1
|
Pizzoferrato M, Lazzarino G, Brancato A, Tabolacci E, Clementi ME, Tringali G. Evidence for a Functional Link Between the Nrf2 Signalling Pathway and Cytoprotective Effect of S-Petasin in Human Retinal Pigment Epithelium Cells Exposed to Oxidative Stress. Antioxidants (Basel) 2025; 14:180. [PMID: 40002367 PMCID: PMC11851853 DOI: 10.3390/antiox14020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025] Open
Abstract
The retinal pigment epithelium (RPE) is a highly specialised monolayer epithelium subjected to constant oxidative stress, which, in the long term, favours the development of a complex pathological process that is the underlying cause of macular damage. Therefore, counteracting the overproduction of ROS is the best-researched approach to preserve the functional integrity of the RPE. S-Petasin, a secondary metabolite extracted from the plant Petasites hybridus, has numerous biological effects, which highlight its anti-inflammatory and antioxidative properties. The aim of our study is to investigate whether S-Petasin exerts cytoprotective effects by protecting the RPE from oxidative damage. The effects of pretreatment with S-Petasin were assessed by the determination of the cell viability, intracellular ROS levels, activation of the Nrf2 pathway and the resulting post-transcriptional antioxidant/antiapoptotic response. Our results show that S-Petasin pretreatment (1) reduces intracellular ROS levels, improving cell viability of RPE exposed to oxidative damage; (2) activates the Nrf2 signalling pathway, modulating the post-transcriptional response of its antioxidant chemical biomarkers; (3) reduces the Bax levels, and an increase in those of Bcl-2, with a concomitant downregulation of the Bax/Bc-2 ratio. Overall, our results provide the first evidence that S-Petasin is able to protect the RPE from oxidative damage.
Collapse
Affiliation(s)
- Michela Pizzoferrato
- Pharmacology Section, Department of Health Care Surveillance and Bioethics, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy;
- Fondazione Policlinico Universitario Agostino Gemelli IRCSS, 00168 Rome, Italy;
| | - Giacomo Lazzarino
- Departmental Faculty of Medicine, UniCamillus-Saint Camillus International University of Health Sciences, Via Di Sant’Alessandro 8, 00131 Rome, Italy;
| | - Anna Brancato
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties of Excellence “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy;
| | - Elisabetta Tabolacci
- Fondazione Policlinico Universitario Agostino Gemelli IRCSS, 00168 Rome, Italy;
- Dipartimento di Sanità Pubblica e Scienze della Vita, Sezione di Medicina Genomica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
| | - Maria Elisabetta Clementi
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” SCITEC-CNR, Largo Francesco Vito 1, 00168 Rome, Italy;
| | - Giuseppe Tringali
- Pharmacology Section, Department of Health Care Surveillance and Bioethics, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy;
- Fondazione Policlinico Universitario Agostino Gemelli IRCSS, 00168 Rome, Italy;
| |
Collapse
|
2
|
Marchesi N, Capierri M, Pascale A, Barbieri A. Different Therapeutic Approaches for Dry and Wet AMD. Int J Mol Sci 2024; 25:13053. [PMID: 39684764 DOI: 10.3390/ijms252313053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Age-related macular degeneration (AMD) is the most common cause of irreversible loss of central vision in elderly subjects, affecting men and women equally. It is a degenerative pathology that causes progressive damage to the macula, the central and most vital part of the retina. There are two forms of AMD depending on how the macula is damaged, dry AMD and wet or neovascular AMD. Dry AMD is the most common form; waste materials accumulate under the retina as old cells die, not being replaced. Wet AMD is less common, but can lead to vision loss much more quickly. Wet AMD is characterized by new abnormal blood vessels developing under the macula, where they do not normally grow. This frequently occurs in patients who already have dry AMD, as new blood vessels are developed to try to solve the problem. It is not known what causes AMD to develop; however, certain risk factors (i.e., age, smoking, genetic factors) can increase the risk of developing AMD. There are currently no treatments for dry AMD. There is evidence that not smoking, exercising regularly, eating nutritious food, and taking certain supplements can reduce the risk of acquiring AMD or slow its development. The main treatment for wet AMD is inhibitors of VEGF (vascular endothelial growth factor), a protein that stimulates the growth of new blood vessels. VEGF inhibitors can stop the growth of new blood vessels, preventing further damage to the macula and vision loss. In most patients, VEGF inhibitors can improve vision if macular degeneration is diagnosed early and treated accordingly. However, VEGF inhibitors cannot repair damage that has already occurred. Current AMD research is trying to find treatments for dry AMD and other options for wet AMD. This review provides a summary of the current evidence regarding the different treatments aimed at both forms of AMD with particular and greater attention to the dry form.
Collapse
Affiliation(s)
- Nicoletta Marchesi
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
| | - Martina Capierri
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
| | - Annalisa Barbieri
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
3
|
Zhang Y, Liu X, Li Z, Li H, Miao Z, Wan B, Xu X. Advances on the Mechanisms and Therapeutic Strategies in Non-coding CGG Repeat Expansion Diseases. Mol Neurobiol 2024; 61:10722-10735. [PMID: 38780719 DOI: 10.1007/s12035-024-04239-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
Non-coding CGG repeat expansions within the 5' untranslated region are implicated in a range of neurological disorders, including fragile X-associated tremor/ataxia syndrome, oculopharyngeal myopathy with leukodystrophy, and oculopharyngodistal myopathy. This review outlined the general characteristics of diseases associated with non-coding CGG repeat expansions, detailing their clinical manifestations and neuroimaging patterns, which often overlap and indicate shared pathophysiological traits. We summarized the underlying molecular mechanisms of these disorders, providing new insights into the roles that DNA, RNA, and toxic proteins play. Understanding these mechanisms is crucial for the development of targeted therapeutic strategies. These strategies include a range of approaches, such as antisense oligonucleotides, RNA interference, genomic DNA editing, small molecule interventions, and other treatments aimed at correcting the dysregulated processes inherent in these disorders. A deeper understanding of the shared mechanisms among non-coding CGG repeat expansion disorders may hold the potential to catalyze the development of innovative therapies, ultimately offering relief to individuals grappling with these debilitating neurological conditions.
Collapse
Affiliation(s)
- Yutong Zhang
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou City, China
| | - Xuan Liu
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou City, China
| | - Zeheng Li
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou City, China
| | - Hao Li
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou City, China
- Department of Neurology, The Fourth Affiliated Hospital of Soochow University, Suzhou, 215124, China
| | - Zhigang Miao
- The Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Bo Wan
- The Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Xingshun Xu
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou City, China.
- The Institute of Neuroscience, Soochow University, Suzhou City, China.
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| |
Collapse
|
4
|
Zhang Z, Shan X, Li S, Chang J, Zhang Z, Dong Y, Wang L, Liang F. Retinal light damage: From mechanisms to protective strategies. Surv Ophthalmol 2024; 69:905-915. [PMID: 39053594 DOI: 10.1016/j.survophthal.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Visible light serves as a crucial medium for vision formation.;however, prolonged or excessive exposure to light is recognized as a significant etiological factor contributing to retinal degenerative diseases. The retina, with its unique structure and adaptability, relies on the homeostasis of cellular functions to maintain visual health. Under normal conditions, the retina can mount adaptive responses to various insults, including light-induced damage. Unfortunately, exposure to intense and excessive light triggers a cascade of pathological alterations in retinal photoreceptor cells, pigment epithelial cells, ganglion cells, and glial cells. These alterations encompass disruption of intracellular REDOX and Ca²⁺ homeostasis, pyroptosis, endoplasmic reticulum stress, autophagy, and the release of inflammatory cytokines, culminating in irreversible retinal damage. We first delineate the mechanisms of retinal light damage through 4 main avenues: mitochondria function, endoplasmic reticulum stress, cell autophagy, and inflammation. Subsequently, we discuss protective strategies against retinal light damage, aiming to guide research toward the prevention and treatment of light-induced retinal conditions.
Collapse
Affiliation(s)
- Zhao Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Xiaoqian Shan
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Shujiao Li
- Eye Hospital, China Academy of Chinese Medical Sciences, Beijing 100040, China
| | - Jun Chang
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Zhenhua Zhang
- Tongliang District Hospital of Traditional Chinese Medicine, Chongqing 402560, China
| | - Yang Dong
- Ji'nan Hospital of Traditional Chinese Medicine, Jinan, 250002, China
| | - Li Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Fengming Liang
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| |
Collapse
|
5
|
Bianchetti G, Bottoni P, Tringali G, Maulucci G, Tabolacci E, Clementi ME. The polyphenolic compound punicalagin protects skin fibroblasts from UVA radiation oxidative damage. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 6:100186. [PMID: 38846010 PMCID: PMC11153882 DOI: 10.1016/j.crphar.2024.100186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/03/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
Polyphenols are a class of natural compounds that act as antioxidants, neutralising harmful free radicals that would damage cells and increase the risk of diseases such as cancer, diabetes and heart disease. They also reduce inflammation, which is thought to be at the root of many chronic diseases. We are investigating the photoprotective effects of punicalagin, a type of polyphenolic compound mainly found in pomegranates, against UVA-induced damage in human skin fibroblasts. Punicalagin increases cell viability and reduces the high levels of ROS generated by photooxidative stress through its ability to modulate the Nrf2 transcriptional pathway. Interestingly, activation of the Nrf2 pathway results in an increase in reduced glutathione, NADH, and subsequently protects mitochondrial respiratory capacity. Integrating molecular and imaging approaches, our results demonstrate a potential cytoprotective effect of punicalagin against UVA-induced skin damage through an anti-apoptotic mechanism.
Collapse
Affiliation(s)
- Giada Bianchetti
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168, Rome, Italy
| | - Patrizia Bottoni
- Dipartimento di Scienze Biotecnologiche di base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy
| | - Giuseppe Tringali
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168, Rome, Italy
- Dipartimento di Sicurezza e Bioetica, Sezione di Farmacologia, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy
| | - Giuseppe Maulucci
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168, Rome, Italy
| | - Elisabetta Tabolacci
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168, Rome, Italy
- Dipartimento di Scienze della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy
| | - Maria Elisabetta Clementi
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” SCITEC-CNR, Largo Francesco Vito 1, 00168, Rome, Italy
| |
Collapse
|
6
|
Park C, Cha HJ, Hwangbo H, Bang E, Kim HS, Yun SJ, Moon SK, Kim WJ, Kim GY, Lee SO, Shim JH, Choi YH. Activation of Heme Oxygenase-1 by Mangiferin in Human Retinal Pigment Epithelial Cells Contributes to Blocking Oxidative Damage. Biomol Ther (Seoul) 2024; 32:329-340. [PMID: 38586992 PMCID: PMC11063488 DOI: 10.4062/biomolther.2023.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 04/09/2024] Open
Abstract
Mangiferin is a kind of natural xanthone glycosides and is known to have various pharmacological activities. However, since the beneficial efficacy of this compound has not been reported in retinal pigment epithelial (RPE) cells, this study aimed to evaluate whether mangiferin could protect human RPE ARPE-19 cells from oxidative injury mimicked by hydrogen peroxide (H2O2). The results showed that mangiferin attenuated H2O2-induced cell viability reduction and DNA damage, while inhibiting reactive oxygen species (ROS) production and preserving diminished glutathione (GSH). Mangiferin also antagonized H2O2-induced inhibition of the expression and activity of antioxidant enzymes such as manganese superoxide dismutase and GSH peroxidase, which was associated with inhibition of mitochondrial ROS production. In addition, mangiferin protected ARPE-19 cells from H2O2-induced apoptosis by increasing the Bcl-2/Bax ratio, decreasing caspase-3 activation, and blocking poly(ADP-ribose) polymerase cleavage. Moreover, mangiferin suppressed the release of cytochrome c into the cytosol, which was achieved by interfering with mitochondrial membrane disruption. Furthermore, mangiferin increased the expression and activity of heme oxygenase-1 (HO-1) and nuclear factor-erythroid-2 related factor 2 (Nrf2). However, the inhibition of ROS production, cytoprotective and anti-apoptotic effects of mangiferin were significantly attenuated by the HO-1 inhibitor, indicating that mangiferin promoted Nrf2-mediated HO-1 activity to prevent ARPE-19 cells from oxidative injury. The results of this study suggest that mangiferin, as an Nrf2 activator, has potent ROS scavenging activity and may have the potential to protect oxidative stress-mediated ocular diseases.
Collapse
Affiliation(s)
- Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-eui University, Busan 47340, Republic of Korea
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 49104, Republic of Korea
| | - Hyun Hwangbo
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea
| | - EunJin Bang
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Seok Joong Yun
- Department of Urology, Chungbuk National University College of Medicine, Cheongju 28644, Republic of Korea
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, Ansung 17546, Republic of Korea
| | - Wun-Jae Kim
- Department of Urology, Chungbuk National University College of Medicine, Cheongju 28644, Republic of Korea
- Institute of Urotech, Cheongju 28120, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Seung-On Lee
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
| | - Jung-Hyun Shim
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea
| |
Collapse
|
7
|
Park C, Hwangbo H, Kim SO, Noh JS, Park SH, Hong SH, Hong SH, Kim GY, Choi YH. Anthocyanins Inhibits Oxidative Injury in Human Retinal Pigment Epithelial ARPE-19 Cells via Activating Heme Oxygenase-1. J Microbiol Biotechnol 2024; 34:596-605. [PMID: 38044685 PMCID: PMC11016763 DOI: 10.4014/jmb.2310.10011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 12/05/2023]
Abstract
Anthocyanins belong to phenolic pigments and are known to have various pharmacological activities. This study aimed to investigate whether anthocyanins could inhibit hydrogen peroxide (H2O2)-induced oxidative damage in human retinal pigment epithelial ARPE-19 cells. Our results indicated that anthocyanins suppressed H2O2-induced genotoxicity, while inhibiting reactive oxygen species (ROS) production and preserving diminished glutathione. Anthocyanins also suppressed H2O2-induced apoptosis by reversing the Bcl-2/Bax ratio and inhibiting caspase-3 activation. Additionally, anthocyanins attenuated the release of cytochrome c into the cytosol, which was achieved by interfering with mitochondrial membrane disruption. Moreover, anthocyanins increased the expression of heme oxygenase-1 (HO-1) as well as its activity, which was correlated with the phosphorylation and nuclear translocation of nuclear factor-erythroid-2 related factor 2 (Nrf2). However, the cytoprotective and anti-apoptotic effects of anthocyanins were significantly attenuated by the HO-1 inhibitor, demonstrating that anthocyanins promoted Nrf2-induced HO-1 activity to prevent ARPE-19 cells from oxidative stress. Therefore, our findings suggest that anthocyanins, as Nrf2 activators, have potent ROS scavenging activity and may have the potential to protect ocular injury caused by oxidative stress.
Collapse
Affiliation(s)
- Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-eui University, Busan 47340, Republic of Korea
| | - Hyun Hwangbo
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Sung Ok Kim
- Department of Food Science and Biotechnology, College of Engineering, Kyungsung University, Busan 48434, Republic of Korea
| | - Jeong Sook Noh
- Department of Food Science & Nutrition, Tongmyong University, Busan 48520, Republic of Korea
| | - Shin-Hyung Park
- Department of Pathology, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Su Hyun Hong
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Sang Hoon Hong
- Department of Internal Medicine, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Gi-Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| |
Collapse
|
8
|
Agafonova I, Chingizova E, Chaikina E, Menchinskaya E, Kozlovskiy S, Likhatskaya G, Sabutski Y, Polonik S, Aminin D, Pislyagin E. Protection Activity of 1,4-Naphthoquinones in Rotenone-Induced Models of Neurotoxicity. Mar Drugs 2024; 22:62. [PMID: 38393033 PMCID: PMC10890484 DOI: 10.3390/md22020062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
The MTS cell viability test was used to screen a mini library of natural and synthetic 1,4-naphthoquinone derivatives (1,4-NQs) from marine sources. This screening identified two highly effective compounds, U-443 and U-573, which showed potential in protecting Neuro-2a neuroblastoma cells from the toxic effects of rotenone in an in vitro model of neurotoxicity. The selected 1,4-NQs demonstrated the capability to reduce oxidative stress by decreasing the levels of reactive oxygen species (ROS) and nitric oxide (NO) in Neuro-2a neuroblastoma cells and RAW 264.7 macrophage cells and displayed significant antioxidant properties in mouse brain homogenate. Normal mitochondrial function was restored and the mitochondrial membrane potential was also regained by 1,4-NQs after exposure to neurotoxins. Furthermore, at low concentrations, these compounds were found to significantly reduce levels of proinflammatory cytokines TNF and IL-1β and notably inhibit the activity of cyclooxygenase-2 (COX-2) in RAW 264.7 macrophages. The results of docking studies showed that the 1,4-NQs were bound to the active site of COX-2, analogically to a known inhibitor of this enzyme, SC-558. Both substances significantly improved the behavioral changes in female CD1 mice with rotenone-induced early stage of Parkinson's disease (PD) in vivo. It is proposed that the 1,4-NQs, U-443 and U-573, can protect neurons and microglia through their potent anti-ROS and anti-inflammatory activities.
Collapse
Affiliation(s)
- Irina Agafonova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (I.A.); (E.C.); (E.C.); (E.M.); (S.K.); (G.L.); (Y.S.); (S.P.); (D.A.)
| | - Ekaterina Chingizova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (I.A.); (E.C.); (E.C.); (E.M.); (S.K.); (G.L.); (Y.S.); (S.P.); (D.A.)
| | - Elena Chaikina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (I.A.); (E.C.); (E.C.); (E.M.); (S.K.); (G.L.); (Y.S.); (S.P.); (D.A.)
| | - Ekaterina Menchinskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (I.A.); (E.C.); (E.C.); (E.M.); (S.K.); (G.L.); (Y.S.); (S.P.); (D.A.)
| | - Sergey Kozlovskiy
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (I.A.); (E.C.); (E.C.); (E.M.); (S.K.); (G.L.); (Y.S.); (S.P.); (D.A.)
| | - Galina Likhatskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (I.A.); (E.C.); (E.C.); (E.M.); (S.K.); (G.L.); (Y.S.); (S.P.); (D.A.)
| | - Yuri Sabutski
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (I.A.); (E.C.); (E.C.); (E.M.); (S.K.); (G.L.); (Y.S.); (S.P.); (D.A.)
| | - Sergey Polonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (I.A.); (E.C.); (E.C.); (E.M.); (S.K.); (G.L.); (Y.S.); (S.P.); (D.A.)
| | - Dmitry Aminin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (I.A.); (E.C.); (E.C.); (E.M.); (S.K.); (G.L.); (Y.S.); (S.P.); (D.A.)
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No. 100, Shin-Chuan 1st Road, Sanmin District, Kaohsiung City 80708, Taiwan
| | - Evgeny Pislyagin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (I.A.); (E.C.); (E.C.); (E.M.); (S.K.); (G.L.); (Y.S.); (S.P.); (D.A.)
| |
Collapse
|
9
|
Tringali G, Pizzoferrato M, Lisi L, Marinelli S, Buccarello L, Falsini B, Cattaneo A, Navarra P. A Vicious NGF-p75 NTR Positive Feedback Loop Exacerbates the Toxic Effects of Oxidative Damage in the Human Retinal Epithelial Cell Line ARPE-19. Int J Mol Sci 2023; 24:16237. [PMID: 38003427 PMCID: PMC10671591 DOI: 10.3390/ijms242216237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
In spite of its variety of biological activities, the clinical exploitation of human NGF (hNGF) is currently limited to ocular pathologies. It is therefore interesting to test the effects of hNGF in preclinical models that may predict their efficacy and safety in the clinical setting of ocular disorders and compare the effects of hNGF with those of its analogs. We used a human retinal pigment cell line, ARPE-19 cells, to investigate the effects of hNGF and its analogs, mouse NGF (mNGF) and painless NGF (pNGF), on cell viability under basal conditions and after exposure to oxidative stimuli, i.e., hydrogen peroxide (H2O2) and ultraviolet (UV)-A rays. The effects of hNGF and pNGF were also tested on the gene expression and protein synthesis of the two NGF receptor subtypes, p75 neurotrophic receptors (p75NTR) and tyrosine kinase A (TrkA) receptors. We drew the following conclusions: (i) the exposure of ARPE-19 cells to H2O2 or UV-A causes a dose-dependent decrease in the number of viable cells; (ii) under baseline conditions, hNGF, but not pNGF, causes a concentration-dependent decrease in cell viability in the range of doses 1-100 ng/mL; (iii) hNGF, but not pNGF, significantly potentiates the toxic effects of H2O2 or of UV-A on ARPE-19 cells in the range of doses 1-100 ng/mL, while mNGF at the same doses presents an intermediate behavior; (iv) 100 ng/mL of hNGF triggers an increase in p75NTR expression in H2O2-treated ARPE-19 cells, while pNGF at the same dose does not; (v) pNGF, but not hNGF (both given at 100 ng/mL), increases the total cell fluorescence intensity for TrkA receptors in H2O2-treated ARPE-19 cells. The present findings suggest a vicious positive feedback loop through which NGF-mediated upregulation of p75NTR contributes to worsening the toxic effects of oxidative damage in the human retinal epithelial cell line ARPE-19. Looking at the possible clinical relevance of these findings, one can postulate that pNGF might show a better benefit/risk ratio than hNGF in the treatment of ocular disorders.
Collapse
Affiliation(s)
- Giuseppe Tringali
- Section of Pharmacology, Department of Healthcare Surveillance and Bioethics, Catholic University Medical School, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy (M.P.)
| | - Michela Pizzoferrato
- Section of Pharmacology, Department of Healthcare Surveillance and Bioethics, Catholic University Medical School, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy (M.P.)
| | - Lucia Lisi
- Section of Pharmacology, Department of Healthcare Surveillance and Bioethics, Catholic University Medical School, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy (M.P.)
| | - Silvia Marinelli
- European Brain Research Institute-Fondazione Rita Levi Montalcini, 00161 Rome, Italy (L.B.)
| | - Lucia Buccarello
- European Brain Research Institute-Fondazione Rita Levi Montalcini, 00161 Rome, Italy (L.B.)
| | - Benedetto Falsini
- UOC Ophtalmology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
- Department of Ophthalmology, Bambino Gesù IRCCS Children’s Hospital, 00133 Rome, Italy
| | - Antonino Cattaneo
- European Brain Research Institute-Fondazione Rita Levi Montalcini, 00161 Rome, Italy (L.B.)
- Bio@SNS Laboratory, Scuola Normale Superiore, 56124 Pisa, Italy
| | - Pierluigi Navarra
- Section of Pharmacology, Department of Healthcare Surveillance and Bioethics, Catholic University Medical School, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy (M.P.)
| |
Collapse
|
10
|
Wang Y, Wang J, Zhang X, Feng Y, Yuan Y. Neuroprotective effects of idebenone on hydrogen peroxide-induced oxidative damage in retinal ganglion cells-5. Int Ophthalmol 2023; 43:3831-3839. [PMID: 37561250 DOI: 10.1007/s10792-023-02831-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 07/27/2023] [Indexed: 08/11/2023]
Abstract
PURPOSE To investigate the neuroprotective effect of idebenone against hydrogen peroxide (H2O2)-induced oxidative damage in retinal ganglion cells-5 (RGC-5 cells). METHODS RGC-5 cells were pre-treated with various idebenone concentrations (5, 10, and 20 µM) for 12 h and were then subjected to 300 µM H2O2 for a further 12 h. Apoptosis in RGC-5 was measured by flow cytometry. The changes of mitochondrial membrane potential (MMP) were detected by JC-1 staining. Autophagy in RGC-5 cells was observed by transmission electron microscopy. Western blots were used to measure the expression of autophagy-related protein light chain 3 (LC3), Beclin-1, and the release of Cytochrome c (Cyt-c). RESULTS Flow cytometry showed that the apoptosis rates in the normal control group, H2O2 group, and idebenone groups were 6.48 ± 0.55%, 27.3 ± 0.51%, 22.8 ± 0.52%, 15.45 ± 0.81%, and 12.59 ± 0.58%, respectively (F = 559.7, P < 0.0001). After incubation with H2O2, the number of autophagosomes increased significantly, whereas it was decreased in the idebenone groups. After incubation of RGC-5 cells with H2O2, MMP levels were significantly decreased, while idebenone could prevent the decrease in MMP levels. Compared with that in the normal control group, LC3 II/I, the expression levels of Beclin-1 and Cyt-c were increased significantly in the H2O2 group (P < 0.05). Compared with that in the H2O2 group, LC3 II/I, the expression of Beclin-1 and Cyt-c was significantly decreased in idebenone groups (P < 0.05). CONCLUSIONS Idebenone protects RGC-5 cells against H2O2-induced oxidative damage by reducing mitochondrial damage and autophagic activity.
Collapse
Affiliation(s)
- Yuping Wang
- Department of Ophthalmology, Jing'an District Central Hospital, Fudan University, Shanghai, China
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Wang
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xi Zhang
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yifan Feng
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Yuanzhi Yuan
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Department of Ophthalmology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China.
| |
Collapse
|
11
|
Juha M, Molnár A, Jakus Z, Ledó N. NETosis: an emerging therapeutic target in renal diseases. Front Immunol 2023; 14:1253667. [PMID: 37744367 PMCID: PMC10514582 DOI: 10.3389/fimmu.2023.1253667] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/15/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Neutrophil extracellular traps (NETs) are web-like structures composed of nuclear and granular components. The primary role of NETS is to prevent the dissemination of microbes and facilitate their elimination. However, this process is accompanied by collateral proinflammatory adverse effects when the NET release becomes uncontrollable, or clearance is impaired. Although NET-induced organ damage is conducted primarily and indirectly via immune complexes and the subsequent release of cytokines, their direct effects on cells are also remarkable. NETosis plays a critical pathogenic role in several renal disorders, such as the early phase of acute tubular necrosis, anti-neutrophil cytoplasmic antibody-mediated renal vasculitis, lupus nephritis, thrombotic microangiopathies, anti-glomerular basement membrane disease, and diabetic nephropathy. Their substantial contribution in the course of these disorders makes them a desirable target in the therapeutic armamentarium. This article gives an in-depth review of the heterogeneous pathogenesis and physiological regulations of NETosis and its pivotal role in renal diseases. Based on the pathogenesis, the article also outlines the current therapeutic options and possible molecular targets in the treatment of NET-related renal disorders. Methods We carried out thorough literature research published in PubMed and Google Scholar, including a comprehensive review and analysis of the classification, pathomechanisms, and a broad spectrum of NET-related kidney disorders. Conclusions NETosis plays a pivotal role in certain renal diseases. It initiates and maintains inflammatory and autoimmune disorders, thus making it a desirable target for improving patient and renal outcomes. Better understanding and clinical translation of the pathogenesis are crucial aspects to treatment, for improving patient, and renal outcomes.
Collapse
Affiliation(s)
- Márk Juha
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Adél Molnár
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Zoltán Jakus
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Nóra Ledó
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
12
|
Tiberi J, Segatto M, Fiorenza MT, La Rosa P. Apparent Opportunities and Hidden Pitfalls: The Conflicting Results of Restoring NRF2-Regulated Redox Metabolism in Friedreich's Ataxia Pre-Clinical Models and Clinical Trials. Biomedicines 2023; 11:biomedicines11051293. [PMID: 37238963 DOI: 10.3390/biomedicines11051293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/18/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023] Open
Abstract
Friedreich's ataxia (FRDA) is an autosomal, recessive, inherited neurodegenerative disease caused by the loss of activity of the mitochondrial protein frataxin (FXN), which primarily affects dorsal root ganglia, cerebellum, and spinal cord neurons. The genetic defect consists of the trinucleotide GAA expansion in the first intron of FXN gene, which impedes its transcription. The resulting FXN deficiency perturbs iron homeostasis and metabolism, determining mitochondrial dysfunctions and leading to reduced ATP production, increased reactive oxygen species (ROS) formation, and lipid peroxidation. These alterations are exacerbated by the defective functionality of the nuclear factor erythroid 2-related factor 2 (NRF2), a transcription factor acting as a key mediator of the cellular redox signalling and antioxidant response. Because oxidative stress represents a major pathophysiological contributor to FRDA onset and progression, a great effort has been dedicated to the attempt to restore the NRF2 signalling axis. Despite this, the beneficial effects of antioxidant therapies in clinical trials only partly reflect the promising results obtained in preclinical studies conducted in cell cultures and animal models. For these reasons, in this critical review, we overview the outcomes obtained with the administration of various antioxidant compounds and critically analyse the aspects that may have contributed to the conflicting results of preclinical and clinical studies.
Collapse
Affiliation(s)
- Jessica Tiberi
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
- PhD Program in Behavioral Neuroscience, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| | - Marco Segatto
- Department of Bioscience and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Maria Teresa Fiorenza
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
- European Center for Brain Research, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00179 Rome, Italy
| | - Piergiorgio La Rosa
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
- European Center for Brain Research, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00179 Rome, Italy
| |
Collapse
|
13
|
Khalili H, Kashkoli HH, Weyland DE, Pirkalkhoran S, Grabowska WR. Advanced Therapy Medicinal Products for Age-Related Macular Degeneration; Scaffold Fabrication and Delivery Methods. Pharmaceuticals (Basel) 2023; 16:620. [PMID: 37111377 PMCID: PMC10146656 DOI: 10.3390/ph16040620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Retinal degenerative diseases such as age-related macular degeneration (AMD) represent a leading cause of blindness, resulting in permanent damage to retinal cells that are essential for maintaining normal vision. Around 12% of people over the age of 65 have some form of retinal degenerative disease. Whilst antibody-based drugs have revolutionised treatment of neovascular AMD, they are only effective at an early stage and cannot prevent eventual progression or allow recovery of previously lost vision. Hence, there is a clear unmet need to find innovative treatment strategies to develop a long-term cure. The replacement of damaged retinal cells is thought to be the best therapeutic strategy for the treatment of patients with retinal degeneration. Advanced therapy medicinal products (ATMPs) are a group of innovative and complex biological products including cell therapy medicinal products, gene therapy medicinal products, and tissue engineered products. Development of ATMPs for the treatment of retinal degeneration diseases has become a fast-growing field of research because it offers the potential to replace damaged retinal cells for long-term treatment of AMD. While gene therapy has shown encouraging results, its effectiveness for treatment of retinal disease may be hampered by the body's response and problems associated with inflammation in the eye. In this mini-review, we focus on describing ATMP approaches including cell- and gene-based therapies for treatment of AMD along with their applications. We also aim to provide a brief overview of biological substitutes, also known as scaffolds, that can be used for delivery of cells to the target tissue and describe biomechanical properties required for optimal delivery. We describe different fabrication methods for preparing cell-scaffolds and explain how the use of artificial intelligence (AI) can aid with the process. We predict that combining AI with 3D bioprinting for 3D cell-scaffold fabrication could potentially revolutionise retinal tissue engineering and open up new opportunities for developing innovative platforms to deliver therapeutic agents to the target tissues.
Collapse
Affiliation(s)
- Hanieh Khalili
- School of Biomedical Science, University of West London, London W5 5RF, UK
- School of Pharmacy, University College London, London WC1N 1AX, UK
| | | | | | - Sama Pirkalkhoran
- School of Biomedical Science, University of West London, London W5 5RF, UK
| | | |
Collapse
|
14
|
Tabolacci E, Tringali G, Nobile V, Duca S, Pizzoferrato M, Bottoni P, Maria Elisabetta C. Rutin Protects Fibroblasts from UVA Radiation through Stimulation of Nrf2 Pathway. Antioxidants (Basel) 2023; 12:antiox12040820. [PMID: 37107196 PMCID: PMC10135198 DOI: 10.3390/antiox12040820] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
This study explores the photoprotective effects of rutin, a bioflavonoid found in some vegetables and fruits, against UVA-induced damage in human skin fibroblasts. Our results show that rutin increases cell viability and reduces the high levels of ROS generated by photo-oxidative stress (1 and 2 h of UVA exposure). These effects are related to rutin’s ability to modulate the Nrf2 transcriptional pathway. Interestingly, activation of the Nrf2 signaling pathway results in an increase in reduced glutathione and Bcl2/Bax ratio, and the subsequent protection of mitochondrial respiratory capacity. These results demonstrate how rutin may play a potentially cytoprotective role against UVA-induced skin damage through a purely antiapoptotic mechanism.
Collapse
|
15
|
Łoboda A, Dulak J. Nuclear Factor Erythroid 2-Related Factor 2 and Its Targets in Skeletal Muscle Repair and Regeneration. Antioxid Redox Signal 2023; 38:619-642. [PMID: 36597355 DOI: 10.1089/ars.2022.0208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Significance: Skeletal muscles have a robust regenerative capacity in response to acute and chronic injuries. Muscle repair and redox homeostasis are intimately linked; increased generation of reactive oxygen species leads to cellular dysfunction and contributes to muscle wasting and progression of muscle diseases. In exemplary muscle disease, Duchenne muscular dystrophy (DMD), caused by mutations in the DMD gene that encodes the muscle structural protein dystrophin, the regeneration machinery is severely compromised, while oxidative stress contributes to the progression of the disease. The nuclear factor erythroid 2-related factor 2 (NRF2) and its target genes, including heme oxygenase-1 (HO-1), provide protective mechanisms against oxidative insults. Recent Advances: Relevant advances have been evolving in recent years in understanding the mechanisms by which NRF2 regulates processes that contribute to effective muscle regeneration. To this end, pathways related to muscle satellite cell differentiation, oxidative stress, mitochondrial metabolism, inflammation, fibrosis, and angiogenesis have been studied. The regulatory role of NRF2 in skeletal muscle ferroptosis has been also suggested. Animal studies have shown that NRF2 pathway activation can stop or reverse skeletal muscle pathology, especially when endogenous stress defence mechanisms are imbalanced. Critical Issues: Despite the growing recognition of NRF2 as a factor that regulates various aspects of muscle regeneration, the mechanistic impact on muscle pathology in various models of muscle injury remains imprecise. Future Directions: Further studies are necessary to fully uncover the role of NRF2 in muscle regeneration, both in physiological and pathological conditions, and to investigate the possibilities for development of new therapeutic modalities. Antioxid. Redox Signal. 38, 619-642.
Collapse
Affiliation(s)
- Agnieszka Łoboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
| |
Collapse
|
16
|
Lee SJ, Roh YJ, Kim JE, Jin YJ, Song HJ, Seol A, Park SH, Douangdeuane B, Souliya O, Choi SI, Hwang DY. Protective Effects of Dipterocarpus tuberculatus in Blue Light-Induced Macular Degeneration in A2E-Laden ARPE19 Cells and Retina of Balb/c Mice. Antioxidants (Basel) 2023; 12:antiox12020329. [PMID: 36829888 PMCID: PMC9952417 DOI: 10.3390/antiox12020329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/22/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Natural products with significant antioxidant activity have been receiving attention as one of the treatment strategies to prevent age-related macular degeneration (AMD). Reactive oxygen intermediates (ROI) including oxo-N-retinylidene-N-retinylethanolamine (oxo-A2E) and singlet oxygen-induced damage, are believed to be one of the major causes of the development of AMD. To investigate the therapeutic effects of methanol extracts of Dipterocarpus tuberculatus Roxb. (MED) against blue light (BL)-caused macular degeneration, alterations in the antioxidant activity, apoptosis pathway, neovascularization, inflammatory response, and retinal degeneration were analyzed in A2E-laden ARPE19 cells and Balb/c mice after exposure of BL. Seven bioactive components, including 2α-hydroxyursolic acid, ε-viniferin, asiatic acid, bergenin, ellagic acid, gallic acid and oleanolic acid, were detected in MED. MED exhibited high DPPH and ABTS free radical scavenging activity. BL-induced increases in intracellular reactive oxygen species (ROS) production and nitric oxide (NO) concentration were suppressed by MED treatment. A significant recovery of antioxidant capacity by an increase in superoxide dismutase enzyme (SOD) activity, SOD expression levels, and nuclear factor erythroid 2-related factor 2 (NRF2) expression were detected as results of MED treatment effects. The activation of the apoptosis pathway, the expression of neovascular proteins, cyclooxygenase-2 (COX-2)-induced inducible nitric oxide synthase (iNOS) mediated pathway, inflammasome activation, and expression of inflammatory cytokines was remarkably inhibited in the MED treated group compared to the Vehicle-treated group in the AMD cell model. Furthermore, MED displayed protective effects in BL-induced retinal degeneration through improvement in the thickness of the whole retina, outer nuclear layer (ONL), inner nuclear layer (INL), and photoreceptor layer (PL) in Balb/c mice. Taken together, these results indicate that MED exhibits protective effects in BL-induced retinal degeneration and has the potential in the future to be developed as a treatment option for dry AMD with atrophy of retinal pigment epithelial (RPE) cells.
Collapse
Affiliation(s)
- Su Jin Lee
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Yu Jeong Roh
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Ji Eun Kim
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - You Jeong Jin
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Hee Jin Song
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Ayun Seol
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - So Hae Park
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | | | - Onevilay Souliya
- Institute of Traditional Medicine, Ministry of Health, Vientiane 0103, Laos
| | - Sun Il Choi
- School of Pharmacy, Henan University, Kaifeng 475004, China
- Correspondence: (S.I.C.); (D.Y.H.); Tel.: +86-13271140312 (S.I.C.); +82-55-350-5388 (D.Y.H.)
| | - Dae Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
- Longevity & Wellbeing Research Center, Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
- Correspondence: (S.I.C.); (D.Y.H.); Tel.: +86-13271140312 (S.I.C.); +82-55-350-5388 (D.Y.H.)
| |
Collapse
|
17
|
Bianchetti G, Clementi ME, Sampaolese B, Serantoni C, Abeltino A, De Spirito M, Sasson S, Maulucci G. Metabolic Imaging and Molecular Biology Reveal the Interplay between Lipid Metabolism and DHA-Induced Modulation of Redox Homeostasis in RPE Cells. Antioxidants (Basel) 2023; 12:339. [PMID: 36829896 PMCID: PMC9952658 DOI: 10.3390/antiox12020339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Diabetes-induced oxidative stress induces the development of vascular complications, which are significant causes of morbidity and mortality in diabetic patients. Among these, diabetic retinopathy (DR) is often caused by functional changes in the blood-retinal barrier (BRB) due to harmful oxidative stress events in lipids, proteins, and DNA. Docosahexaenoic acid (DHA) has a potential therapeutic effect against hyperglycemia-induced oxidative damage and apoptotic pathways in the main constituents of BRB, retinal pigment epithelium cells (ARPE-19). Effective antioxidant response elicited by DHA is driven by the activation of the Nrf2/Nqo1 signaling cascade, which leads to the formation of NADH, a reductive agent found in the cytoplasm. Nrf2 also induces the expression of genes encoding enzymes involved in lipid metabolism. This study, therefore, aims at investigating the modulation of lipid metabolism induced by high-glucose (HG) on ARPE-19 cells through the integration of metabolic imaging and molecular biology to provide a comprehensive functional and molecular characterization of the mechanisms activated in the disease, as well the therapeutic role of DHA. This study shows that HG augments RPE metabolic processes by enhancing lipid metabolism, from fatty acid uptake and turnover to lipid biosynthesis and β-oxidation. DHA exerts its beneficial effect by ameliorating lipid metabolism and reducing the increased ROS production under HG conditions. This investigation may provide novel insight for formulating novel treatments for DR by targeting lipid metabolism pathways.
Collapse
Affiliation(s)
- Giada Bianchetti
- Department of Neuroscience, Biophysics Sections, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | - Maria Elisabetta Clementi
- Institute of Chemical Sciences and Technologies "Giulio Natta" (SCITEC)-CNR, Largo Francesco Vito, 1, 00168 Rome, Italy
| | - Beatrice Sampaolese
- Institute of Chemical Sciences and Technologies "Giulio Natta" (SCITEC)-CNR, Largo Francesco Vito, 1, 00168 Rome, Italy
| | - Cassandra Serantoni
- Department of Neuroscience, Biophysics Sections, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | - Alessio Abeltino
- Department of Neuroscience, Biophysics Sections, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | - Marco De Spirito
- Department of Neuroscience, Biophysics Sections, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | - Shlomo Sasson
- Faculty of Medicine, Institute for Drug Research, The Hebrew University, Jerusalem 911210, Israel
| | - Giuseppe Maulucci
- Department of Neuroscience, Biophysics Sections, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| |
Collapse
|
18
|
Park C, Cha HJ, Kim MY, Bang E, Moon SK, Yun SJ, Kim WJ, Noh JS, Kim GY, Cho S, Lee H, Choi YH. Phloroglucinol Attenuates DNA Damage and Apoptosis Induced by Oxidative Stress in Human Retinal Pigment Epithelium ARPE-19 Cells by Blocking the Production of Mitochondrial ROS. Antioxidants (Basel) 2022; 11:antiox11122353. [PMID: 36552561 PMCID: PMC9774705 DOI: 10.3390/antiox11122353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Phloroglucinol, a phenolic compound, is known to possess a potent antioxidant ability. However, its role in retinal cells susceptible to oxidative stress has not been well elucidated yet. Thus, the objective of this study was to evaluate whether phloroglucinol could protect against oxidative damage in cultured human retinal pigment epithelium ARPE-19 cells. For this purpose, ARPE-19 cells were stimula ted with hydrogen peroxide (H2O2) to mimic oxidative stress. Cell viability, cytotoxicity, apoptosis, reactive oxygen species (ROS) generation, mitochondrial function, DNA damage, and autophagy were then assessed. Our results revealed that phloroglucinol ameliorated cell viability, cytotoxicity, and DNA damage in H2O2-exposued ARPE-19 cells and blocked production of ROS. Phloroglucinol also counteracted H2O2-induced apoptosis by reducing Bax/Bcl-2 ratio, blocking activation of caspase-3, and inhibiting degradation of poly (ADP-ribose) polymerase. H2O2 caused mitochondrial impairment and increased expression levels of mitophagy markers such as PINK1and PARKIN known to be associated with mitochondrial ROS (mtROS) generation and cytosolic release of cytochrome c. However, these changes were significantly attenuated by phloroglucinol. Mito-TEMPO, a selective mitochondrial antioxidant, further enhanced the protective effect of phloroglucinol against dysfunctional mitochondria. Furthermore, H2O2 induced autophagy, but not when ARPE-19 cells were pretreated with phloroglucinol, meaning that autophagy by H2O2 contributed to the pro-survival mechanism and that phloroglucinol protected ARPE-19 cells from apoptosis by blocking autophagy. Taken together, these results suggest that phloroglucinol can inhibit oxidative stress-induced ARPE-19 cell damage and dysfunction by protecting DNA damage, autophagy, and subsequent apoptosis through mitigation of mtROS generation. Thus, phloroglucinol might have therapeutic potential to prevent oxidative stress-mediated damage in RPE cells.
Collapse
Affiliation(s)
- Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-Eui University, Busan 47340, Republic of Korea
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 49267, Republic of Korea
| | - Min Yeong Kim
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Republic of Korea
| | - EunJin Bang
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Republic of Korea
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, Ansung 17546, Republic of Korea
| | - Seok Joong Yun
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Wun-Jae Kim
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Jeong Sook Noh
- Department of Food Science & Nutrition, Tongmyong University, Busan 48520, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Suengmok Cho
- Department of Food Science and Technology, Institute of Food Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Hyesook Lee
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
- Correspondence: (H.L.); (Y.H.C.); Tel.: +82-51-890-8129 (H.L.); +82-51-890-3319 (Y.H.C.)
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Republic of Korea
- Correspondence: (H.L.); (Y.H.C.); Tel.: +82-51-890-8129 (H.L.); +82-51-890-3319 (Y.H.C.)
| |
Collapse
|
19
|
Tsang YL, Kao CL, Lin SCA, Li CJ. Mitochondrial Dysfunction and Oxidative Stress in Aging and Disease. Biomedicines 2022; 10:2872. [PMID: 36359391 PMCID: PMC9687620 DOI: 10.3390/biomedicines10112872] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 07/29/2023] Open
Abstract
Mitochondria are considered to have a significant influence on aging due to their critical role in the regulation of bioenergetics, oxidative stress, and cell death [...].
Collapse
Affiliation(s)
- Yi-Ling Tsang
- Institute of Physiological Chemistry and Pathobiochemistry and Cells in Motion Interfaculty Centre (CiMIC), University of Münster, 48149 Münster, Germany
| | - Chiu-Li Kao
- Department of Nursing, Tzu Hui Institute of Technology, Pingtung County 926, Taiwan
| | - Shu-Chuan Amy Lin
- Department of Nursing, National Yang Ming Chiao Tung University Hospital, Yilan 260, Taiwan
- Nursing School, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
20
|
Diabetic Macular Edema: Current Understanding, Molecular Mechanisms and Therapeutic Implications. Cells 2022; 11:cells11213362. [PMID: 36359761 PMCID: PMC9655436 DOI: 10.3390/cells11213362] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/24/2022] Open
Abstract
Diabetic retinopathy (DR), with increasing incidence, is the major cause of vision loss and blindness worldwide in working-age adults. Diabetic macular edema (DME) remains the main cause of vision impairment in diabetic patients, with its pathogenesis still not completely elucidated. Vascular endothelial growth factor (VEGF) plays a pivotal role in the pathogenesis of DR and DME. Currently, intravitreal injection of anti-VEGF agents remains as the first-line therapy in DME treatment due to the superior anatomic and functional outcomes. However, some patients do not respond satisfactorily to anti-VEGF injections. More than 30% patients still exist with persistent DME even after regular intravitreal injection for at least 4 injections within 24 weeks, suggesting other pathogenic factors, beyond VEGF, might contribute to the pathogenesis of DME. Recent advances showed nearly all the retinal cells are involved in DR and DME, including breakdown of blood-retinal barrier (BRB), drainage dysfunction of Müller glia and retinal pigment epithelium (RPE), involvement of inflammation, oxidative stress, and neurodegeneration, all complicating the pathogenesis of DME. The profound understanding of the changes in proteomics and metabolomics helps improve the elucidation of the pathogenesis of DR and DME and leads to the identification of novel targets, biomarkers and potential therapeutic strategies for DME treatment. The present review aimed to summarize the current understanding of DME, the involved molecular mechanisms, and the changes in proteomics and metabolomics, thus to propose the potential therapeutic recommendations for personalized treatment of DME.
Collapse
|
21
|
Park C, Noh JS, Jung Y, Leem SH, Hyun JW, Chang YC, Kwon TK, Kim GY, Lee H, Choi YH. Fisetin Attenuated Oxidative Stress-Induced Cellular Damage in ARPE-19 Human Retinal Pigment Epithelial Cells Through Nrf2-Mediated Activation of Heme Oxygenase-1. Front Pharmacol 2022; 13:927898. [PMID: 35784747 PMCID: PMC9243462 DOI: 10.3389/fphar.2022.927898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Fisetin is a kind of bioactive flavonol, widely present in various fruits such as strawberries and apples, and is known to act as a potent free radical scavenger. However, the mechanism of action related to the antioxidant activity of this compound in human retinal pigment epithelial (RPE) cells is not precisely known. In this study, we aimed to investigate whether fisetin could attenuate oxidative stress-induced cytotoxicity on human RPE ARPE-19 cells. To mimic oxidative stress, ARPE-19 cells were treated with hydrogen peroxide (H2O2), and fisetin significantly inhibited H2O2-induced loss of cell viability and increase of intracellular reactive oxygen species (ROS) production. Fisetin also markedly attenuated DNA damage and apoptosis in H2O2-treated ARPE-19 cells. Moreover, mitochondrial dysfunction in H2O2-treated cells was alleviated in the presence of fisetin as indicated by preservation of mitochondrial membrane potential, increase of Bcl-2/Bax expression ratio, and suppression of cytochrome c release into the cytoplasm. In addition, fisetin enhanced phosphorylation and nuclear translocation of nuclear factor erythroid 2 related factor 2 (Nrf2), which was associated with increased expression and activity of heme oxygenase-1 (HO-1). However, the HO-1 inhibitor, zinc protoporphyrin, significantly reversed the protective effect of fisetin against H2O2-mediated ARPE-19 cell injury. Therefore, our results suggest that Nrf2-mediated activation of antioxidant enzyme HO-1 may play an important role in the ROS scavenging activity of fisetin in RPE cells, contributing to the amelioration of oxidative stress-induced ocular disorders.
Collapse
Affiliation(s)
- Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-Eui University, Busan, South Korea
| | - Jeong Sook Noh
- Department of Food Science and Nutrition, Tongmyong University, Busan, South Korea
| | - Youngmi Jung
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
- Department of Biological Sciences, Pusan National University, Busan, South Korea
| | - Sun-Hee Leem
- Department of Biomedical Sciences, Dong-A University, Busan, South Korea
- Department of Health Sciences, Dong-A University, Busan, South Korea
| | - Jin Won Hyun
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju, South Korea
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, South Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu, South Korea
| | - Gi-Young Kim
- Department of Marine Life Science, Jeju National University, Jeju, South Korea
| | - Hyesook Lee
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan, South Korea
- *Correspondence: Hyesook Lee, ; Yung Hyun Choi,
| | - Yung Hyun Choi
- Anti-Aging Research Center and Core-Facility Center for Tissue Regeneration, Dong-Eui University, Busan, South Korea
- Department of Biochemistry, Dong-Eui University College of Korean Medicine, Busan, South Korea
- *Correspondence: Hyesook Lee, ; Yung Hyun Choi,
| |
Collapse
|
22
|
Shi Y, Zhong L, Chen K, Fan Y, Xie K, Zhang J, Dai J, Hu Y. Sanguinarine attenuates hydrogen peroxide-induced toxicity in liver of Monopterus albus: Role of oxidative stress, inflammation and apoptosis. FISH & SHELLFISH IMMUNOLOGY 2022; 125:190-199. [PMID: 35569777 DOI: 10.1016/j.fsi.2022.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
In aquatic animals, hydrogen peroxide (H2O2), which is a source of oxidative stress, can cause physiological dysfunction, inflammation, and death. Sanguinarine (SAN) is a plant extract known to improve antioxidant and immune capacity. However, the roles of SAN in H2O2-induced liver tissue toxicity is unclear. The effects on hepatic oxidative damage, inflammatory response, and apoptosis were investigated by feeding rice field eel with 0, 375, and 750 μg/kg of SAN for eight weeks and then intraperitoneally injected with H2O2. The results showed that after 24 h of H2O2 injection, the activities of ALT and AST in serum were significantly increased, oxidative damage and inflammatory response occurred in the liver, and apoptosis was induced, which indicated that H2O2 induced liver damage in rice field eel. However, dietary supplemented with 375 or 750 μg/kg SAN significantly decreased the activities of ALT and AST in serum, and significantly increased the antioxidant function (decreased ROS, MDA, and antioxidant enzymes levels, downregulated antioxidant-related gene expression, and inhibited the transcription level of nrf2). The addition of SAN at 375 or 750 μg/kg ameliorated H2O2-induced inflammatory response of liver (upregulated tgf-β1 mRNA expression, downregulated il-1β, il-6, il-8, and il-12β mRNA expression, and inhibited the transcription levels of tlr-3 tlr-7, and nf-κb). In addition, dietary supplemented with 375 or 750 μg/kg SAN alleviated the apoptosis of liver induced by H2O2 (downregulated bax mRNA expression, upregulated caspase3 mRNA expression, and reduced the number of apoptotic cells by TUNEL staining). Overall, these results suggested that SAN could alleviate the liver injury in rice field eel induced by H2O2, mainly by improving antioxidant capacity, alleviating inflammatory response and inhibiting apoptosis, and the effect of 750 μg/kg SAN addition is better than 375 μg/kg.
Collapse
Affiliation(s)
- Yong Shi
- Hunan Research Center of Engineering Technology for Utilization of Distinctive Aquatic Resource, Hunan Agricultural University, Changsha, 410128, China
| | - Lei Zhong
- Hunan Research Center of Engineering Technology for Utilization of Distinctive Aquatic Resource, Hunan Agricultural University, Changsha, 410128, China; Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Kaijian Chen
- Hunan Research Center of Engineering Technology for Utilization of Distinctive Aquatic Resource, Hunan Agricultural University, Changsha, 410128, China; Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Kai Xie
- Hunan Research Center of Engineering Technology for Utilization of Distinctive Aquatic Resource, Hunan Agricultural University, Changsha, 410128, China
| | - Junzhi Zhang
- Hunan Research Center of Engineering Technology for Utilization of Distinctive Aquatic Resource, Hunan Agricultural University, Changsha, 410128, China
| | - Jihong Dai
- Hunan Research Center of Engineering Technology for Utilization of Distinctive Aquatic Resource, Hunan Agricultural University, Changsha, 410128, China
| | - Yi Hu
- Hunan Research Center of Engineering Technology for Utilization of Distinctive Aquatic Resource, Hunan Agricultural University, Changsha, 410128, China; Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
23
|
Investigation of DHA-Induced Regulation of Redox Homeostasis in Retinal Pigment Epithelium Cells through the Combination of Metabolic Imaging and Molecular Biology. Antioxidants (Basel) 2022; 11:antiox11061072. [PMID: 35739970 PMCID: PMC9219962 DOI: 10.3390/antiox11061072] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 12/13/2022] Open
Abstract
Diabetes-induced oxidative stress leads to the onset of vascular complications, which are major causes of disability and death in diabetic patients. Among these, diabetic retinopathy (DR) often arises from functional alterations of the blood-retinal barrier (BRB) due to damaging oxidative stress reactions in lipids, proteins, and DNA. This study aimed to investigate the impact of the ω3-polyunsaturated docosahexaenoic acid (DHA) on the regulation of redox homeostasis in the human retinal pigment epithelial (RPE) cell line (ARPE-19) under hyperglycemic-like conditions. The present results show that the treatment with DHA under high-glucose conditions activated erythroid 2-related factor Nrf2, which orchestrates the activation of cellular antioxidant pathways and ultimately inhibits apoptosis. This process was accompanied by a marked increase in the expression of NADH (Nicotinamide Adenine Dinucleotide plus Hydrogen) Quinone Oxidoreductase 1 (Nqo1), which is correlated with a contextual modulation and intracellular re-organization of the NAD+/NADH redox balance. This investigation of the mechanisms underlying the impairment induced by high levels of glucose on redox homeostasis of the BRB and the subsequent recovery provided by DHA provides both a powerful indicator for the detection of RPE cell impairment as well as a potential metabolic therapeutic target for the early intervention in its treatment.
Collapse
|