide polymorphisms (SNPs) reached an exome-wide significance level (p < 2.3 × 10−7) in genotype–phenotype and case–control studies of Turkish athletes. However, of the 53 nominally (p < 0.05) associated SNPs, four functional variants were replicated. The SIRT1 rs41299232 G allele was significantly over-represented in Turkish (p = 0.047) and Russian (p = 0.018) endurance athletes compared to sprint/power athletes and was associated with increased VO2max (p = 0.037) and a greater proportion of slow-twitch muscle fibers (p = 0.035). The NUP210 rs2280084 A allele was significantly over-represented in Turkish (p = 0.044) and Russian (p = 0.012) endurance athletes compared to sprint/power athletes. The TRPM2 rs1785440 G allele was significantly over-represented in Turkish endurance athletes compared to sprint/power athletes (p = 0.034) and was associated with increased VO2max (p = 0.008). The AGRN rs4074992 C allele was significantly over-represented in Turkish sprint/power athletes compared to endurance athletes (p = 0.037) and was associated with a greater CSA of fast-twitch muscle fibers (p = 0.024). In conclusion, we present the first WES study of athletes showing that this approach can be used to identify novel genetic markers associated with exercise- and sport-related phenotypes.
Collapse
Affiliation(s)
- Celal Bulgay
- Sports Science Faculty, Bingol University, 12000 Bingol, Turkey
| | - Anıl Kasakolu
- Faculty of Agriculture, Ankara University, 06000 Ankara, Turkey
| | - Hasan Hüseyin Kazan
- Medical Genetics Department, Faculty of Medicine, Near East University, 1010–1107 Nicosia, Cyprus
- DESAM Institute, Near East University, 1010–1107 Nicosia, Cyprus
| | - Raluca Mijaica
- Department of Physical Education and Special Motricity, Faculty of Physical Education and Mountain Sports, Transilvania University, 500068 Braşov, Romania
- Correspondence:
| | - Erdal Zorba
- Sports Science Faculty, Gazi University, 06560 Ankara, Turkey
| | - Onur Akman
- Sports Science Faculty, Bayburt University, 69000 Bayburt, Turkey
| | - Isık Bayraktar
- Sports Science Faculty, Alanya Alaaddin Keykubat University, 07450 Alanya, Turkey
| | - Rıdvan Ekmekci
- Sports Science Faculty, Pamukkale University, 20160 Denizli, Turkey
| | | | - Korkut Ulucan
- Sports Department of Medical Biology and Genetics, Marmara University, 34722 Istanbul, Turkey
| | - Ekaterina A. Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, 420138 Kazan, Russia
| | - Andrey K. Larin
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Nikolay A. Kulemin
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Edward V. Generozov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Lorand Balint
- Department of Physical Education and Special Motricity, Faculty of Physical Education and Mountain Sports, Transilvania University, 500068 Braşov, Romania
| | - Georgian Badicu
- Department of Physical Education and Special Motricity, Faculty of Physical Education and Mountain Sports, Transilvania University, 500068 Braşov, Romania
| | - Ildus I. Ahmetov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, 420012 Kazan, Russia
- Department of Physical Education, Plekhanov Russian University of Economics, 115093 Moscow, Russia
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5AF, UK
| | - Mehmet Ali Ergun
- Department of Medical Genetics, Faculty of Medicine, Gazi University, 06560 Ankara, Turkey
| |
Collapse
|
19
|
Lind L, Michaëlsson K. Detailed investigation of multiple resting cardiovascular parameters in relation to physical fitness. Clin Physiol Funct Imaging 2023; 43:120-127. [PMID: 36408896 PMCID: PMC10108008 DOI: 10.1111/cpf.12800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/28/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Maximal oxygen consumption at an exercise test (VO2 -max) is a commonly used marker of physical fitness. In the present study, we aimed to find independent clinical predictors of VO2 -max by use of multiple measurements of cardiac, respiratory and vascular variables collected while resting. METHODS In the Prospective study of Obesity, Energy and Metabolism (POEM), 420 subjects aged 50 years were investigated regarding endothelial function, arterial compliance, heart rate variability, arterial blood flow and atherosclerosis, left ventricular structure and function, lung function, multiple blood pressure measurements, lifestyle habits, body composition and in addition a maximal bicycle exercise test with gas exchange (VO2 and VCO2 ). RESULTS When VO2 -max (indexed for lean mass) was used as the dependent variable and the 84 hemodynamic or metabolic variables were used as independent variables in separate sex-adjusted models, 15 variables showed associations with p < 0.00064 (Bonferroni-adjusted). Eight independent variables explained 21% of the variance in VO2 -max. Current smoking and pulse wave velocity (PWV) were the two major determinants of VO2 -max (explaining each 7% and 3% of the variance; p < 0.0001 and p = 0.008, respectively). They were in order followed by vital capacity, fat mass, pulse pressure, and high-density lipoprotein (HDL)-cholesterol. The relationships were inverse for all these variables, except for vital capacity and HDL. CONCLUSION Several metabolic, cardiac, respiratory and vascular variables measured at rest explained together with smoking 21% of the variation in VO2 -max in middle-aged individuals. Of those variables, smoking and PWV were the most important.
Collapse
Affiliation(s)
- Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Karl Michaëlsson
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
20
|
Ginevičienė V, Urnikytė A. Association of COL12A1 rs970547 Polymorphism with Elite Athlete Status. Biomedicines 2022; 10:2495. [PMID: 36289757 PMCID: PMC9599715 DOI: 10.3390/biomedicines10102495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
The role of genetics, as an intrinsic factor, in research of sports performance increases with every passing year. The polymorphism rs970547 of the COL12A1 gene is one of the most promising genetic markers linked to soft-tissue injuries. This study aimed to investigate whether COL12A1 rs970547 genotypes are associated with elite Lithuanian athletes from high-risk various sports, such as running, throwing, jumping, and football. The study involved 293 Lithuanian elite athletes and 287 healthy untrained individuals from the Lithuanian population. The results of this study suggest that the rs970547 T allele and TT genotype were significantly over-represented in the total athlete group compared to controls (p < 0.05). There was a significantly lower C allele frequency in the sprint/power group (16.9%) as well as in footballers (19.4%) compared to controls (33.3%, p < 0.05). Positive selection analysis results showed that the derived allele experiences selection pressure within the general population of Lithuanians. Taken together, the findings of this study suggested that COL12A1 rs970547 (T allele and TT genotype) is associated with elite athlete status, especially with sprint/power athlete and footballer`s performance. However, larger-scale studies within different ethnic backgrounds are still warranted to confirm the findings of our study.
Collapse
Affiliation(s)
- Valentina Ginevičienė
- Department of Human and Medical Genetics, Biomedical Science Institute, Faculty of Medicine, Vilnius University, Universiteto Street 3, LT-01513 Vilnius, Lithuania
| | - Alina Urnikytė
- Department of Human and Medical Genetics, Biomedical Science Institute, Faculty of Medicine, Vilnius University, Universiteto Street 3, LT-01513 Vilnius, Lithuania
| |
Collapse
|
21
|
Guilherme JPLF, Semenova EA, Larin AK, Yusupov RA, Generozov EV, Ahmetov II. Genomic Predictors of Brisk Walking Are Associated with Elite Sprinter Status. Genes (Basel) 2022; 13:genes13101710. [PMID: 36292594 PMCID: PMC9602420 DOI: 10.3390/genes13101710] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Brisk walkers are physically more active, taller, have reduced body fat and greater physical fitness and muscle strength. The aim of our study was to determine whether genetic variants associated with increased walking pace were overrepresented in elite sprinters compared to controls. A total of 70 single-nucleotide polymorphisms (SNPs) previously identified in a genome-wide association study (GWAS) of self-reported walking pace in 450,967 European individuals were explored in relation to sprinter status. Genotyping of 137 Russian elite sprinters and 126 controls was performed using microarray technology. Favorable (i.e., high-speed-walking) alleles of 15 SNPs (FHL2 rs55680124 C, SLC39A8 rs13107325 C, E2F3 rs4134943 T, ZNF568 rs1667369 A, GDF5 rs143384 G, PPARG rs2920503 T, AUTS2 rs10452738 A, IGSF3 rs699785 A, CCT3 rs11548200 T, CRTAC1 rs2439823 A, ADAM15 rs11264302 G, C6orf106 rs205262 A, AKAP6 rs12883788 C, CRTC1 rs11881338 A, NRXN3 rs8011870 G) were identified as having positive associations with sprinter status (p < 0.05), of which IGSF3 rs699785 survived correction for multiple testing (p = 0.00004) and was linked (p = 0.042) with increased proportions of fast-twitch muscle fibers of m. vastus lateralis in physically active men (n = 67). Polygenic analysis revealed that individuals with ≥18 favorable alleles of the 15 SNPs have an increased odds ratio of being an elite sprinter when compared to those with ≤17 alleles (OR: 7.89; p < 0.0001). Using UK Biobank data, we also established the association of 14 favorable alleles with low BMI and fat percentage, 8 alleles with increased handgrip strength, and 7 alleles with increased height and fat-free mass. In conclusion, we have identified 15 new genetic markers associated with sprinter status.
Collapse
Affiliation(s)
- João Paulo L. F. Guilherme
- Laboratory of Applied Nutrition and Metabolism, School of Physical Education and Sport, University of São Paulo, São Paulo 05508-030, Brazil
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of São Paulo, São Paulo 05508-030, Brazil
- Correspondence: (J.P.L.F.G.); (I.I.A.)
| | - Ekaterina A. Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, 420138 Kazan, Russia
| | - Andrey K. Larin
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Rinat A. Yusupov
- Department of Physical Culture and Sport, Kazan National Research Technical University Named after A.N. Tupolev-KAI, 420111 Kazan, Russia
| | - Edward V. Generozov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Ildus I. Ahmetov
- Department of Physical Education, Plekhanov Russian University of Economics, 115093 Moscow, Russia
- Laboratory of Molecular Genetics, Central Research Laboratory, Kazan State Medical University, 420012 Kazan, Russia
- Sports Genetics Laboratory, St. Petersburg Research Institute of Physical Culture, 191040 St. Petersburg, Russia
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5AF, UK
- Correspondence: (J.P.L.F.G.); (I.I.A.)
| |
Collapse
|
22
|
Psychosocial aspects of sports medicine in pediatric athletes: Current concepts in the 21 st century. Dis Mon 2022:101482. [PMID: 36100481 DOI: 10.1016/j.disamonth.2022.101482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Behavioral aspects of organized sports activity for pediatric athletes are considered in a world consumed with winning at all costs. In the first part of this treatise, we deal with a number of themes faced by our children in their sports play. These concepts include the lure of sports, sports attrition, the mental health of pediatric athletes (i.e., effects of stress, anxiety, depression, suicide in athletes, ADHD and stimulants, coping with injuries, drug use, and eating disorders), violence in sports (i.e., concepts of the abused athlete including sexual abuse), dealing with supervisors (i.e., coaches, parents), peers, the talented athlete, early sports specialization and sports clubs. In the second part of this discussion, we cover ergolytic agents consumed by young athletes in attempts to win at all costs. Sports doping agents covered include anabolic steroids (anabolic-androgenic steroids or AAS), androstenedione, dehydroepiandrostenedione (DHEA), human growth hormone (hGH; also its human recombinant homologue: rhGH), clenbuterol, creatine, gamma hydroxybutyrate (GHB), amphetamines, caffeine and ephedrine. Also considered are blood doping that includes erythropoietin (EPO) and concepts of gene doping. In the last section of this discussion, we look at disabled pediatric athletes that include such concepts as athletes with spinal cord injuries (SCIs), myelomeningocele, cerebral palsy, wheelchair athletes, and amputee athletes; also covered are pediatric athletes with visual impairment, deafness, and those with intellectual disability including Down syndrome. In addition, concepts of autonomic dysreflexia, boosting and atlantoaxial instability are emphasized. We conclude that clinicians and society should protect our precious pediatric athletes who face many challenges in their involvement with organized sports in a world obsessed with winning. There is much we can do to help our young athletes find benefit from sports play while avoiding or blunting negative consequences of organized sport activities.
Collapse
|
23
|
Epigenetic Alterations in Sports-Related Injuries. Genes (Basel) 2022; 13:genes13081471. [PMID: 36011382 PMCID: PMC9408207 DOI: 10.3390/genes13081471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
It is a well-known fact that physical activity benefits people of all age groups. However, highly intensive training, maladaptation, improper equipment, and lack of sufficient rest lead to contusions and sports-related injuries. From the perspectives of sports professionals and those performing regular–amateur sports activities, it is important to maintain proper levels of training, without encountering frequent injuries. The bodily responses to physical stress and intensive physical activity are detected on many levels. Epigenetic modifications, including DNA methylation, histone protein methylation, acetylation, and miRNA expression occur in response to environmental changes and play fundamental roles in the regulation of cellular activities. In the current review, we summarise the available knowledge on epigenetic alterations present in tissues and organs (e.g., muscles, the brain, tendons, and bones) as a consequence of sports-related injuries. Epigenetic mechanism observations have the potential to become useful tools in sports medicine, as predictors of approaching pathophysiological alterations and injury biomarkers that have already taken place.
Collapse
|
24
|
Silva HH, Tavares V, Silva MRG, Neto BV, Cerqueira F, Medeiros R. FAAH rs324420 Polymorphism Is Associated with Performance in Elite Rink-Hockey Players. BIOLOGY 2022; 11:biology11071076. [PMID: 36101457 PMCID: PMC9312224 DOI: 10.3390/biology11071076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 11/26/2022]
Abstract
Genetic factors are among the major contributors to athletic performance. Although more than 150 genetic variants have been correlated with elite athlete status, genetic foundations of competition-facilitating behavior influencing elite performances are still scarce. This is the first study designed to examine the distribution of genetic determinants in the athletic performance of elite rink-hockey players. A total of 116 of the world’s top best rink-hockey players (28.2 ± 8.7 years old; more than 50% are cumulatively from the best four world teams and the best five Portuguese teams), who participated at the elite level in the National Rink-Hockey Championship in Portugal, were evaluated in anthropometric indicators/measurements, training conditions, sport experience and sport injuries history. Seven genetic polymorphisms were analyzed. Polymorphism genotyping was performed using the TaqMan® Allelic Discrimination Methodology. Rink-hockey players demonstrated significantly different characteristics according to sex, namely anthropometrics, training habits, sports injuries and genetic variants, such as Vitamin D Receptor (VDR) rs731236 (p < 0.05). The Fatty Acid Amide Hydrolase (FAAH) rs324420 A allele was significantly associated with improved athletic performance (AA/AC vs. CC, OR = 2.80; 95% Cl, 1.23−6.35; p = 0.014; p = 0.008 after Bootstrap) and confirmed as an independent predictor among elite rink-hockey players (adjusted OR = 2.88; 95% Cl, 1.06−7.80; p = 0.038). Our results open an interesting link from FAAH-related biology to athletic performance.
Collapse
Affiliation(s)
- Hugo-Henrique Silva
- ICBAS-Institute of Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal;
- Portuguese Ministry of Education, 1399-025 Lisbon, Portugal
- Senior Rink-Hockey Team, União Desportiva Oliveirense-Simoldes, 3720-256 Oliveira de Azemeis, Portugal
- Correspondence: (H.-H.S.); (M.-R.G.S.); (R.M.)
| | - Valéria Tavares
- ICBAS-Institute of Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal;
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (B.V.N.); (F.C.)
- FMUP-Faculty of Medicine, University of Porto, 4200-072 Porto, Portugal
| | - Maria-Raquel G. Silva
- FP-I3ID, FP-BHS, CEBIMED and Faculty of Health Sciences, University Fernando Pessoa, 4200-150 Porto, Portugal
- CIAS-Research Centre for Anthropology and Health—Human Biology, Health and Society, University of Coimbra, 3000-456 Coimbra, Portugal
- CHRC-Comprehensive Health Research Centre, Nova Medical School, Nova University of Lisbon, 1150-090 Lisbon, Portugal
- Scientific Committee of the Gymnastics Federation of Portugal, 1600-159 Lisbon, Portugal
- Correspondence: (H.-H.S.); (M.-R.G.S.); (R.M.)
| | - Beatriz Vieira Neto
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (B.V.N.); (F.C.)
- FMUP-Faculty of Medicine, University of Porto, 4200-072 Porto, Portugal
| | - Fátima Cerqueira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (B.V.N.); (F.C.)
- FP-I3ID, FP-BHS, CEBIMED and Faculty of Health Sciences, University Fernando Pessoa, 4200-150 Porto, Portugal
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, 4450-208 Matosinhos, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (B.V.N.); (F.C.)
- FMUP-Faculty of Medicine, University of Porto, 4200-072 Porto, Portugal
- FP-I3ID, FP-BHS, CEBIMED and Faculty of Health Sciences, University Fernando Pessoa, 4200-150 Porto, Portugal
- Pathology and Laboratory Medicine Dep., Clinical Pathology SVIPO Porto Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
- LPCC, Research Department, Portuguese League Against Cancer (LPPC—NRN), 4200-172 Porto, Portugal
- Correspondence: (H.-H.S.); (M.-R.G.S.); (R.M.)
| |
Collapse
|