1
|
Santos-Sánchez G, Cruz-Chamorro I. Plant-derived bioactive peptides and protein hydrolysates for managing MAFLD: A systematic review of in vivo effects. Food Chem 2025; 481:143956. [PMID: 40147387 DOI: 10.1016/j.foodchem.2025.143956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) represents a growing health concern worldwide. Among the pursuit of therapeutic interventions, interest in natural bioactive compounds has intensified because of their potential hepatoprotective effects. This systematic review aims to evaluate the impact of plant-derived hydrolysates and peptides on MAFLD through the current literatures, encompassing their mechanisms of action. Key outcomes evaluated included changes in liver enzymes, liver lipid content, inflammation markers, and histopathological improvements. Preliminary findings suggest a potential beneficial effect of plant-derived hydrolysates and peptides on the improvement of MAFLD-related parameters, with mechanisms implicating antioxidant, anti-inflammatory, and lipid-lowering properties. This review highlights emerging evidence supporting the potential therapeutic role of plant-derived hydrolysates and peptides in the management of MAFLD. However, more well-designed clinical trials with larger sample sizes and longer durations are warranted to elucidate their efficacy, optimal dose, and long-term safety.
Collapse
Affiliation(s)
- Guillermo Santos-Sánchez
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), 28049 Madrid, Spain.
| | - Ivan Cruz-Chamorro
- Facultad de Enfermería, Universidad de Castilla-La Mancha, 02071 Albacete, Spain.
| |
Collapse
|
2
|
Xu Z, Han S, Guan S, Zhang R, Chen H, Zhang L, Han L, Tan Z, Du M, Li T. Preparation, design, identification and application of self-assembly peptides from seafood: A review. Food Chem X 2024; 23:101557. [PMID: 39007120 PMCID: PMC11239460 DOI: 10.1016/j.fochx.2024.101557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024] Open
Abstract
Hydrogels formed by self-assembling peptides with low toxicity and high biocompatibility have been widely used in food and biomedical fields. Seafood contains rich protein resources and is also one of the important sources of natural bioactive peptides. The self-assembled peptides in seafood have good functional activity and are very beneficial to human health. In this review, the sequence of seafood self-assembly peptide was introduced, and the preparation, screening, identification and characterization. The rule of self-assembled peptides was elucidated from amino acid sequence composition, amino acid properties (hydrophilic, hydrophobic and electric), secondary structure, interaction and peptide properties (hydrophilic and hydrophobic). It was introduced that the application of hydrogels formed by self-assembled peptides, which lays a theoretical foundation for the development of seafood self-assembled peptides in functional foods and the application of biological materials.
Collapse
Affiliation(s)
- Zhe Xu
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116029, China
- Institute of Bast Fiber Crops & Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Shiying Han
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116029, China
| | - Shuang Guan
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116029, China
| | - Rui Zhang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Hongrui Chen
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Xihua University, Chengdu, Sichuan 611130, China
| | - Lijuan Zhang
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116029, China
| | - Lingyu Han
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116029, China
| | - Zhijian Tan
- Institute of Bast Fiber Crops & Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Tingting Li
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116029, China
| |
Collapse
|
3
|
Abioye RO, Camaño Echavarría JA, Obeme-Nmom JI, Yiridoe MS, Ogunrinola OA, Ezema MD, Udenigwe CC. Self-Assembled Food Peptides: Recent Advances and Perspectives in Food and Health Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8372-8379. [PMID: 38579274 DOI: 10.1021/acs.jafc.4c01385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Self-assembling peptides are rapidly gaining attention as novel biomaterials for food and biomedical applications. Peptides self-assemble when triggered by physical or chemical factors due to their versatile physicochemical characteristics. Peptide self-assembly, when combined with the health-promoting bioactivity of peptides, can also result in a plethora of biofunctionalities of the biomaterials. This perspective highlights current developments in the use of food-derived self-assembling peptides as biomaterials, bioactive nutraceuticals, and potential dual functioning bioactive biomaterials. Also discussed are the challenges and opportunities in the use of self-assembling bioactive peptides in designing biocompatible, biostable, and bioavailable multipurpose biomaterials.
Collapse
Affiliation(s)
- Raliat O Abioye
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Jairo Andrés Camaño Echavarría
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- CNRS, LRGP, Université de Lorraine, F-54000 Nancy, France
| | - Joy I Obeme-Nmom
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Martha S Yiridoe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Oluwaseyi A Ogunrinola
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Matthew D Ezema
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Department of Biochemistry, Federal University Oye-Ekiti, PMB 373 Oye-Ekiti, Ekiti State, Nigeria
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
4
|
Cheng L, De Leon-Rodriguez LM, Gilbert EP, Loo T, Petters L, Yang Z. Self-assembly and hydrogelation of a potential bioactive peptide derived from quinoa proteins. Int J Biol Macromol 2024; 259:129296. [PMID: 38199549 DOI: 10.1016/j.ijbiomac.2024.129296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/25/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
In this work the identification of peptides derived from quinoa proteins which could potentially self-assemble, and form hydrogels was carried out with TANGO, a statistical mechanical based algorithm that predicts β-aggregate propensity of peptides. Peptides with the highest aggregate propensity were subjected to gelling screening experiments from which the most promising bioactive peptide with sequence KIVLDSDDPLFGGF was selected. The self-assembling and hydrogelation properties of the C-terminal amidated peptide (KIVLDSDDPLFGGF-NH2) were studied. The effect of concentration, pH, and temperature on the secondary structure of the peptide were probed by circular dichroism (CD), while its nanostructure was studied by transmission electron microscopy (TEM) and small-angle neutron scattering (SANS). Results revealed the existence of random coil, α-helix, twisted β-sheet, and well-defined β-sheet secondary structures, with a range of nanostructures including elongated fibrils and bundles, whose proportion was dependant on the peptide concentration, pH, or temperature. The self-assembly of the peptide is demonstrated to follow established models of amyloid formation, which describe the unfolded peptide transiting from an α-helix-containing intermediate into β-sheet-rich protofibrils. The self-assembly is promoted at high concentrations, elevated temperatures, and pH values close to the peptide isoelectric point, and presumably mediated by hydrogen bond, hydrophobic and electrostatic interactions, and π-π interactions (from the F residue). At 15 mg/mL and pH 3.5, the peptide self-assembled and formed a self-supporting hydrogel exhibiting viscoelastic behaviour with G' (1 Hz) ~2300 Pa as determined by oscillatory rheology measurements. The study describes a straightforward method to monitor the self-assembly of plant protein derived peptides; further studies are needed to demonstrate the potential application of the formed hydrogels in food and biomedicine.
Collapse
Affiliation(s)
- Lirong Cheng
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand
| | | | - Elliot Paul Gilbert
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee, NSW, Australia; Centre for Nutrition and Food Sciences, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Trevor Loo
- BioProtection Aotearoa, School of Natural Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Ludwig Petters
- School of Natural Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Zhi Yang
- School of Food and Advanced Technology, Massey University, Auckland 0632, New Zealand.
| |
Collapse
|
5
|
Giuri D, Ravarino P, Tomasini C. Transparent Organogels as a Medium for the Light-Induced Conversion from Spiropyran to Merocyanine. Gels 2023; 9:932. [PMID: 38131918 PMCID: PMC10742928 DOI: 10.3390/gels9120932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Low-molecular-weight peptide gelators are a versatile class of compounds able to form gels under a variety of conditions, even via simple ultrasound sonication. In this paper, the ability of Boc-L-Phe-D-Oxd-L-Phe-OBn to gelate three organic solvents (toluene, tert-butyl methyl ether, and ethanol) was evaluated. The rheological behaviour of the materials was assessed via strain sweep analysis, while the fibrous network was analysed via optical microscopy on the wet gels. The gel obtained from toluene is a highly transparent material, and the one from ethanol appears translucent, while the one from tert-butyl methyl ether is opaque. These gels were used to study the reversible light-induced transformation from spyropiran (SP) to merocyanine (MC) and back, as a model system to check the effect of the gel medium onto the rection kinetic. We observed that the solvent used to form the organogels has a crucial effect on the reaction, as gels from aprotic solvents stabilize the SP form, while the ones from protic solvents stabilize the MC form. We thus obtained a solid support to stabilize the two photochromic species just by changing the solvent polarity. Moreover, we could demonstrate that the self-assembled gels do not interfere with the light-driven conversion process, either starting from SP or MC, thus representing a valid and economical photochromic material.
Collapse
Affiliation(s)
| | | | - Claudia Tomasini
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Piero Gobetti 85, 40129 Bologna, Italy; (D.G.); (P.R.)
| |
Collapse
|
6
|
Lammi C. Plant bioactive peptides for cardiovascular disease prevention. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 106:219-239. [PMID: 37722773 DOI: 10.1016/bs.afnr.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Cardiovascular disease (CVD) is a major cause of deaths in industrialized countries and a constantly growing cause of morbidity and mortality worldwide Hypercholesterolemia is one of the main risk factors for CVD progression that may be prevented by lifestyle changes, including diet. This chapter will discuss the role of peptides from plants (soybean, lupin, cowpea, hempseed, and rice bran) sources with pleotropic activity for the prevention of CVD. Overall, the bioactivity that will be mainly discussed it is the hypocholesterolemic one. The very diversified structures of the hypocholesterolemic peptides so far identified explains the reason why they exert their activity through different mechanisms of action that will be extensively described in this review. Doubtlessly, their potential use in nutritional application is desirable, however, only few of them have been tested in vivo. Therefore, more efforts need to be pursued for singling out good candidates for the development of functional foods or dietary supplements.
Collapse
Affiliation(s)
- Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
7
|
Ashaolu TJ, Le TD, Suttikhana I, Olatunji OJ, Farag MA. RETRACTED: Hemp bioactive peptides: Nutrition, functional properties and action mechanisms to maximize their nutraceutical applications and future prospects. Food Chem 2023; 414:135691. [PMID: 36808030 DOI: 10.1016/j.foodchem.2023.135691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/locate/withdrawalpolicy). This review article has been retracted at the request of the Editor in Chief and authors. The article has been retracted as it duplicates several figures from a paper that had already appeared in Trends in Food Science & Technology, Volume 127, September 2022, Pages 303-318, without giving appropriate credit to this paper. One of the conditions of submission of a paper for publication is that authors declare explicitly that their work is original and has not appeared in a publication elsewhere. Re-use of any data should be appropriately cited. As such this article falls short of the scientific quality requirement of the journal. The third author admits responsibility for the oversight and wishes to apologize to the readers and editors of Food Chemistry for the inconvenience. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.
Collapse
Affiliation(s)
| | - Thanh-Do Le
- Institute for Global Health Innovations, Duy Tan University, Da Nang 550000, Viet Nam
| | - Itthanan Suttikhana
- Department of Multifunctional Agriculture, Faculty of Agriculture and Technology, University of South Bohemia, České Budějovice, Czech Republic
| | - Opeyemi Joshua Olatunji
- African Genome Center, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., P.B. 11562, Cairo, Egypt.
| |
Collapse
|
8
|
Chen X, Zhang Y, Zou Y, Li L, Yan J, Chen S, Zhang S, Zhu J. Heat-induced amorphous aggregates assembly of soy protein modulate in vitro digestibility of potato starch. Int J Biol Macromol 2023; 227:222-230. [PMID: 36509202 DOI: 10.1016/j.ijbiomac.2022.12.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
This research focused on the characteristics of amorphous aggregates derived from soy protein (SPAA), and their effects on the structural, physicochemical, and digestive properties of potato starch (PS). The SPAA induced by different heating temperatures at pH 7.0 formed an inhomogeneous spherical structure. The presence of SPAA could improve the degree of short-range order of starch, increase thermal stability, reduce pasting viscosity and breakdown, and setback viscosity values of PS. For the PS complexed with SPAAs under simulated cooking conditions, the fraction of digested starch at 300 min (C300) decreased by 6-14 %, and rapid digestible starch content (RDS) decreased by 18-25 %, while the slowly digestible starch (SDS) and resistant starch (RS) increased by 0.4-3 % and 15-23 %, respectively. The SPAA at higher temperature treatment (SPAA130) reduced digestive rate coefficient (k) values more significantly than SPAA at a lower temperature (SPAA70, SPAA90, SPAA110). And the SPAA had no inhibitory effect on α-amylase. The results of this study would significantly contribute to expanding the theoretical information about protein regulation in starch digestion and promoting the development of healthy foods with digestion-resistant properties.
Collapse
Affiliation(s)
- Xu Chen
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Yuge Zhang
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuan Zou
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Lin Li
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Jingkun Yan
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Siqian Chen
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Shuyan Zhang
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Jie Zhu
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China.
| |
Collapse
|
9
|
Cruz-Chamorro I, Santos-Sánchez G, Álvarez-López AI, Pedroche J, Lardone PJ, Arnoldi A, Lammi C, Carrillo-Vico A. Pleiotropic biological effects of Lupinus spp. protein hydrolysates. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
10
|
Self-assembling soy protein fibril aggregates: Characterization and impact on in vitro digestibility of potato starch. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Self-assembly and Hydrogelation Properties of Peptides Derived from Peptic Cleavage of Aggregation-prone Regions of Ovalbumin. Gels 2022; 8:gels8100641. [PMID: 36286142 PMCID: PMC9601990 DOI: 10.3390/gels8100641] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/15/2022] [Accepted: 10/01/2022] [Indexed: 11/04/2022] Open
Abstract
Egg white protein hydrolysate generated with pepsin was investigated for the presence of peptides with self-assembly and hydrogelation properties. Incubation of the hydrolysates for 16 h resulted in aggregates with significantly (p < 0.05) lower free amino nitrogen and sulfhydryl contents, and higher particle diameter and surface hydrophobicity compared to the hydrolysates. LC-MS/MS analysis of the aggregates resulted in identification of 429 ovalbumin-derived peptides, among which the top-six aggregation-prone peptides IFYCPIAIM, NIFYCPIAIM, VLVNAIVFKGL, YCPIAIMSA, MMYQIGLF, and VYSFSLASRL were predicted using AGGRESCAN by analysis of the aggregation “Hot Spots”. NIFYCPIAIM had the highest thioflavin T fluorescence intensity, particle diameter (5611.3 nm), and polydispersity index (1.0) after 24 h, suggesting the formation of β-sheet structures with heterogeneous particle size distribution. Transmission electron microscopy of MMYQIGLF, and VYSFSLASRL demonstrated the most favorable peptide self-assembly, based on the formation of densely packed, intertwined fibrils. Rheological studies confirmed the viscoelastic and mechanical properties of the hydrogels, with IFYCPIAIM, NIFYCPIAIM, VLVNAIVFKGL, and VYSFSLASRL forming elastic solid hydrogels (tan δ < 1), while YCPIAIMSA and MMYQIGLF formed viscous liquid-like hydrogels (tan δ > 1). The results provide valuable insight into the influence of peptide sequence on hydrogelation and self-assembly progression, and prospects of food peptides in biomaterial applications.
Collapse
|
12
|
Hempseed (Cannabis sativa) protein hydrolysates: A valuable source of bioactive peptides with pleiotropic health-promoting effects. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Xu F, Xu B, Chen H, Ju X, Gonzalez de Mejia E. Enhancement of DPP-IV inhibitory activity and the capacity for enabling GLP-1 secretion through RADA16-assisted molecular designed rapeseed peptide nanogels. Food Funct 2022; 13:5215-5228. [PMID: 35438092 DOI: 10.1039/d1fo04367f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The potential of pentapeptide IPQVS (RAP1) and octapeptide ELHQEEPL (RAP2) derived from rapeseed napin as natural dipeptidyl-peptidase IV (DPP-IV) inhibitors is promising. The objective was to develop a nanogel strategy to resist the hydrolysis of digestive and intestinal enzymes to enhance the DPP-IV inhibitory activity of RAP1 and RAP2, and stimulate glucagon-like peptide 1 (GLP-1) secretion of RAP2 by a RADA16-assisted molecular design. The linker of double Gly was used in the connection of RADA16 and the functional oligopeptide region (RAP1 and RAP2). Compared to the original oligopeptides, DPP-IV IC50 of the nanogels RADA16-RAP1 and RADA16-RAP2 decreased by 26.43% and 17.46% in Caco-2 cell monolayers, respectively. The results showed that the two nanogel peptides with no toxicity to cells had higher contents of stable β-sheet structures (increased by 5.6-fold and 5.2-fold, respectively) than the original oligopeptides, and a self-assembled fibrous morphology. Rheological results suggested that the nanogels RADA16-RAP1 and RADA16-RAP2 exhibit good rheological properties for potential injectable applications; the storage modulus (G') was 10 times higher than the low modulus (G''). Furthermore, the RAP2 and its RADA16-assisted nanogel peptide at the concentration of 250 μM significantly (P < 0.05) increased the release of GLP-1 by 35.46% through the calcium-sensing receptor pathway in the enteroendocrine STC-1 cells. Hence, the innovative and harmless nanogels with the sequence of RADA16-GG-Xn have the potential for use by oral and injection administration for treating or relieving type 2 diabetes.
Collapse
Affiliation(s)
- Feiran Xu
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China.,Department of Food Science and Human Nutrition, Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 228 Edward R. Madigan Laboratory (ERML), 1201 West Gregory Drive, Urbana, Illinois 61801, USA.
| | - Baocai Xu
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China
| | - Hong Chen
- Department of Food Science and Human Nutrition, Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 228 Edward R. Madigan Laboratory (ERML), 1201 West Gregory Drive, Urbana, Illinois 61801, USA.
| | - Xingrong Ju
- National Engineering Laboratory for Cereal Fermentation Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition, Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 228 Edward R. Madigan Laboratory (ERML), 1201 West Gregory Drive, Urbana, Illinois 61801, USA.
| |
Collapse
|