1
|
Shen Y, Jiang Y, Wu J, Wang C, Huang JBK, Liu J, Chen S. Preclinical evidence that fibroblast growth factor receptor pathway inhibition by BGJ398 enhances small cell lung cancer response to chemotherapy. Anticancer Drugs 2025; 36:290-296. [PMID: 39819770 DOI: 10.1097/cad.0000000000001683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Small cell lung cancer (SCLC) is a highly aggressive form of lung cancer with limited therapeutic options and poor prognosis. In this study, we explored the therapeutic potential of BGJ398, a selective fibroblast growth factor receptor (FGFR) inhibitor, alone and in combination with standard chemotherapy (cisplatin and paclitaxel) in SCLC. High-throughput screening of kinase inhibitors was performed on three SCLC cell lines (NCI-H446, NCI-H69, and NCI-H182), identifying BGJ398 as one of the most potent and selective inhibitors. BGJ398 demonstrated significant synergy with cisplatin and paclitaxel in vitro , as indicated by combination index values below 1. In vivo , combination treatments significantly inhibited tumor growth and extended survival in SCLC xenograft models compared to monotherapies. Notably, the combination of BGJ398 with cisplatin exhibited the most pronounced tumor suppression and survival benefits. Immunohistochemistry analysis confirmed that BGJ398 effectively inhibited FGFR signaling pathways, reducing levels of phosphorylated FGFR, protein kinase B, signal transducer and activator of transcription 3, and extracellular signal-regulated kinase. These findings suggest that BGJ398, particularly in combination with chemotherapy, holds significant promise as a treatment strategy for SCLC, providing enhanced anti-tumor efficacy and improved survival outcomes.
Collapse
Affiliation(s)
| | - Yan Jiang
- Department of Cardiovascular Disease Treatment Center, Taihe Hospital, Hubei University of Medicine
| | - Junyao Wu
- School of Biomedical Engineering, Medical Imaging Class 2, Grade 2023
| | - Chenyu Wang
- Fourth Clinical College, 2022 Clinical Medicine 4
| | - Jiao Bo Kun Huang
- First Clinical College of Anesthesiology Department of Anesthesia 1 class, 2020 grade, Institute of Medicine Nursing
| | - Jie Liu
- Departments of Critical Care Medicine
| | - Sen Chen
- Department of Clinical Skills Training Center, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
2
|
Chen J, Wang Q, Wu H, Huang X, Cao C. Therapies targeting triple-negative breast cancer: a perspective on anti-FGFR. Front Oncol 2025; 14:1415820. [PMID: 40135140 PMCID: PMC11932845 DOI: 10.3389/fonc.2024.1415820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/02/2024] [Indexed: 03/27/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the subtypes with the worst prognosis due to tumour heterogeneity and lack of appropriate treatment. This condition is a consequence of the distinctive tumour microenvironment (TME). The TME is associated with factors such as the promotion of proliferation, angiogenesis, inhibition of apoptosis, suppression of the immune system and drug resistance. Therefore, remodelling the TME is critical for the treatment of TNBC. A key role in the formation of the TME is played by the fibroblast growth factor/fibroblast growth factor receptor(FGF/FGFR) signalling pathway. Thus, the FGFRs may be a potential target for treating TNBC. Over-activated FGFRs promote growth, migration and drug resistance in TNBC by influencing the onset of TME events, tumour angiogenesis and immune rejection. A thorough comprehension of the FGF/FGFR signalling pathway's mechanism of action in the development of TNBC could offer valuable insights for discovering new therapeutic strategies and drug targets. Inhibiting the FGF/FGFR axis could potentially hinder the growth of TNBC and its drug resistance by disrupting crucial biological processes in the TME, such as angiogenesis and immune evasion. This review evaluates the potential of inhibiting the FGF/FGFR axis as a strategy for treating TNBC. It explores the prospects for developing related therapeutic approaches. This study explores the research and application prospects of the FGF/FGFR axis in TNBC. The aim is to provide guidance for further therapeutic research and facilitate the development of innovative approaches targeting TNBC.
Collapse
Affiliation(s)
- Jinhao Chen
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, Hubei, China
- Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei, China
- College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Qianru Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, Hubei, China
- College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Hongyan Wu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, Hubei, China
- College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Xiaofei Huang
- Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei, China
- College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Chunyu Cao
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, Hubei, China
- College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| |
Collapse
|
3
|
Nazari S, Poustforoosh A, Paul PR, Kukreti R, Tavakkoli M, Saso L, Firuzi O, Moosavi F. c-MET tyrosine kinase inhibitors reverse drug resistance mediated by the ATP-binding cassette transporter B1 (ABCB1) in cancer cells. 3 Biotech 2025; 15:2. [PMID: 39650809 PMCID: PMC11618280 DOI: 10.1007/s13205-024-04162-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/10/2024] [Indexed: 12/11/2024] Open
Abstract
This study investigated the potential of MET kinase inhibitors, cabozantinib, crizotinib, and PHA665752, in reversing multidrug resistance (MDR) mediated by ABCB1 in cancer cells. The accumulation of the fluorescent probe, Rhodamine 123, was assessed using flow cytometry and fluorescence microscopy in MDR MES-SA/DX5 and parental cells. The growth inhibitory activity of MET inhibitors as monotherapies and in combination with chemotherapeutic drugs was evaluated by MTT assay. CalcuSyn software was used to analyze the combination index (CI) as an index of drug-drug interaction in combination treatments. Results showed that at concentrations of 5, and 25 μM, c-MET inhibitors significantly increased Rhodamine 123 accumulation in MDR cells, with ratios up to 17.8 compared to control cells, while exhibiting no effect in parental cells. Additionally, the combination of c-MET inhibitors with the chemotherapeutic agent doxorubicin synergistically enhanced cytotoxicity in MDR cells, as evidenced by combination index (CI) values of 0.54 ± 0.08, 0.69 ± 0.1, and 0.85 ± 0.07 for cabozantinib, crizotinib, and PHA665752, respectively. While all three c-MET inhibitors stimulated ABCB1 ATPase activity in different manners at certain concentrations, PHA-665752 suppressed it at high concentration. In silico analysis also suggested that the transmembrane domains (TMD) of ABCB1 transporters could be considered potential target for these agents. Our results suggest that c-MET inhibitors can serve as promising MDR reversal agents in ABCB1-medicated drug-resistant cancer cells.
Collapse
Affiliation(s)
- Somayeh Nazari
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Poustforoosh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Priyanka Rani Paul
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Marjan Tavakkoli
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Liu Z, Mao S, Li H, Liu W, Tao J, Lu Y, Dong H, Zhang J, Song C, Duan Y, Yao Y. Discovery of novel amide derivatives against VEGFR-2/tubulin with potent antitumor and antiangiogenic activity. Bioorg Chem 2024; 151:107679. [PMID: 39094510 DOI: 10.1016/j.bioorg.2024.107679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
Dual-target agents have more advantages than drug combinations for cancer treatment. Here, we designed and synthesized a series of novel VEGFR-2/tubulin dual-target inhibitors through a molecular hybridization strategy, and the activities of all the synthesized compounds were tested against tubulin and VEGFR-2. Among which, compound 19 exhibited strong potency against tubulin and VEGFR-2, with IC50 values of 0.76 ± 0.11 μM and 15.33 ± 2.12 nM, respectively. Additionally, compound 19 not only had significant antiproliferative effects on a series of human cancer cell lines, especially MGC-803 cells (IC50 = 0.005 ± 0.001 μM) but also overcame drug resistance in Taxol-resistant MGC-803 cells, with an RI of 1.8. Further studies showed that compound 19 could induce tumor cell apoptosis by reducing the mitochondrial membrane potential, increasing the level of ROS, facilitating the induction of G2/M phase arrest, and inhibiting the migration and invasion of tumor cells in a dose-dependent manner. In addition, compound 19 also exhibits potent antiangiogenic effects by blocking the VEGFR-2/PI3K/AKT pathway and inhibiting the tubule formation, invasion, and migration of HUVECs. More importantly, compound 19 demonstrated favorable pharmacokinetic profiles, robust in vivo antitumor efficacy, and satisfactory safety profiles. Overall, compound 19 can be used as a lead compound for the development of tubulin/VEGFR-2 dual-target inhibitors.
Collapse
Affiliation(s)
- Zhenling Liu
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China
| | - Shuqiang Mao
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Huixia Li
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China
| | - Wei Liu
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China
| | - Jing Tao
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China
| | - Yuebing Lu
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China
| | - Hui Dong
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China
| | - Jie Zhang
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China.
| | - Chuanjun Song
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Yongtao Duan
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China.
| | - Yongfang Yao
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
5
|
Wu M, Zhang L, Pi L, Liu L, Wang S, Wu Y, Pan H, Liu M, Yi Z. IRE1α inhibitor enhances paclitaxel sensitivity of triple-negative breast cancer cells. Cell Oncol (Dordr) 2024; 47:1797-1809. [PMID: 38888849 DOI: 10.1007/s13402-024-00961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2024] [Indexed: 06/20/2024] Open
Abstract
PURPOSE Breast cancer is the most commonly diagnosed cancer in women, and triple-negative breast cancer (TNBC) accounts for approximately 15%-20% of all breast cancers. TNBC is highly invasive and malignant. Due to the lack of relevant receptor markers, the prognosis of TNBC is poor and the five-year survival rate is low. Paclitaxel is the first-line drug for the treatment of TNBC, which can inhibit cell mitosis. However, many patients develop drug resistance during treatment, leading to chemotherapy failure. Therefore, finding new therapeutic combinations to overcome TNBC drug resistance can provide new strategies for improving the survival rate of TNBC patients. METHODS Cell viability assay, RT-qPCR, Colony formation assay, Western blot, and Xenogeneic transplantation methods were used to investigate roles and mechanisms of IRE1α/XBP1s pathway in the paclitaxel-resistant TNBC cells, and combined paclitaxel and IRE1α inhibitor in the treatment of TNBC was examined in vitro and in vivo. RESULTS We found activation of UPR in paclitaxel-resistant cells, confirming that IRE1α/XBP1 promotes paclitaxel resistance in TNBC. In addition, we demonstrated that the combination of paclitaxel and IRE1α inhibitors can synergistically inhibit the proliferation of TNBC tumors both in vitro and in vivo,suggesting that IRE1α inhibitors combined with paclitaxel may be a new treatment option for TNBC. CONCLUSIONS In this study, we demonstrated the important role of IRE1α signaling in mediating paclitaxel resistance and identified that combination therapies targeting IRE1α signaling could overcome paclitaxel resistance and enhance chemotherapy efficacy.
Collapse
Affiliation(s)
- Min Wu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai, 200241, China
| | - Lin Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai, 200241, China
| | - Lifu Pi
- Shanghai World Foreign Language Academy, Shanghai, 200030, China
| | - Layang Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai, 200241, China
| | - Siyu Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai, 200241, China
| | - Yujie Wu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai, 200241, China
| | - Hongli Pan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai, 200241, China
- Department of Reproductive Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, 272000, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai, 200241, China
| | - Zhengfang Yi
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai, 200241, China.
| |
Collapse
|
6
|
Qi Y, Deng SM, Wang KS. Receptor tyrosine kinases in breast cancer treatment: unraveling the potential. Am J Cancer Res 2024; 14:4172-4196. [PMID: 39417188 PMCID: PMC11477839 DOI: 10.62347/kivs3169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Breast cancer is a multifactorial disease driven by acquired genetic and epigenetic changes that lead to aberrant regulation of cellular signaling pathways. Receptor tyrosine kinases (RTKs), a class of critical receptors, are involved in the initiation and progression of breast cancer. RTKs are cell surface receptors with unique structures and biological characteristics, which respond to environmental signals by initiating signaling cascades such as the mitogen-activated protein kinase (MAPK) pathway, Janus kinase (JAK)/signal transducer, activator of transcription (STAT) pathway, and phosphoinositide 3-kinase (PI3K)/AKT pathway. The critical role of RTKs makes them suitable targets for breast cancer treatment. Targeted therapies against RTKs have been developed in recent years, evaluated in clinical trials, and approved for several cancer types, including breast cancer. However, breast cancer displays molecular heterogeneity and exhibits different therapeutic responses to various drug types, leading to limited effectiveness of targeted therapy against RTKs. In this review, we summarize the structural and functional characteristics of selected RTKs and discuss the mechanisms and current status of drug therapy involving different protein tyrosine kinases in breast cancer progression.
Collapse
Affiliation(s)
- Yu Qi
- Department of Pathology, School of Basic Medical Sciences, Central South UniversityChangsha, Hunan, China
| | - Shu-Min Deng
- Department of Pathology, School of Basic Medical Sciences, Central South UniversityChangsha, Hunan, China
| | - Kuan-Song Wang
- Department of Pathology, School of Basic Medical Sciences, Central South UniversityChangsha, Hunan, China
- Department of Pathology, Xiangya Hospital, Central South UniversityChangsha, Hunan, China
| |
Collapse
|
7
|
Chang Y, Fu Q, Lu Z, Jin Q, Jin T, Zhang M. Ginsenoside Rg3 combined with near-infrared photothermal reversal of multidrug resistance in breast cancer MCF-7/ADR cells. Food Sci Nutr 2024; 12:5750-5761. [PMID: 39139957 PMCID: PMC11317707 DOI: 10.1002/fsn3.4205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/05/2024] [Accepted: 04/24/2024] [Indexed: 08/15/2024] Open
Abstract
Adriamycin (ADR) is a frequently employed chemotherapeutic agent for the management of breast cancer. Nevertheless, multidrug resistance (MDR) can impair its therapeutic efficacy in breast cancer. MDR is characterized by increased expression of the P-glycoprotein (P-gp) efflux pump, up-regulation of anti-apoptotic proteins, and downregulation of pro-apoptotic proteins. Consequently, inhibition of ATP-binding cassette (ABC) transporter proteins has been deemed the most efficacious approach to overcome MDR. In this study, we used MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide), Western blots, flow cytometry, immunofluorescence, and constructed xenograft tumors to investigate whether ginsenoside Rg3-near-infrared photothermal (Rg3-NIR) combination reversed multidrug resistance in MCF-7/ADR breast cancer. In vivo and in vitro experiments, the results showed that Rg3-NIR co-treatment was effective in inducing the apoptosis of MCF-7/ADR breast cancer cells. This was achieved by reversing the expression of drug resistance-associated proteins, while also inhibiting cell proliferation, migration, and epithelial-mesenchymal transition (EMT) processes via attenuation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway transduction. Ginsenoside Rg3 combined with near-infrared photothermal therapy (NIR) effectively reverses multidrug resistance in breast cancer MCF-7/ADR cells, providing a new therapeutic strategy for breast cancer drug resistance.
Collapse
Affiliation(s)
- Ying Chang
- Department of Ultrasound MedicineAffiliated Hospital of Yanbian UniversityYanjiChina
- Department of Pathology and Cancer Research CenterYanbian University Medical CollegeYanjiChina
- Key Laboratory of the Science and Technology, Department of Jilin ProvinceYanjiChina
| | - Qiang Fu
- Department of Ultrasound MedicineAffiliated Hospital of Yanbian UniversityYanjiChina
- Department of Pathology and Cancer Research CenterYanbian University Medical CollegeYanjiChina
- Key Laboratory of the Science and Technology, Department of Jilin ProvinceYanjiChina
| | - Zhongqi Lu
- Department of Ultrasound MedicineAffiliated Hospital of Yanbian UniversityYanjiChina
- Department of Pathology and Cancer Research CenterYanbian University Medical CollegeYanjiChina
- Key Laboratory of the Science and Technology, Department of Jilin ProvinceYanjiChina
| | - Quanxin Jin
- Department of Immunology and Pathogenic BiologyYanbian University Medical CollegeYanjiChina
| | - Tiefeng Jin
- Department of Pathology and Cancer Research CenterYanbian University Medical CollegeYanjiChina
- Key Laboratory of the Science and Technology, Department of Jilin ProvinceYanjiChina
| | - Meihua Zhang
- Department of Ultrasound MedicineAffiliated Hospital of Yanbian UniversityYanjiChina
- Department of Pathology and Cancer Research CenterYanbian University Medical CollegeYanjiChina
- Key Laboratory of the Science and Technology, Department of Jilin ProvinceYanjiChina
| |
Collapse
|
8
|
Lin Q, Serratore A, Niu J, Shen S, Roy Chaudhuri T, Ma WW, Qu J, Kandel ES, Straubinger RM. Fibroblast growth factor receptor 1 inhibition suppresses pancreatic cancer chemoresistance and chemotherapy-driven aggressiveness. Drug Resist Updat 2024; 73:101064. [PMID: 38387284 PMCID: PMC11864563 DOI: 10.1016/j.drup.2024.101064] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/26/2023] [Accepted: 02/01/2024] [Indexed: 02/24/2024]
Abstract
AIMS Pancreatic ductal adenocarcinoma (PDAC) is often intrinsically-resistant to standard-of-care chemotherapies such as gemcitabine. Acquired gemcitabine resistance (GemR) can arise from treatment of initially-sensitive tumors, and chemotherapy can increase tumor aggressiveness. We investigated the molecular mechanisms of chemoresistance and chemotherapy-driven tumor aggressiveness, which are understood incompletely. METHODS Differential proteomic analysis was employed to investigate chemotherapy-driven chemoresistance drivers and responses of PDAC cells and patient-derived tumor xenografts (PDX) having different chemosensitivities. We also investigated the prognostic value of FGFR1 expression in the efficacy of selective pan-FGFR inhibitor (FGFRi)-gemcitabine combinations. RESULTS Quantitative proteomic analysis of a highly-GemR cell line revealed fibroblast growth factor receptor 1 (FGFR1) as the highest-expressed receptor tyrosine kinase. FGFR1 knockdown or FGFRi co-treatment enhanced gemcitabine efficacy and decreased GemR marker expression, implicating FGFR1 in augmentation of GemR. FGFRi treatment reduced PDX tumor progression and prolonged survival significantly, even in highly-resistant tumors in which neither single-agent showed efficacy. Gemcitabine exacerbated aggressiveness of highly-GemR tumors, based upon proliferation and metastatic markers. Combining FGFRi with gemcitabine or gemcitabine+nab-paclitaxel reversed tumor aggressiveness and progression, and prolonged survival significantly. In multiple PDAC PDXs, FGFR1 expression correlated with intrinsic tumor gemcitabine sensitivity. CONCLUSION FGFR1 drives chemoresistance and tumor aggressiveness, which FGFRi can reverse.
Collapse
Affiliation(s)
- Qingxiang Lin
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Andrea Serratore
- New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Jin Niu
- New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Shichen Shen
- New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Tista Roy Chaudhuri
- New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Wen Wee Ma
- Department of Hematology and Medical Oncology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jun Qu
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Eugene S Kandel
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Robert M Straubinger
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA; Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| |
Collapse
|
9
|
Lakra DS, Bharathiraja P, Dhanalakshmi T, Prasad NR. Andrographolide reverts multidrug resistance in KBCh R 8-5 cells through AKT signaling pathway. Cell Biochem Funct 2024; 42:e3948. [PMID: 38379216 DOI: 10.1002/cbf.3948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/22/2024]
Abstract
Multidrug resistance (MDR) is a major obstacle in cancer chemotherapy. P-glycoprotein (P-gp) one of the ATP-binding cassette (ABC) transporters plays an important role in MDR. In this study, we examined the sensitizing property of andrographolide (Andro) to reverse MDR in the drug-resistant KBChR 8-5 cells. Andro exhibited increased cytotoxicity in a concentration-dependent manner in the P-gp overexpressing KBChR 8-5 cells. Furthermore, Andro showed synergistic interactions with PTX and DOX in this drug-resistant cells. Andro co-administration enhanced PTX- and DOX-induced cytotoxicity and reduced cell proliferation in the MDR cancer cells. Moreover, reactive oxygen species (ROS) were elevated with a decrease in the mitochondrial membrane potential (MMP) during Andro and chemotherapeutic drugs combination treatment in the drug-resistant cells. Furthermore, Andro and PTX-induced cell cycle arrest was observed in the drug-resistant cell. We also noticed that the expression of ABCB1 and AKT were downregulated during Andro (4 µM) treatment. Furthermore, Andro treatment enhanced the expression of caspase 3 and caspase 9 in the combinational groups that support the enhanced apoptotic cell death in drug-resistant cancer cells. Therefore, the results reveal that Andro plays a role in the reversal of P-gp-mediated MDR in KBChR 8-5 cells which might be due to regulating ABCB1/AKT signaling pathway.
Collapse
Affiliation(s)
- Deepa S Lakra
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - Pradhapsingh Bharathiraja
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - T Dhanalakshmi
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
- Department of Biochemistry, Dharmapuram Gnanambigai Government Arts College for Women, Mayiladuthurai, Tamil Nadu, India
| | - N Rajendra Prasad
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
| |
Collapse
|
10
|
Nazari S, Mosaffa F, Poustforoosh A, Mortazavi M, Saso L, Firuzi O, Moosavi F. Foretinib, a c-MET receptor tyrosine kinase inhibitor, tackles multidrug resistance in cancer cells by inhibiting ABCB1 and ABCG2 transporters. Toxicol Appl Pharmacol 2024; 484:116866. [PMID: 38367674 DOI: 10.1016/j.taap.2024.116866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/31/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND ABC transporter-mediated multidrug resistance (MDR) remains a major obstacle for cancer pharmacological treatment. Some tyrosine kinase inhibitors (TKIs) have been shown to reverse MDR. The present study was designed to evaluate for the first time whether foretinib, a multitargeted TKI, can circumvent ABCB1 and ABCG2-mediated MDR in treatment-resistant cancer models. METHODS Accumulation of fluorescent substrates of ABCB1 and ABCG2 in ABCB1-overexpressing MES-SA/DX5 and ABCG2-overexpressing MCF-7/MX and their parenteral cells was evaluated by flow cytometry. The growth inhibitory activity of single and combination therapy of foretinib and chemotherapeutic drugs on MDR cells was examined by MTT assay. Analysis of combined interaction effects was performed using CalcuSyn software. RESULTS It was firstly proved that foretinib increased the intracellular accumulation of rhodamine 123 and mitoxantrone in MES-SA/DX5 and MCF-7/MX cancer cells, with accumulation ratios of 12 and 2.2 at 25 μM concentration, respectively. However, it did not affect the accumulation of fluorescent substrates in the parental cells. Moreover, foretinib synergistically improved the cytotoxic effects of doxorubicin and mitoxantrone. The means of combination index (CI) values at fraction affected (Fa) values of 0.5, 0.75, and 0.9 were 0.64 ± 0.08 and 0.47 ± 0.09, in MES-SA/DX5 and MCF-7/MX cancer cells, respectively. In silico analysis also suggested that the drug-binding domain of ABCB1 and ABCG2 transporters could be considered as potential target for foretinib. CONCLUSION Overall, our results suggest that foretinib can target MDR-linked ABCB1 and ABCG2 transporters in clinical cancer therapy.
Collapse
Affiliation(s)
- Somayeh Nazari
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Mosaffa
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Poustforoosh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Motahareh Mortazavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
11
|
Sharma NK, Bahot A, Sekar G, Bansode M, Khunteta K, Sonar PV, Hebale A, Salokhe V, Sinha BK. Understanding Cancer's Defense against Topoisomerase-Active Drugs: A Comprehensive Review. Cancers (Basel) 2024; 16:680. [PMID: 38398072 PMCID: PMC10886629 DOI: 10.3390/cancers16040680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
In recent years, the emergence of cancer drug resistance has been one of the crucial tumor hallmarks that are supported by the level of genetic heterogeneity and complexities at cellular levels. Oxidative stress, immune evasion, metabolic reprogramming, overexpression of ABC transporters, and stemness are among the several key contributing molecular and cellular response mechanisms. Topo-active drugs, e.g., doxorubicin and topotecan, are clinically active and are utilized extensively against a wide variety of human tumors and often result in the development of resistance and failure to therapy. Thus, there is an urgent need for an incremental and comprehensive understanding of mechanisms of cancer drug resistance specifically in the context of topo-active drugs. This review delves into the intricate mechanistic aspects of these intracellular and extracellular topo-active drug resistance mechanisms and explores the use of potential combinatorial approaches by utilizing various topo-active drugs and inhibitors of pathways involved in drug resistance. We believe that this review will help guide basic scientists, pre-clinicians, clinicians, and policymakers toward holistic and interdisciplinary strategies that transcend resistance, renewing optimism in the ongoing battle against cancer.
Collapse
Affiliation(s)
- Nilesh Kumar Sharma
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Anjali Bahot
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Gopinath Sekar
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Mahima Bansode
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Kratika Khunteta
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Priyanka Vijay Sonar
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Ameya Hebale
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Vaishnavi Salokhe
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Birandra Kumar Sinha
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| |
Collapse
|
12
|
Zhang C, Huang MN, Shan JQ, Hu ZJ, Li ZW, Liu JY. Pemigatinib, a selective FGFR inhibitor overcomes ABCB1-mediated multidrug resistance in cancer cells. Biochem Biophys Res Commun 2024; 691:149314. [PMID: 38039831 DOI: 10.1016/j.bbrc.2023.149314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
P: -glycoprotein (P-gp/ABCB1) overexpression is one of the primary causes of multidrug resistance (MDR). Therefore, it is crucial to discover effective pharmaceuticals to combat multidrug resistance mediated by ABCB1. Pemigatinib is a selective the fibroblast growth factor receptor (FGFR) inhibitor that is used to treat a variety of solid tumors, Clinical Trials for Urothelial Carcinoma (NCT02872714) completed its research on Pemigatinib. This study aimed to determine whether Pemigatinib can reverse ABCB1-mediated multidrug resistance, as well as its mechanism of action. Pemigatinib substantially reversed ABCB1-mediated multidrug resistance, as determined by a CCK8 assay, and immunofluorescence experiments revealed that Pemigatinib had no effect on the intracellular localization of ABCB1. Pemigatinib was discovered to increase intracellular drug accumulation, thereby reversing multidrug resistance. In addition, Docking analysis revealed that Pemigatinib and ABCB1 have a high affinity for one another. This study concludes that Pemigatinib is capable of reversing the multidrug resistance mediated by ABCB1, offering ideas and references for the clinical application of Pemigatinib.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Urology Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No. 440 Jiyan Road, Jinan, Shandong, 250117, PR China
| | - Min-Na Huang
- Dalton Cardiovascular Research Center, Department of Medical Pharmacology and Physiology, University of Missouri, School of Medicine, 134 Research Park Dr, Columbia, MO, 65211, USA
| | - Jun-Qi Shan
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No. 440 Jiyan Road, Jinan, Shandong, 250117, PR China
| | - Zun-Jie Hu
- Department of Urology Surgery, The Affiliated Taian City Central Hospital of Qingdao University, No. 29 Longtan Road, Taian, Shandong, 271000, PR China
| | - Zi-Wei Li
- Department of Experimental Center, Shandong University of Traditional Chinese Medicine, No. 4655 Daxue Road, Changqing, Jinan, Shandong, 250355, PR China.
| | - Jian-Ying Liu
- Department of Nuclear Medicine, The Third Affiliated Hospital of Shandong First Medical University, No. 38 Wuyingshan Road, Tianqiao, Jinan, Shandong, 250031, PR China.
| |
Collapse
|
13
|
Dutta D, Liu J, Wen K, Kurata K, Fulciniti M, Gulla A, Hideshima T, Anderson KC. BCMA-targeted bortezomib nanotherapy improves therapeutic efficacy, overcomes resistance, and modulates the immune microenvironment in multiple myeloma. Blood Cancer J 2023; 13:184. [PMID: 38072962 PMCID: PMC10711001 DOI: 10.1038/s41408-023-00955-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Bortezomib (BTZ) is a standard-of-care treatment in multiple myeloma (MM); however, adverse side effects and development of resistance limit its long term benefit. To improve target specificity, therapeutic efficacy, and overcome resistance, we designed nanoparticles that encapsulate BTZ and are surface-functionalized with BCMA antibodies (BCMA-BTZ-NPs). We confirmed efficient cellular internalization of the BCMA-BTZ-NPs only in BCMA-expressing MM cells, but not in BCMA-knockout (KO) cells. In addition, BCMA-BTZ-NPs showed target-specific cytotoxicity against MM cell lines and primary tumor cells from MM patients. The BCMA-BTZ-NPs entered the cell through receptor-mediated uptake, which escapes a mechanism of BTZ resistance based on upregulating P-glycoprotein. Furthermore, BCMA-BTZ-NPs induced cell death more efficiently than non-targeted nanoparticles or free BTZ, triggering potent mitochondrial depolarization followed by apoptosis. In BTZ-resistant cells, BCMA-BTZ-NPs inhibited proteasome activity more effectively than free BTZ or non-targeted nanoparticles. Additionally, BCMA-BTZ-NPs enhanced immunogenic cell death and activated the autophagic pathway more than free BTZ. Finally, we found that BCMA-BTZ-NPs selectively accumulated at the tumor site in a murine xenograft model, enhanced tumor reduction, and prolonged host survival. These results suggest BCMA-BTZ-NPs provide a promising therapeutic strategy for enhancing the efficacy of BTZ and establish a framework for their evaluation in a clinical setting.
Collapse
Affiliation(s)
- Debasmita Dutta
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jiye Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Kenneth Wen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Keiji Kurata
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Mariateresa Fulciniti
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Annamaria Gulla
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Teru Hideshima
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Kenneth C Anderson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Kim HS, Bae S, Lim YJ, So KA, Kim TJ, Bae S, Lee JH. Tephrosin Suppresses the Chemoresistance of Paclitaxel-Resistant Ovarian Cancer via Inhibition of FGFR1 Signaling Pathway. Biomedicines 2023; 11:3155. [PMID: 38137377 PMCID: PMC10740824 DOI: 10.3390/biomedicines11123155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/21/2023] [Accepted: 11/26/2023] [Indexed: 12/24/2023] Open
Abstract
Ovarian cancer is the leading cause of death among gynecologic cancers. Paclitaxel is used as a standard first-line therapeutic agent for ovarian cancer. However, chemotherapeutic resistance and high recurrence rates are major obstacles to treating ovarian cancer. We have found that tephrosin, a natural rotenoid isoflavonoid, can resensitize paclitaxel-resistant ovarian cancer cells to paclitaxel. Cell viability, immunoblotting, and a flow cytometric analysis showed that a combination treatment made up of paclitaxel and tephrosin induced apoptotic death. Tephrosin inhibited the phosphorylation of AKT, STAT3, ERK, and p38 MAPK, all of which simultaneously play important roles in survival signaling pathways. Notably, tephrosin downregulated the phosphorylation of FGFR1 and its specific adapter protein FRS2, but it had no effect on the phosphorylation of the EGFR. Immunoblotting and a fluo-3 acetoxymethyl assay showed that tephrosin did not affect the expression or function of P-glycoprotein. Additionally, treatment with N-acetylcysteine did not restore cell cytotoxicity caused by a treatment combination made up of paclitaxel and tephrosin, showing that tephrosin did not affect the reactive oxygen species scavenging pathway. Interestingly, tephrosin reduced the expression of the anti-apoptotic factor XIAP. This study demonstrates that tephrosin is a potent antitumor agent that can be used in the treatment of paclitaxel-resistant ovarian cancer via the inhibition of the FGFR1 signaling pathway.
Collapse
Affiliation(s)
- Hee Su Kim
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (H.S.K.); (S.B.); (Y.J.L.); (S.B.)
| | - Sowon Bae
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (H.S.K.); (S.B.); (Y.J.L.); (S.B.)
| | - Ye Jin Lim
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (H.S.K.); (S.B.); (Y.J.L.); (S.B.)
| | - Kyeong A So
- Department of Obstetrics and Gynecology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05030, Republic of Korea; (K.A.S.); (T.J.K.)
| | - Tae Jin Kim
- Department of Obstetrics and Gynecology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05030, Republic of Korea; (K.A.S.); (T.J.K.)
| | - Seunghee Bae
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (H.S.K.); (S.B.); (Y.J.L.); (S.B.)
| | - Jae Ho Lee
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (H.S.K.); (S.B.); (Y.J.L.); (S.B.)
| |
Collapse
|
15
|
Poustforoosh A, Moosavi F. Evaluation of the FDA-approved kinase inhibitors to uncover the potential repurposing candidates targeting ABC transporters in multidrug-resistant cancer cells: an in silico approach. J Biomol Struct Dyn 2023; 42:13650-13662. [PMID: 37942620 DOI: 10.1080/07391102.2023.2277848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/25/2023] [Indexed: 11/10/2023]
Abstract
Multiple drug resistance (MDR) is characterized by the resistance of cancer cells to a broad spectrum of anticancer drugs. The main mechanism underlying the MDR phenotype is the overexpression of ATP-binding cassette (ABC) transporters by promoting active drug efflux from cancer cells. Some small-molecule protein kinase inhibitors have been found to overcome MDR by inhibiting ABC transporters as substrates or modulators. This study investigated the chemical activity of 58 FDA-approved anticancer kinase inhibitors against three multidrug resistance-related proteins. The studied proteins are ATP-Binding Cassette Sub-Family B Member 1 (ABCB1), ATP-Binding Cassette Subfamily C Member 1 (ABCC1), and ATP-binding cassette superfamily G member 2 (ABCG2). The drug-binding domain and ATP binding sites of the proteins were considered the kinase inhibitors' probable target. High-throughput virtual screening and molecular docking were employed to find the hit drugs, and the drugs with the highest binding affinity were further evaluated using the molecular dynamics (MD) simulation. The virtual screening revealed that several kinase inhibitors could be considered potential inhibitors of ABCB1, ABCC1, and ABCG2, among which larotrectinib, entrectinib, and infigratinib showed the highest binding affinity, respectively. Based on the obtained results from MD simulation, these drugs can form strong interactions with the essential residues of the target proteins. In silico investigation revealed that larotrectinib, entrectinib, and infigratinib can target the key residues of the studied proteins. Therefore, these approved kinase inhibitors could be considered potential therapies for MDR cancers by targeting these transporters.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Alireza Poustforoosh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
16
|
Sajid A, Rahman H, Ambudkar SV. Advances in the structure, mechanism and targeting of chemoresistance-linked ABC transporters. Nat Rev Cancer 2023; 23:762-779. [PMID: 37714963 DOI: 10.1038/s41568-023-00612-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 09/17/2023]
Abstract
Cancer cells frequently display intrinsic or acquired resistance to chemically diverse anticancer drugs, limiting therapeutic success. Among the main mechanisms of this multidrug resistance is the overexpression of ATP-binding cassette (ABC) transporters that mediate drug efflux, and, specifically, ABCB1, ABCG2 and ABCC1 are known to cause cancer chemoresistance. High-resolution structures, biophysical and in silico studies have led to tremendous progress in understanding the mechanism of drug transport by these ABC transporters, and several promising therapies, including irradiation-based immune and thermal therapies, and nanomedicine have been used to overcome ABC transporter-mediated cancer chemoresistance. In this Review, we highlight the progress achieved in the past 5 years on the three transporters, ABCB1, ABCG2 and ABCC1, that are known to be of clinical importance. We address the molecular basis of their broad substrate specificity gleaned from structural information and discuss novel approaches to block the function of ABC transporters. Furthermore, genetic modification of ABC transporters by CRISPR-Cas9 and approaches to re-engineer amino acid sequences to change the direction of transport from efflux to import are briefly discussed. We suggest that current information regarding the structure, mechanism and regulation of ABC transporters should be used in clinical trials to improve the efficiency of chemotherapeutics for patients with cancer.
Collapse
Affiliation(s)
- Andaleeb Sajid
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hadiar Rahman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
17
|
Wu CP, Hsiao SH, Wu YS. Perspectives on drug repurposing to overcome cancer multidrug resistance mediated by ABCB1 and ABCG2. Drug Resist Updat 2023; 71:101011. [PMID: 37865067 DOI: 10.1016/j.drup.2023.101011] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/23/2023]
Abstract
The overexpression of the human ATP-binding cassette (ABC) transporters in cancer cells is a common mechanism involved in developing multidrug resistance (MDR). Unfortunately, there are currently no approved drugs specifically designed to treat multidrug-resistant cancers, making MDR a significant obstacle to successful chemotherapy. Despite over two decades of research, developing transporter-specific inhibitors for clinical use has proven to be a challenging endeavor. As an alternative approach, drug repurposing has gained traction as a more practical method to discover clinically effective modulators of drug transporters. This involves exploring new indications for already-approved drugs, bypassing the lengthy process of developing novel synthetic inhibitors. In this context, we will discuss the mechanisms of ABC drug transporters ABCB1 and ABCG2, their roles in cancer MDR, and the inhibitors that have been evaluated for their potential to reverse MDR mediated by these drug transporters. Our focus will be on providing an up-to-date report on approved drugs tested for their inhibitory activities against these drug efflux pumps. Lastly, we will explore the challenges and prospects of repurposing already approved medications for clinical use to overcome chemoresistance in patients with high tumor expression of ABCB1 and/or ABCG2.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan.
| | - Sung-Han Hsiao
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan.
| |
Collapse
|
18
|
Sanati M, Afshari AR, Ahmadi SS, Kesharwani P, Sahebkar A. Aptamers against cancer drug resistance: Small fighters switching tactics in the face of defeat. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166720. [PMID: 37062453 DOI: 10.1016/j.bbadis.2023.166720] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/20/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023]
Abstract
Discovering novel cancer therapies has attracted extreme interest in the last decade. In this regard, multidrug resistance (MDR) to chemotherapies is a key challenge in cancer treatment. Cancerous cells are growingly become resistant to existing chemotherapeutics by employing diverse mechanisms, highlighting the significance of discovering approaches to overcome MDR. One promising strategy is utilizing aptamers as unique tools to target elements or signaling pathways incorporated in resistance mechanisms, or develop actively targeted drug delivery systems or chimeras enabling the precise delivery of novel agents to inhibit the conventionally undruggable resistance elements. Furthermore, due to their advantages over their proteinaceous counterparts, particularly antibodies, including improved targeting action, enhanced thermal stability, easier production, and superior tumor penetration, aptamers are emerging and have frequently been considered for developing cancer therapeutics. Here, we highlighted significant chemoresistance pathways in cancer and discussed the use of aptamers as prospective tools to surmount cancer MDR.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir R Afshari
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran; Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyed Sajad Ahmadi
- Department of Ophthalmology, Khatam-Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
19
|
Gupta A, Kurzrock R, Adashek JJ. Evolution of the Targeted Therapy Landscape for Cholangiocarcinoma: Is Cholangiocarcinoma the 'NSCLC' of GI Oncology? Cancers (Basel) 2023; 15:1578. [PMID: 36900367 PMCID: PMC10000383 DOI: 10.3390/cancers15051578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023] Open
Abstract
In the past two decades, molecular targeted therapy has revolutionized the treatment landscape of several malignancies. Lethal malignancies such as non-small cell lung cancer (NSCLC) have become a model for precision-matched immune- and gene-targeted therapies. Multiple small subgroups of NSCLC defined by their genomic aberrations are now recognized; remarkably, taken together, almost 70% of NSCLCs now have a druggable anomaly. Cholangiocarcinoma (CCA) is a rare tumor with a poor prognosis. Novel molecular alterations have been recently identified in patients with CCA, and the potential for targeted therapy is being realized. In 2019, a fibroblast growth factor receptor 2 (FGFR2) inhibitor, pemigatinib, was the first approved targeted therapy for patients with locally advanced or metastatic intrahepatic CCA who had FGFR2 gene fusions or rearrangement. More regulatory approvals for matched targeted therapies as second-line or subsequent treatments in advanced CCA followed, including additional drugs that target FGFR2 gene fusion/rearrangement. Recent tumor-agnostic approvals include (but are not limited to) drugs that target mutations/rearrangements in the following genes and are hence applicable to CCA: isocitrate dehydrogenase 1 (IDH1); neurotrophic tropomyosin-receptor kinase (NTRK); the V600E mutation of the BRAF gene (BRAFV600E); and high tumor mutational burden, high microsatellite instability, and gene mismatch repair-deficient (TMB-H/MSI-H/dMMR) tumors. Ongoing trials investigate HER2, RET, and non-BRAFV600E mutations in CCA and improvements in the efficacy and safety of new targeted treatments. This review aims to present the current status of molecularly matched targeted therapy for advanced CCA.
Collapse
Affiliation(s)
- Amol Gupta
- Department of Medicine, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Razelle Kurzrock
- WIN Consortium, San Diego, CA 92093, USA
- Division of Hematology and Oncology, Medical College of Wisconsin Cancer Center, Milwaukee, WI 53226, USA
- Division of Hematology and Oncology, University of Nebraska, Omaha, NE 68182, USA
| | - Jacob J. Adashek
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Hospital, Baltimore, MD 21287, USA
| |
Collapse
|
20
|
Fedotcheva TA, Shimanovsky NL. Pharmacological Strategies for Overcoming Multidrug Resistance to Chemotherapy. Pharm Chem J 2023; 56:1307-1313. [PMID: 36683825 PMCID: PMC9838346 DOI: 10.1007/s11094-023-02790-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Indexed: 01/13/2023]
Abstract
Actual mechanisms of multidrug resistance (MDR) to chemotherapy in oncology are considered. ABC-transporters such as P-glycoprotein, BCRP protein, and MRP proteins take part in the development of resistance. The review presents the main classes of chemosensitizers, i.e., inhibitors of ABC transporters of the 1st-4th generations. Plant polyphenols, i.e., flavonoids, are commonly referred to as the last (4th) generation of MDR inhibitors. Chemosensitizers of different classes should be chosen with allowance for the patient mutation-expression profile and the receptor status of a particular tumor. The appropriate dosage of the chemosensitizer and the administration schedule can enhance the process of counteracting MDR.
Collapse
Affiliation(s)
- T. A. Fedotcheva
- Pirogov Russian National Research Medical University, Moscow, 1 Ostrovityanova St., 117997 Russia
| | - N. L. Shimanovsky
- Pirogov Russian National Research Medical University, Moscow, 1 Ostrovityanova St., 117997 Russia
| |
Collapse
|
21
|
Mani S. Working at a Cancer Research Laboratory as a Medical Student: Experience of an Indian Student Studying Medicine in Russia. INTERNATIONAL JOURNAL OF MEDICAL STUDENTS 2022. [DOI: 10.5195/ijms.2022.1424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Medical education is incomplete without any experience in medical research. In Russia, many international students study medicine, and some of them indulge in research along with their teachers and supervisors in different fields of medicine. Being one of such students, I narrated my experience of working at a cancer research laboratory in a Russian university and discussed the opportunities and difficulties that an international medical student might face while studying medicine and doing research simultaneously.
Collapse
|
22
|
|