1
|
Wang M, He A, Kang Y, Wang Z, He Y, Lim K, Zhang C, Lu L. Novel genes involved in vascular dysfunction of the middle temporal gyrus in Alzheimer's disease: transcriptomics combined with machine learning analysis. Neural Regen Res 2025; 20:3620-3634. [PMID: 39104175 PMCID: PMC11974667 DOI: 10.4103/nrr.nrr-d-23-02004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/20/2024] [Accepted: 05/28/2024] [Indexed: 08/07/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202512000-00030/figure1/v/2025-01-31T122243Z/r/image-tiff Studies have shown that vascular dysfunction is closely related to the pathogenesis of Alzheimer's disease. The middle temporal gyrus region of the brain is susceptible to pronounced impairment in Alzheimer's disease. Identification of the molecules involved in vascular aberrance of the middle temporal gyrus would support elucidation of the mechanisms underlying Alzheimer's disease and discovery of novel targets for intervention. We carried out single-cell transcriptomic analysis of the middle temporal gyrus in the brains of patients with Alzheimer's disease and healthy controls, revealing obvious changes in vascular function. CellChat analysis of intercellular communication in the middle temporal gyrus showed that the number of cell interactions in this region was decreased in Alzheimer's disease patients, with altered intercellular communication of endothelial cells and pericytes being the most prominent. Differentially expressed genes were also identified. Using the CellChat results, AUCell evaluation of the pathway activity of specific cells showed that the obvious changes in vascular function in the middle temporal gyrus in Alzheimer's disease were directly related to changes in the vascular endothelial growth factor (VEGF)A-VEGF receptor (VEGFR) 2 pathway. AUCell analysis identified subtypes of endothelial cells and pericytes directly related to VEGFA-VEGFR2 pathway activity. Two subtypes of middle temporal gyrus cells showed significant alteration in AD: endothelial cells with high expression of Erb-B2 receptor tyrosine kinase 4 (ERBB4 high ) and pericytes with high expression of angiopoietin-like 4 (ANGPTL4 high ). Finally, combining bulk RNA sequencing data and two machine learning algorithms (least absolute shrinkage and selection operator and random forest), four characteristic Alzheimer's disease feature genes were identified: somatostatin ( SST ), protein tyrosine phosphatase non-receptor type 3 ( PTPN3 ), glutinase ( GL3 ), and tropomyosin 3 ( PTM3 ). These genes were downregulated in the middle temporal gyrus of patients with Alzheimer's disease and may be used to target the VEGF pathway. Alzheimer's disease mouse models demonstrated consistent altered expression of these genes in the middle temporal gyrus. In conclusion, this study detected changes in intercellular communication between endothelial cells and pericytes in the middle temporal gyrus and identified four novel feature genes related to middle temporal gyrus and vascular functioning in patients with Alzheimer's disease. These findings contribute to a deeper understanding of the molecular mechanisms underlying Alzheimer's disease and present novel treatment targets.
Collapse
Affiliation(s)
- Meiling Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Aojie He
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Yubing Kang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Zhaojun Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Yahui He
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Kahleong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Chengwu Zhang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi Province, China
- Precise Diagnosis and Treatment Center for Neurodegenerative Diseases, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Li Lu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi Province, China
- Precise Diagnosis and Treatment Center for Neurodegenerative Diseases, Shanxi Medical University, Taiyuan, Shanxi Province, China
| |
Collapse
|
2
|
陈 琦, 夏 天, 周 永, 常 铭, 胡 楠, 杨 燕, 李 仲, 高 月, 顾 斌. [ Prevotella nigrescens exacerbates periodontal inflammation and impairs cognitive function in mice]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2025; 45:453-460. [PMID: 40159959 PMCID: PMC11955903 DOI: 10.12122/j.issn.1673-4254.2025.03.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Indexed: 04/02/2025]
Abstract
OBJECTIVES To investigate the effects of periodontitis induced by Prevotella nigrescens (Pn) combined with ligation on cognitive functions in mice. METHODS Twenty-four C57BL/6J mice were randomly divided into control group, ligation group, and ligation + Pn treatment (P+Pn) group. Experimental periodontitis was induced by silk ligation of the first molars followed by topical application of Pn for 6 weeks. After modeling, alveolar bone resorption was assessed using micro-CT and histological analysis. Learning and memory abilities of the mice were evaluated using open field test (OFT), novel object recognition test (NORT), and Morris water maze test (MWM). Seven weeks after the start of modeling, the mice were sacrificed for examining histopathological changes in the hippocampus using HE and Nissl staining. RESULTS After 6 weeks of molar ligation, micro-CT revealed horizontal alveolar bone resorption and furcation exposure in the mice, and histological analysis showed apical migration of the junctional epithelium, epithelial ridge hyperplasia, and lymphocyte infiltration, and these changes were obviously worsened in P+Pn group. Alveolar bone height decreased significantly in both ligation groups compared to the control group. Cognitive tests showed that the mice in both of the ligation groups traveled shorter distances in OFT, showed reduced novel object preference in NORT, and exhibited longer escape latencies in MWM, and the mice in P+Pn group had significantly poorer performances in the tests. Histologically, obvious neuronal cytoplasmic degeneration, necrosis, nuclear pyknosis, vacuolation, and reduced Nissl bodies and viable neurons were observed in the hippocampal regions of the mice in the two ligation groups. CONCLUSIONS Pn infection aggravates alveolar bone destruction, accelerates necrosis and causes morphological abnormalities of neuronal cells in the hippocampus to reduce cognitive functions of mice with periodontitis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - 月 高
- 高 月,博士,研究员,博士生导师,E-mail: gaoyue@ bmi.ac.cn
| | - 斌 顾
- 顾 斌,博士,副主任医师,硕士生导师,E-mail:
| |
Collapse
|
3
|
Ishizaka H, Sekine A, Naka M, Nakano S, Nagase H, Tsushima Y. Hyperintensity of the left piriform cortex and amygdala on T2-weighted FLAIR images in patients with probable Alzheimer's disease correlates with cerebral cortical atrophy. Acta Radiol Open 2025; 14:20584601251317629. [PMID: 39916994 PMCID: PMC11795602 DOI: 10.1177/20584601251317629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/27/2024] [Accepted: 01/13/2025] [Indexed: 02/09/2025] Open
Abstract
Background The left piriform cortex and amygdala (PC&A) tend to be slightly hyperintense relative to the right PC&A on T2-weighted fluid-attenuated inversion recovery (T2W-FLAIR) images in patients with probable Alzheimer's disease (pAD). This likely represents the antecedent and thus advanced degeneration of the left PC&A. Purpose To investigate the relationship between left PC&A hyperintensities and cerebral cortical atrophy on magnetic resonance (MR) voxel-based morphometry in patients with pAD and discuss how this finding could relate to AD progression. Material and Methods Patients with pAD (n = 47; age range = 68-93 years, mean = 80.8 ± 6.7 years; 14 men and 33 women) who underwent T2W-FLAIR imaging and MR morphometric study using a voxel-based specific regional analysis system for AD (VSRAD) were retrospectively examined. To measure signal intensity ratios of the left to right PC&A (L-PC&A/R-PC&A), regions of interest (ROIs) were set on the transaxial images in which both PC&As were most broadly depicted; the ROIs were defined as large as possible. Correlations between the L-PC&A/R-PC&A and medial temporal lobe cortical atrophy (MTLCA) as well as whole cerebral cortical atrophy (WCCA) on VSRAD were determined. Correlation between the L-PC&A/R-PC&A and age was also determined. Results The L-PC&A/R-PC&A correlated with both MTLCA (r = 0.375, p = .010, 95% confidence interval [CI] = 0.095-0.600) and WCCA (r = 0.576, p < .001, 95% CI = 0.343-0.742). The L-PC&A/R-PC&A did not correlate with age (r = 0.013, p = .932, 95% CI = -0.282-0.305). Conclusion Left-sided dominance of PC&A degeneration appeared to accelerate with the progression of AD stages.
Collapse
Affiliation(s)
- Hiroshi Ishizaka
- Department of Radiology, Maebashi Red Cross Hospital, Gunma, Japan
| | - Akiko Sekine
- Department of Neurology, Maebashi Red Cross Hospital, Gunma, Japan
| | - Minoru Naka
- Department of Radiology, Maebashi Red Cross Hospital, Gunma, Japan
| | - Saeki Nakano
- Department of Radiology, Maebashi Red Cross Hospital, Gunma, Japan
| | - Hiroyuki Nagase
- Department of Radiology, Maebashi Red Cross Hospital, Gunma, Japan
| | - Yoshito Tsushima
- Department of Diagnostic Radiology and Nuclear Medicine, Graduate School of Medicine, Gunma University, Gunma, Japan
| |
Collapse
|
4
|
Zeng HX, Qin SJ, Andersson J, Li SP, Zeng QG, Li JH, Wu QZ, Meng WJ, Oudin A, Kanninen KM, Jalava P, Dong GH, Zeng XW. The emerging roles of particulate matter-changed non-coding RNAs in the pathogenesis of Alzheimer's disease: A comprehensive in silico analysis and review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125440. [PMID: 39631655 DOI: 10.1016/j.envpol.2024.125440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 11/27/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Research on epigenetic‒environmental interactions in the development of Alzheimer's disease (AD) has accelerated rapidly in recent decades. Numerous studies have demonstrated the contribution of ambient particulate matter (PM) to the onset of AD. Emerging evidence indicates that non-coding RNAs (ncRNAs), including long non-coding RNAs, circular RNAs, and microRNAs, play a role in the pathophysiology of AD. In this review, we provide an overview of PM-altered ncRNAs in the brain, with emphasis on their potential roles in the pathogenesis of AD. These results suggest that these PM-altered ncRNAs are involved in the regulation of amyloid-beta pathology, microtubule-associated protein Tau pathology, synaptic dysfunction, damage to the blood‒brain barrier, microglial dysfunction, dysmyelination, and neuronal loss. In addition, we utilized in silico analysis to explore the biological functions of PM-altered ncRNAs in the development of AD. This review summarizes the knowns and unknowns of PM-altered ncRNAs in AD pathogenesis and discusses the current dilemma regarding PM-altered ncRNAs as promising biomarkers of AD. Altogether, this is the first thorough review of the connection between PM exposure and ncRNAs in AD pathogenesis, which may offer novel insights into the prevention, diagnosis, and treatment of AD associated with ambient PM exposure.
Collapse
Affiliation(s)
- Hui-Xian Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shuang-Jian Qin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | | | - Shen-Pan Li
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing-Guo Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jia-Hui Li
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qi-Zhen Wu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen-Jie Meng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Anna Oudin
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Katja M Kanninen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pasi Jalava
- Department of Environmental and Biological Science, University of Eastern Finland, Kuopio, Finland
| | - Guang-Hui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiao-Wen Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
5
|
Zhang Z, Xue P, Bendlin BB, Zetterberg H, De Felice F, Tan X, Benedict C. Melatonin: A potential nighttime guardian against Alzheimer's. Mol Psychiatry 2025; 30:237-250. [PMID: 39128995 PMCID: PMC11649572 DOI: 10.1038/s41380-024-02691-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
In the context of the escalating global health challenge posed by Alzheimer's disease (AD), this comprehensive review considers the potential of melatonin in both preventive and therapeutic capacities. As a naturally occurring hormone and robust antioxidant, accumulating evidence suggests melatonin is a compelling candidate to consider in the context of AD-related pathologies. The review considers several mechanisms, including potential effects on amyloid-beta and pathologic tau burden, antioxidant defense, immune modulation, and regulation of circadian rhythms. Despite its promise, several gaps need to be addressed prior to clinical translation. These include conducting additional randomized clinical trials in patients with or at risk for AD dementia, determining optimal dosage and timing, and further determining potential side effects, particularly of long-term use. This review consolidates existing knowledge, identifies gaps, and suggests directions for future research to better understand the potential of melatonin for neuroprotection and disease mitigation within the landscape of AD.
Collapse
Affiliation(s)
- Zefan Zhang
- Department of Big Data in Health Science, Zhejiang University School of Public Health and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, China
| | - Pei Xue
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Barbara B Bendlin
- School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, Madison, WI, USA
- Wisconsin Alzheimer's Institute, Madison, WI, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Fernanda De Felice
- Centre for Neurosciences Studies, Departments of Biomedical and Molecular Sciences, and Psychiatry, Queen's University, Kingston, ON, K7L 3N6, Canada
- D'Or Institute for Research and Education, Rio de Janeiro RJ, 22281-100, Brazil
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro RJ, Brazil
| | - Xiao Tan
- Department of Big Data in Health Science, Zhejiang University School of Public Health and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, China.
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Christian Benedict
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
6
|
Maggiore A, Latina V, D'Erme M, Amadoro G, Coccurello R. Non-canonical pathways associated to Amyloid beta and tau protein dyshomeostasis in Alzheimer's disease: A narrative review. Ageing Res Rev 2024; 102:102578. [PMID: 39542177 DOI: 10.1016/j.arr.2024.102578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Alzheimer's Disease (AD) is the most common form of dementia among elderly people. This disease imposes a significant burden on the healthcare system, society, and economy due to the increasing global aging population. Current trials with drugs or bioactive compounds aimed at reducing cerebral Amyloid beta (Aβ) plaques and tau protein neurofibrillary tangles, which are the two main hallmarks of this devastating neurodegenerative disease, have not provided significant results in terms of their neuropathological outcomes nor met the expected clinical end-points. Ageing, genetic and environmental risk factors, along with different clinical symptoms suggest that AD is a complex and heterogeneous disorder with multiple interconnected pathological pathways rather than a single disease entity. In the present review, we highlight and discuss various non-canonical, Aβ-independent mechanisms, like gliosis, unhealthy dietary intake, lipid and sugar signaling, and cerebrovascular damage that contribute to the onset and development of AD. We emphasize that challenging the traditional "amyloid cascade hypothesis" may improve our understanding of this age-related complex syndrome and help fight the progressive cognitive decline in AD.
Collapse
Affiliation(s)
- Anna Maggiore
- Department of Biochemical Sciences, Sapienza University, P.le Aldo Moro 5, Rome 00185, Italy; Department of Brain Sciences, Imperial College, London, UK
| | - Valentina Latina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, Rome 00161, Italy; Institute of Translational Pharmacology (IFT) CNR, Via Fosso del Cavaliere 100, Rome 00133, Italy
| | - Maria D'Erme
- Department of Biochemical Sciences, Sapienza University, P.le Aldo Moro 5, Rome 00185, Italy
| | - Giuseppina Amadoro
- European Brain Research Institute (EBRI), Viale Regina Elena 295, Rome 00161, Italy; Institute of Translational Pharmacology (IFT) CNR, Via Fosso del Cavaliere 100, Rome 00133, Italy.
| | - Roberto Coccurello
- Institute for Complex System (ISC) CNR, Via dei Taurini 19, Rome 00185, Italy; IRCSS Santa Lucia Foundation, European Center for Brain Research, Via Fosso del Fiorano 64-65, Rome 00143, Italy.
| |
Collapse
|
7
|
Bai R, Ge X. Blood-brain barrier disruption following brain injury: Implications for clinical practice. Histol Histopathol 2024; 39:1435-1441. [PMID: 38618940 DOI: 10.14670/hh-18-740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The blood-brain barrier (BBB) plays a critical role in regulating the exchange of substances between peripheral blood and the central nervous system and in maintaining the stability of the neurovascular unit in neurological diseases. To guide clinical treatment and basic research on BBB protection following brain injury, this manuscript reviews how BBB disruption develops and influences neural recovery after stroke and traumatic brain injury (TBI). By summarizing the pathological mechanisms of BBB damage, we underscore the critical role of promoting BBB repair in managing brain injury. We also emphasize the potential for personalized and precise therapeutic strategies and the need for continued research and innovation. From this, broadening insights into the mechanisms of BBB disruption and repair could pave the way for breakthroughs in the treatment of brain injury-related diseases.
Collapse
Affiliation(s)
- Ruojing Bai
- Department of Geriatrics, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, PR China
| | - Xintong Ge
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, PR China
- Tianjin Geriatrics Institute, Tianjin, PR China.
| |
Collapse
|
8
|
Kazemeini S, Nadeem-Tariq A, Shih R, Rafanan J, Ghani N, Vida TA. From Plaques to Pathways in Alzheimer's Disease: The Mitochondrial-Neurovascular-Metabolic Hypothesis. Int J Mol Sci 2024; 25:11720. [PMID: 39519272 PMCID: PMC11546801 DOI: 10.3390/ijms252111720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Alzheimer's disease (AD) presents a public health challenge due to its progressive neurodegeneration, cognitive decline, and memory loss. The amyloid cascade hypothesis, which postulates that the accumulation of amyloid-beta (Aβ) peptides initiates a cascade leading to AD, has dominated research and therapeutic strategies. The failure of recent Aβ-targeted therapies to yield conclusive benefits necessitates further exploration of AD pathology. This review proposes the Mitochondrial-Neurovascular-Metabolic (MNM) hypothesis, which integrates mitochondrial dysfunction, impaired neurovascular regulation, and systemic metabolic disturbances as interrelated contributors to AD pathogenesis. Mitochondrial dysfunction, a hallmark of AD, leads to oxidative stress and bioenergetic failure. Concurrently, the breakdown of the blood-brain barrier (BBB) and impaired cerebral blood flow, which characterize neurovascular dysregulation, accelerate neurodegeneration. Metabolic disturbances such as glucose hypometabolism and insulin resistance further impair neuronal function and survival. This hypothesis highlights the interconnectedness of these pathways and suggests that therapeutic strategies targeting mitochondrial health, neurovascular integrity, and metabolic regulation may offer more effective interventions. The MNM hypothesis addresses these multifaceted aspects of AD, providing a comprehensive framework for understanding disease progression and developing novel therapeutic approaches. This approach paves the way for developing innovative therapeutic strategies that could significantly improve outcomes for millions affected worldwide.
Collapse
Affiliation(s)
| | | | | | | | | | - Thomas A. Vida
- Kirk Kerkorian School of Medicine at UNLV, 625 Shadow Lane, Las Vegas, NV 89106, USA; (S.K.); (A.N.-T.); (R.S.); (J.R.); (N.G.)
| |
Collapse
|
9
|
Kempuraj D, Dourvetakis KD, Cohen J, Valladares DS, Joshi RS, Kothuru SP, Anderson T, Chinnappan B, Cheema AK, Klimas NG, Theoharides TC. Neurovascular unit, neuroinflammation and neurodegeneration markers in brain disorders. Front Cell Neurosci 2024; 18:1491952. [PMID: 39526043 PMCID: PMC11544127 DOI: 10.3389/fncel.2024.1491952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Neurovascular unit (NVU) inflammation via activation of glial cells and neuronal damage plays a critical role in neurodegenerative diseases. Though the exact mechanism of disease pathogenesis is not understood, certain biomarkers provide valuable insight into the disease pathogenesis, severity, progression and therapeutic efficacy. These markers can be used to assess pathophysiological status of brain cells including neurons, astrocytes, microglia, oligodendrocytes, specialized microvascular endothelial cells, pericytes, NVU, and blood-brain barrier (BBB) disruption. Damage or derangements in tight junction (TJ), adherens junction (AdJ), and gap junction (GJ) components of the BBB lead to increased permeability and neuroinflammation in various brain disorders including neurodegenerative disorders. Thus, neuroinflammatory markers can be evaluated in blood, cerebrospinal fluid (CSF), or brain tissues to determine neurological disease severity, progression, and therapeutic responsiveness. Chronic inflammation is common in age-related neurodegenerative disorders including Alzheimer's disease (AD), Parkinson's disease (PD), and dementia. Neurotrauma/traumatic brain injury (TBI) also leads to acute and chronic neuroinflammatory responses. The expression of some markers may also be altered many years or even decades before the onset of neurodegenerative disorders. In this review, we discuss markers of neuroinflammation, and neurodegeneration associated with acute and chronic brain disorders, especially those associated with neurovascular pathologies. These biomarkers can be evaluated in CSF, or brain tissues. Neurofilament light (NfL), ubiquitin C-terminal hydrolase-L1 (UCHL1), glial fibrillary acidic protein (GFAP), Ionized calcium-binding adaptor molecule 1 (Iba-1), transmembrane protein 119 (TMEM119), aquaporin, endothelin-1, and platelet-derived growth factor receptor beta (PDGFRβ) are some important neuroinflammatory markers. Recent BBB-on-a-chip modeling offers promising potential for providing an in-depth understanding of brain disorders and neurotherapeutics. Integration of these markers in clinical practice could potentially enhance early diagnosis, monitor disease progression, and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Duraisamy Kempuraj
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Kirk D. Dourvetakis
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Jessica Cohen
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Daniel Seth Valladares
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Rhitik Samir Joshi
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Sai Puneeth Kothuru
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
- College of Psychology, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Tristin Anderson
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Baskaran Chinnappan
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Amanpreet K. Cheema
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Nancy G. Klimas
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
- Miami VA Geriatric Research Education and Clinical Center (GRECC), Miami Veterans Affairs Healthcare System, Miami, FL, United States
| | - Theoharis C. Theoharides
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
- Department of Immunology, Tufts, University School of Medicine, Boston, MA, United States
| |
Collapse
|
10
|
Menendez-Gonzalez M. Intrathecal Immunoselective Nanopheresis for Alzheimer's Disease: What and How? Why and When? Int J Mol Sci 2024; 25:10632. [PMID: 39408961 PMCID: PMC11476806 DOI: 10.3390/ijms251910632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024] Open
Abstract
Nanotechnology is transforming therapeutics for brain disorders, especially in developing drug delivery systems. Intrathecal immunoselective nanopheresis with soluble monoclonal antibodies represents an innovative approach in the realm of drug delivery systems for Central Nervous System conditions, especially for targeting soluble beta-amyloid in Alzheimer's disease. This review delves into the concept of intrathecal immunoselective nanopheresis. It provides an overall description of devices to perform this technique while discussing the nanotechnology behind its mechanism of action, its potential advantages, and clinical implications. By exploring current research and advancements, we aim to provide a comprehensive understanding of this novel method, addressing the critical questions of what it is, how it works, why it is needed, and when it should be applied. Special attention is given to patient selection and the optimal timing for therapy initiation in Alzheimer's, coinciding with the peak accumulation of amyloid oligomers in the early stages. Potential limitations and alternative targets beyond beta-amyloid and future perspectives for immunoselective nanopheresis are also described.
Collapse
Affiliation(s)
- Manuel Menendez-Gonzalez
- Departamento de Medicina, Facultad de Ciencias de la Salud, Universidad de Oviedo, ES-33006 Oviedo, Spain;
- Hospital Universitario Central de Asturias, Servicio de Neurología, ES-33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), ES-33011 Oviedo, Spain
| |
Collapse
|
11
|
Ma YZ, Cao JX, Zhang YS, Su XM, Jing YH, Gao LP. T Cells Trafficking into the Brain in Aging and Alzheimer's Disease. J Neuroimmune Pharmacol 2024; 19:47. [PMID: 39180590 DOI: 10.1007/s11481-024-10147-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 08/05/2024] [Indexed: 08/26/2024]
Abstract
The meninges, choroid plexus (CP) and blood-brain barrier (BBB) are recognized as important gateways for peripheral immune cell trafficking into the central nervous system (CNS). Accumulation of peripheral immune cells in brain parenchyma can be observed during aging and Alzheimer's disease (AD). However, the mechanisms by which peripheral immune cells enter the CNS through these three pathways and how they interact with resident cells within the CNS to cause brain injury are not fully understood. In this paper, we review recent research on T cells recruitment in the brain during aging and AD. This review focuses on the possible pathways through which T cells infiltrate the brain, the evidence that T cells are recruited to the brain, and how infiltrating T cells interact with the resident cells in the CNS during aging and AD. Unraveling these issues will contribute to a better understanding of the mechanisms of aging and AD from the perspective of immunity, and hopefully develop new therapeutic strategies for brain aging and AD.
Collapse
Affiliation(s)
- Yue-Zhang Ma
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jia-Xin Cao
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yi-Shu Zhang
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiao-Mei Su
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yu-Hong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
| | - Li-Ping Gao
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|
12
|
Kempuraj D, Aenlle KK, Cohen J, Mathew A, Isler D, Pangeni RP, Nathanson L, Theoharides TC, Klimas NG. COVID-19 and Long COVID: Disruption of the Neurovascular Unit, Blood-Brain Barrier, and Tight Junctions. Neuroscientist 2024; 30:421-439. [PMID: 37694571 DOI: 10.1177/10738584231194927] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), could affect brain structure and function. SARS-CoV-2 can enter the brain through different routes, including the olfactory, trigeminal, and vagus nerves, and through blood and immunocytes. SARS-CoV-2 may also enter the brain from the peripheral blood through a disrupted blood-brain barrier (BBB). The neurovascular unit in the brain, composed of neurons, astrocytes, endothelial cells, and pericytes, protects brain parenchyma by regulating the entry of substances from the blood. The endothelial cells, pericytes, and astrocytes highly express angiotensin converting enzyme 2 (ACE2), indicating that the BBB can be disturbed by SARS-CoV-2 and lead to derangements of tight junction and adherens junction proteins. This leads to increased BBB permeability, leakage of blood components, and movement of immune cells into the brain parenchyma. SARS-CoV-2 may also cross microvascular endothelial cells through an ACE2 receptor-associated pathway. The exact mechanism of BBB dysregulation in COVID-19/neuro-COVID is not clearly known, nor is the development of long COVID. Various blood biomarkers could indicate disease severity and neurologic complications in COVID-19 and help objectively diagnose those developing long COVID. This review highlights the importance of neurovascular and BBB disruption, as well as some potentially useful biomarkers in COVID-19, and long COVID/neuro-COVID.
Collapse
Affiliation(s)
- Duraisamy Kempuraj
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Kristina K Aenlle
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
- Miami Veterans Affairs Healthcare System, Miami, FL, USA
| | - Jessica Cohen
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Annette Mathew
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Dylan Isler
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Rajendra P Pangeni
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Lubov Nathanson
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Theoharis C Theoharides
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, School of Medicine, Tufts University, Boston, MA, USA
| | - Nancy G Klimas
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
- Miami Veterans Affairs Healthcare System, Miami, FL, USA
| |
Collapse
|
13
|
Myserlis EP, Ray A, Anderson CD, Georgakis MK. Genetically proxied IL-6 signaling and risk of Alzheimer's disease and lobar intracerebral hemorrhage: A drug target Mendelian randomization study. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2024; 10:e70000. [PMID: 39206334 PMCID: PMC11349601 DOI: 10.1002/trc2.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Evidence suggests that higher C-reactive protein (CRP) is associated with lower risk of Alzheimer's disease (AD) and lobar intracerebral hemorrhage (ICH). Whether interleukin (IL)-6 signaling, an active pharmacological target upstream of CRP, is associated with these amyloid-related pathologies remains unknown. METHODS We used 26 CRP-lowering variants near the IL-6 receptor gene to perform Mendelian randomization analyses for AD (111,326 cases, 677,663 controls) and ICH (1545 cases, 1481 controls). We explored the effect of genetically proxied IL-6 signaling on serum, cerebrospinal fluid (CSF), and brain proteome (971 individuals). RESULTS Genetically upregulated IL-6 receptor-mediated signaling was associated with lower risk of AD (OR per increment in serum logCRP levels: 0.87, 95% CI: 0.79-0.95) and lobar ICH (OR: 0.27, 95% CI: 0.09-0.89). We also found associations with 312, 77, and 79 brain, CSF, and plasma proteins, respectively, some of which were previously implicated in amyloid-clearing mechanisms. DISCUSSION Genetic data support that CRP-lowering through variation in the gene encoding IL-6 receptor may be associated with amyloid-related outcomes. Highlights Genetic variants proxying IL-6 inhibition are associated with AD and lobar ICH risk.The variants are also associated with amyloid clearing-related proteomic changes.Whether pharmacologic IL-6 inhibition is linked to AD or lobar ICH merits further study.
Collapse
Affiliation(s)
| | - Anushree Ray
- Institute for Stroke and Dementia Research (ISD)Ludwig‐Maximilians‐University (LMU) HospitalLMU MunichMunichGermany
| | - Christopher D. Anderson
- Program in Medical and Population GeneticsBroad Institute of MIT and HarvardCambridgeMassachusettsUSA
- Henry and Alisson McCance Center for Brain HealthMassachusetts General HospitalBostonMassachusettsUSA
- Department of NeurologyBrigham and Women's HospitalBostonMassachusettsUSA
| | - Marios K. Georgakis
- Institute for Stroke and Dementia Research (ISD)Ludwig‐Maximilians‐University (LMU) HospitalLMU MunichMunichGermany
- Program in Medical and Population GeneticsBroad Institute of MIT and HarvardCambridgeMassachusettsUSA
| |
Collapse
|
14
|
Zeng J, Liao Z, Yang H, Wang Q, Wu Z, Hua F, Zhou Z. T cell infiltration mediates neurodegeneration and cognitive decline in Alzheimer's disease. Neurobiol Dis 2024; 193:106461. [PMID: 38437992 DOI: 10.1016/j.nbd.2024.106461] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder with pathological features of β-amyloid (Aβ) and hyperphosphorylated tau protein accumulation in the brain, often accompanied by cognitive decline. So far, our understanding of the extent and role of adaptive immune responses in AD has been quite limited. T cells, as essential members of the adaptive immune system, exhibit quantitative and functional abnormalities in the brains of AD patients. Dysfunction of the blood-brain barrier (BBB) in AD is considered one of the factors leading to T cell infiltration. Moreover, the degree of neuronal loss in AD is correlated with the quantity of T cells. We first describe the differentiation and subset functions of peripheral T cells in AD patients and provide an overview of the key findings related to BBB dysfunction and how T cells infiltrate the brain parenchyma through the BBB. Furthermore, we emphasize the risk factors associated with AD, including Aβ, Tau protein, microglial cells, apolipoprotein E (ApoE), and neuroinflammation. We discuss their regulation of T cell activation and proliferation, as well as the connection between T cells, neurodegeneration, and cognitive decline. Understanding the innate immune response is crucial for providing comprehensive personalized therapeutic strategies for AD.
Collapse
Affiliation(s)
- Junjian Zeng
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Province, China
| | - Zhiqiang Liao
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Province, China
| | - Hanqin Yang
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Province, China
| | - Qiong Wang
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Province, China
| | - Zhiyong Wu
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Province, China
| | - Fuzhou Hua
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Province, China.
| | - Zhidong Zhou
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Province, China.
| |
Collapse
|
15
|
García-Culebras A, Cuartero MI, Peña-Martínez C, Moraga A, Vázquez-Reyes S, de Castro-Millán FJ, Cortes-Canteli M, Lizasoain I, Moro MÁ. Myeloid cells in vascular dementia and Alzheimer's disease: Possible therapeutic targets? Br J Pharmacol 2024; 181:777-798. [PMID: 37282844 DOI: 10.1111/bph.16159] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/10/2023] [Accepted: 05/20/2023] [Indexed: 06/08/2023] Open
Abstract
Growing evidence supports the suggestion that the peripheral immune system plays a role in different pathologies associated with cognitive impairment, such as vascular dementia (VD) or Alzheimer's disease (AD). The aim of this review is to summarize, within the peripheral immune system, the implications of different types of myeloid cells in AD and VD, with a special focus on post-stroke cognitive impairment and dementia (PSCID). We will review the contributions of the myeloid lineage, from peripheral cells (neutrophils, platelets, monocytes and monocyte-derived macrophages) to central nervous system (CNS)-associated cells (perivascular macrophages and microglia). Finally, we will evaluate different potential strategies for pharmacological modulation of pathological processes mediated by myeloid cell subsets, with an emphasis on neutrophils, their interaction with platelets and the process of immunothrombosis that triggers neutrophil-dependent capillary stall and hypoperfusion, as possible effector mechanisms that may pave the way to novel therapeutic avenues to stop dementia, the epidemic of our time. LINKED ARTICLES: This article is part of a themed issue From Alzheimer's Disease to Vascular Dementia: Different Roads Leading to Cognitive Decline. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.6/issuetoc.
Collapse
Affiliation(s)
- Alicia García-Culebras
- Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Departamento de Biología Celular, Facultad de Medicina, UCM, Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
| | - María Isabel Cuartero
- Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
| | - Carolina Peña-Martínez
- Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
| | - Ana Moraga
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Departamento de Biología Celular, Facultad de Medicina, UCM, Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Sandra Vázquez-Reyes
- Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
| | - Francisco Javier de Castro-Millán
- Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
| | - Marta Cortes-Canteli
- Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Ignacio Lizasoain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - María Ángeles Moro
- Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| |
Collapse
|
16
|
Asghari K, Niknam Z, Mohammadpour-Asl S, Chodari L. Cellular junction dynamics and Alzheimer's disease: a comprehensive review. Mol Biol Rep 2024; 51:273. [PMID: 38302794 DOI: 10.1007/s11033-024-09242-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by progressive neuronal damage and cognitive decline. Recent studies have shed light on the involvement of not only the blood-brain barrier (BBB) dysfunction but also significant alterations in cellular junctions in AD pathogenesis. In this review article, we explore the role of the BBB and cellular junctions in AD pathology, with a specific focus on the hippocampus. The BBB acts as a crucial protective barrier between the bloodstream and the brain, maintaining brain homeostasis and regulating molecular transport. Preservation of BBB integrity relies on various junctions, including gap junctions formed by connexins, tight junctions composed of proteins such as claudins, occludin, and ZO-1, as well as adherence junctions involving molecules like vascular endothelial (VE) cadherin, Nectins, and Nectin-like molecules (Necls). Abnormalities in these junctions and junctional components contribute to impaired neuronal signaling and increased cerebrovascular permeability, which are closely associated with AD advancement. By elucidating the underlying molecular mechanisms governing BBB and cellular junction dysfunctions within the context of AD, this review offers valuable insights into the pathogenesis of AD and identifies potential therapeutic targets for intervention.
Collapse
Affiliation(s)
- Keyvan Asghari
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Zahra Niknam
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Shadi Mohammadpour-Asl
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Leila Chodari
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
17
|
Albaik M, Sheikh Saleh D, Kauther D, Mohammed H, Alfarra S, Alghamdi A, Ghaboura N, Sindi IA. Bridging the gap: glucose transporters, Alzheimer's, and future therapeutic prospects. Front Cell Dev Biol 2024; 12:1344039. [PMID: 38298219 PMCID: PMC10824951 DOI: 10.3389/fcell.2024.1344039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024] Open
Abstract
Glucose is the major source of chemical energy for cell functions in living organisms. The aim of this mini-review is to provide a clearer and simpler picture of the fundamentals of glucose transporters as well as the relationship of these transporters to Alzheimer's disease. This study was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Electronic databases (PubMed and ScienceDirect) were used to search for relevant studies mainly published during the period 2018-2023. This mini-review covers the two main types of glucose transporters, facilitated glucose transporters (GLUTs) and sodium-glucose linked transporters (SGLTs). The main difference between these two types is that the first type works through passive transport across the glucose concentration gradient. The second type works through active co-transportation to transport glucose against its chemical gradient. Fluctuation in glucose transporters translates into a disturbance of normal functioning, such as Alzheimer's disease, which may be caused by a significant downregulation of GLUTs most closely associated with insulin resistance in the brain. The first sign of Alzheimer's is a lack of GLUT4 translocation. The second sign is tau hyperphosphorylation, which is caused by GLUT1 and 3 being strongly upregulated. The current study focuses on the use of glucose transporters in treating diseases because of their proven therapeutic potential. Despite this, studies remain insufficient and inconclusive due to the complex and intertwined nature of glucose transport processes. This study recommends further understanding of the mechanisms related to these vectors for promising future therapies.
Collapse
Affiliation(s)
- Mai Albaik
- Department of Chemistry Preparatory Year Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | | | - Dana Kauther
- Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Hajira Mohammed
- Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Shurouq Alfarra
- Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Adel Alghamdi
- Department of Biology Preparatory Year Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Nehmat Ghaboura
- Department of Pharmacy Practice Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Ikhlas A. Sindi
- Department of Biology, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
18
|
Li Z, Fan Z, Zhang Q. The Associations of Phosphorylated Tau 181 and Tau 231 Levels in Plasma and Cerebrospinal Fluid with Cognitive Function in Alzheimer's Disease: A Systematic Review and Meta-Analysis. J Alzheimers Dis 2024; 98:13-32. [PMID: 38339929 DOI: 10.3233/jad-230799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Background Cerebrospinal fluid (CSF) or blood biomarkers like phosphorylated tau proteins (p-tau) are used to detect Alzheimer's disease (AD) early. Increasing studies on cognitive function and blood or CSF p-tau levels are controversial. Objective Our study examined the potential of p-tau as a biomarker of cognitive status in normal control (NC), mild cognitive impairment (MCI), and AD patients. Methods We searched PubMed, Cochrane, Embase, and Web of Science for relevant material through 12 January 2023. 5,017 participants from 20 studies-1,033 AD, 2,077 MCI, and 1,907 NC-were evaluated. Quantitative analysis provided continuous outcomes as SMDs with 95% CIs. Begg tested publication bias. Results MCI patients had lower CSF p-tau181 levels than AD patients (SMD =-0.60, 95% CI (-0.85, -0.36)) but higher than healthy controls (SMD = 0.67). AD/MCI patients had greater plasma p-tau181 levels than healthy people (SMD =-0.73, 95% CI (-1.04, -0.43)). MCI patients had significantly lower p-tau231 levels than AD patients in plasma and CSF (SMD =-0.90, 95% CI (-0.82, -0.45)). MCI patients showed greater CSF and plasma p-tau231 than healthy controls (SMD = 1.34, 95% CI (0.89, 1.79) and 0.43, (0.23, 0.64)). Plasma p-tau181/231 levels also distinguished the three categories. MCI patients had higher levels than healthy people, while AD patients had higher levels than MCI patients. Conclusions CSF p-tau181 and p-tau231 biomarkers distinguished AD, MCI, and healthy populations. Plasma-based p-tau181 and p-tau231 biomarkers for AD and MCI need further study.
Collapse
Affiliation(s)
- Zhirui Li
- Department of Disease Control and Prevention, Sichuan Provincial Center for Disease Control and Prevention, Sichuan Chengdu, China
| | - Zixuan Fan
- School of Health Policy and Management, Peking Union Medical College, Beijing, China
| | - Qian Zhang
- Department of Oncology, Xiamen Fifth Hospital, Fujian Xiamen, China
| |
Collapse
|
19
|
Estudillo E, López-Ornelas A, Rodríguez-Oviedo A, Gutiérrez de la Cruz N, Vargas-Hernández MA, Jiménez A. Thinking outside the black box: are the brain endothelial cells the new main target in Alzheimer's disease? Neural Regen Res 2023; 18:2592-2598. [PMID: 37449594 DOI: 10.4103/1673-5374.373672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
The blood-brain barrier is the interface through which the brain interacts with the milieu and consists mainly of a sophisticated network of brain endothelial cells that forms blood vessels and selectively moves molecules inside and outside the brain through multiple mechanisms of transport. Although brain endothelial cell function is crucial for brain homeostasis, their role in neurodegenerative diseases has historically not been considered with the same importance as other brain cells such as microglia, astroglia, neurons, or even molecules such as amyloid beta, Tau, or alpha-synuclein. Alzheimer's disease is the most common neurodegenerative disease, and brain endothelial cell dysfunction has been reported by several groups. However, its impairment has barely been considered as a potential therapeutic target. Here we review the most recent advances in the relationship between Alzheimer's disease and brain endothelial cells commitment and analyze the possible mechanisms through which their alterations contribute to this neurodegenerative disease, highlighting their inflammatory phenotype and the possibility of an impaired secretory pattern of brain endothelial cells that could contribute to the progression of this ailment. Finally, we discuss why shall brain endothelial cells be appreciated as a therapeutic target instead of solely an obstacle for delivering treatments to the injured brain in Alzheimer's disease.
Collapse
Affiliation(s)
- Enrique Estudillo
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, Mexico
| | - Adolfo López-Ornelas
- División de Investigación, Hospital Juárez de México; Hospital Nacional Homeopático, Hospitales Federales de Referencia, Mexico City, Mexico
| | | | - Neptali Gutiérrez de la Cruz
- Laboratorio de Morfología; Escuela Militar de Graduados de Sanidad, Secretaría de la Defensa Nacional, Batalla de Celaya, Lomas de Sotelo, Miguel Hidalgo, Mexico City, Mexico
| | - Marco Antonio Vargas-Hernández
- Escuela Militar de Graduados de Sanidad, Secretaría de la Defensa Nacional, Batalla de Celaya, Lomas de Sotelo, Miguel Hidalgo, Mexico City, Mexico
| | - Adriana Jiménez
- División de Investigación, Hospital Juárez de México, Mexico City, Mexico
| |
Collapse
|
20
|
Ma X, Shin YJ, Yoo JW, Park HS, Kim DH. Extracellular vesicles derived from Porphyromonas gingivalis induce trigeminal nerve-mediated cognitive impairment. J Adv Res 2023; 54:293-303. [PMID: 36796586 DOI: 10.1016/j.jare.2023.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
INTRODUCTION Porphyromonas gingivalis (PG)-infected periodontitis is in close connection with the development of Alzheimer's disease (AD). PG-derived extracellular vesicles (pEVs) contain inflammation-inducing virulence factors, including gingipains (GPs) and lipopolysaccharide (LPS). OBJECTIVES To understand how PG could cause cognitive decline, we investigated the effects of PG and pEVs on the etiology of periodontitis and cognitive impairment in mice. METHODS Cognitive behaviors were measured in the Y-maze and novel object recognition tasks. Biomarkers were measured using ELISA, qPCR, immunofluorescence assay, and pyrosequencing. RESULTS pEVs contained neurotoxic GPs and inflammation-inducible fimbria protein and LPS. Gingivally exposed, but not orally gavaged, PG or pEVs caused periodontitis and induced memory impairment-like behaviors. Gingival exposure to PG or pEVs increased TNF-α expression in the periodontal and hippocampus tissues. They also increased hippocampal GP+Iba1+, LPS+Iba1+, and NF-κB+Iba1+ cell numbers. Gingivally exposed PG or pEVs decreased BDNF, claudin-5, and N-methyl-D-aspartate receptor expression and BDNF+NeuN+ cell number. Gingivally exposed fluorescein-5-isothiocyanate-labeled pEVs (F-pEVs) were detected in the trigeminal ganglia and hippocampus. However, right trigeminal neurectomy inhibited the translocation of gingivally injected F-EVs into the right trigeminal ganglia. Gingivally exposed PG or pEVs increased blood LPS and TNF-α levels. Furthermore, they caused colitis and gut dysbiosis. CONCLUSION Gingivally infected PG, particularly pEVs, may cause cognitive decline with periodontitis. PG products pEVs and LPS may be translocated into the brain through the trigeminal nerve and periodontal blood pathways, respectively, resulting in the cognitive decline, which may cause colitis and gut dysbiosis. Therefore, pEVs may be a remarkable risk factor for dementia.
Collapse
Affiliation(s)
- Xiaoyang Ma
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dong-daemun-gu, Seoul 02447, Korea.
| | - Yoon-Jung Shin
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dong-daemun-gu, Seoul 02447, Korea.
| | - Jong-Wook Yoo
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dong-daemun-gu, Seoul 02447, Korea.
| | - Hee-Seo Park
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dong-daemun-gu, Seoul 02447, Korea.
| | - Dong-Hyun Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dong-daemun-gu, Seoul 02447, Korea.
| |
Collapse
|
21
|
Alkhalifa AE, Al-Ghraiybah NF, Odum J, Shunnarah JG, Austin N, Kaddoumi A. Blood-Brain Barrier Breakdown in Alzheimer's Disease: Mechanisms and Targeted Strategies. Int J Mol Sci 2023; 24:16288. [PMID: 38003477 PMCID: PMC10671257 DOI: 10.3390/ijms242216288] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
The blood-brain barrier (BBB) is a unique and selective feature of the central nervous system's vasculature. BBB dysfunction has been observed as an early sign of Alzheimer's Disease (AD) before the onset of dementia or neurodegeneration. The intricate relationship between the BBB and the pathogenesis of AD, especially in the context of neurovascular coupling and the overlap of pathophysiology in neurodegenerative and cerebrovascular diseases, underscores the urgency to understand the BBB's role more deeply. Preserving or restoring the BBB function emerges as a potentially promising strategy for mitigating the progression and severity of AD. Molecular and genetic changes, such as the isoform ε4 of apolipoprotein E (ApoEε4), a significant genetic risk factor and a promoter of the BBB dysfunction, have been shown to mediate the BBB disruption. Additionally, receptors and transporters like the low-density lipoprotein receptor-related protein 1 (LRP1), P-glycoprotein (P-gp), and the receptor for advanced glycation end products (RAGEs) have been implicated in AD's pathogenesis. In this comprehensive review, we endeavor to shed light on the intricate pathogenic and therapeutic connections between AD and the BBB. We also delve into the latest developments and pioneering strategies targeting the BBB for therapeutic interventions, addressing its potential as a barrier and a carrier. By providing an integrative perspective, we anticipate paving the way for future research and treatments focused on exploiting the BBB's role in AD pathogenesis and therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Amal Kaddoumi
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S. Donahue Dr., Auburn, AL 36849, USA; (A.E.A.); (N.F.A.-G.); (J.O.); (J.G.S.); (N.A.)
| |
Collapse
|
22
|
Munteanu C, Iordan DA, Hoteteu M, Popescu C, Postoiu R, Onu I, Onose G. Mechanistic Intimate Insights into the Role of Hydrogen Sulfide in Alzheimer's Disease: A Recent Systematic Review. Int J Mol Sci 2023; 24:15481. [PMID: 37895161 PMCID: PMC10607039 DOI: 10.3390/ijms242015481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/15/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
In the rapidly evolving field of Alzheimer's Disease (AD) research, the intricate role of Hydrogen Sulfide (H2S) has garnered critical attention for its diverse involvement in both pathological substrates and prospective therapeutic paradigms. While conventional pathophysiological models of AD have primarily emphasized the significance of amyloid-beta (Aβ) deposition and tau protein hyperphosphorylation, this targeted systematic review meticulously aggregates and rigorously appraises seminal contributions from the past year elucidating the complex mechanisms of H2S in AD pathogenesis. Current scholarly literature accentuates H2S's dual role, delineating its regulatory functions in critical cellular processes-such as neurotransmission, inflammation, and oxidative stress homeostasis-while concurrently highlighting its disruptive impact on quintessential AD biomarkers. Moreover, this review illuminates the nuanced mechanistic intimate interactions of H2S in cerebrovascular and cardiovascular pathology associated with AD, thereby exploring avant-garde therapeutic modalities, including sulfurous mineral water inhalations and mud therapy. By emphasizing the potential for therapeutic modulation of H2S via both donors and inhibitors, this review accentuates the imperative for future research endeavors to deepen our understanding, thereby potentially advancing novel diagnostic and therapeutic strategies in AD.
Collapse
Affiliation(s)
- Constantin Munteanu
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iași, Romania;
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania; (M.H.); (R.P.); (G.O.)
| | - Daniel Andrei Iordan
- Department of Individual Sports and Kinetotherapy, Faculty of Physical Education and Sport, ‘Dunarea de Jos’ University of Galati, 800008 Galati, Romania;
| | - Mihail Hoteteu
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania; (M.H.); (R.P.); (G.O.)
| | - Cristina Popescu
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania; (M.H.); (R.P.); (G.O.)
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila” (UMPCD), 020022 Bucharest, Romania
| | - Ruxandra Postoiu
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania; (M.H.); (R.P.); (G.O.)
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila” (UMPCD), 020022 Bucharest, Romania
| | - Ilie Onu
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iași, Romania;
| | - Gelu Onose
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania; (M.H.); (R.P.); (G.O.)
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila” (UMPCD), 020022 Bucharest, Romania
| |
Collapse
|
23
|
Scieszka D, Gu H, Barkley-Levenson A, Barr E, Garcia M, Begay JG, Herbert G, Bhaskar K, McCormick M, Brigman J, Ottens A, Bleske B, Campen MJ. NEUROMETABOLOMIC IMPACTS OF MODELED WILDFIRE SMOKE AND PROTECTIVE BENEFITS OF ANTI-AGING THERAPEUTICS IN AGED FEMALE C57BL/6J MICE. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.21.558863. [PMID: 37790385 PMCID: PMC10542542 DOI: 10.1101/2023.09.21.558863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Wildland fires have become progressively more extensive over the past 30 years in the US, and now routinely generate smoke that deteriorates air quality for most of the country. We explored the neurometabolomic impact that smoke derived from biomass has on older (18 months) female C57BL/6J mice, both acutely and after 10 weeks of recovery from exposures. Mice (N=6/group) were exposed to wood smoke (WS) 4 hours/day, every other day, for 2 weeks (7 exposures total) to an average concentration of 0.448mg/m 3 per exposure. One group was euthanized 24 hours after the last exposure. Other groups were then placed on 1 of 4 treatment regimens for 10 weeks after wood smoke exposures: vehicle; resveratrol in chow plus nicotinamide mononucleotide in water (RNMN); senolytics via gavage (dasatanib+quercetin; DQ); or both RNMN with DQ (RNDQ). Among the findings, the aging from 18 months to 21 months was associated with the greatest metabolic shift, including changes in nicotinamide metabolism, with WS exposure effects that were relatively modest. WS caused a reduction in NAD+ within the prefrontal cortex immediately after exposure and a long-term reduction in serotonin that persisted for 10 weeks. The serotonin reductions were corroborated by forced swim tests, which revealed an increased immobility (reduction in motivation) immediately post-exposure and persisted for 10 weeks. RNMN had the most beneficial effects after WS exposure, while RNDQ caused markers of brain aging to be upregulated within WS-exposed mice. Findings highlight the persistent neurometabolomic and behavioral effects of woodsmoke exposure in an aged mouse model. Significance Statement Neurological impacts of wildfire smoke are largely underexplored but include neuroinflammation and metabolic changes. The present study highlights modulation of major metabolites in the prefrontal cortex and behavioral consequences in aged (18 month) female mice that persists 10 weeks after wood smoke exposure ended. Supplements derived from the anti-aging field were able to mitigate much of the woodsmoke effect, especially a combination of resveratrol and nicotinamide mononucleotide.
Collapse
|
24
|
Pinto-Hernandez P, Castilla-Silgado J, Coto-Vilcapoma A, Fernández-Sanjurjo M, Fernández-García B, Tomás-Zapico C, Iglesias-Gutiérrez E. Modulation of microRNAs through Lifestyle Changes in Alzheimer's Disease. Nutrients 2023; 15:3688. [PMID: 37686720 PMCID: PMC10490103 DOI: 10.3390/nu15173688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Lifestyle factors, including diet and physical activity (PA), are known beneficial strategies to prevent and delay Alzheimer's disease (AD) development. Recently, microRNAs have emerged as potential biomarkers in multiple diseases, including AD. The aim of this review was to analyze the available information on the modulatory effect of lifestyle on microRNA expression in AD. Few studies have addressed this question, leaving important gaps and limitations: (1) in human studies, only circulating microRNAs were analyzed; (2) in mice studies, microRNA expression was only analyzed in brain tissue; (3) a limited number of microRNAs was analyzed; (4) no human nutritional intervention studies were conducted; and (5) PA interventions in humans and mice were poorly detailed and only included aerobic training. Despite this, some conclusions could be drawn. Circulating levels of let-7g-5p, miR-107, and miR-144-3p were associated with overall diet quality in mild cognitive impairment patients. In silico analysis showed that these microRNAs are implicated in synapse formation, microglia activation, amyloid beta accumulation, and pro-inflammatory pathways, the latter also being targeted by miR-129-5p and miR-192-5p, whose circulating levels are modified by PA in AD patients. PA also modifies miR-132, miR-15b-5p, miR-148b-3p, and miR-130a-5p expression in mice brains, which targets are related to the regulation of neuronal activity, ageing, and pro-inflammatory pathways. This supports the need to further explore lifestyle-related miRNA changes in AD, both as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Paola Pinto-Hernandez
- Department of Functional Biology, Physiology, University of Oviedo, 33006 Asturias, Spain; (P.P.-H.); (J.C.-S.); (A.C.-V.); (M.F.-S.); (C.T.-Z.)
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Asturias, Spain;
| | - Juan Castilla-Silgado
- Department of Functional Biology, Physiology, University of Oviedo, 33006 Asturias, Spain; (P.P.-H.); (J.C.-S.); (A.C.-V.); (M.F.-S.); (C.T.-Z.)
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Asturias, Spain;
| | - Almudena Coto-Vilcapoma
- Department of Functional Biology, Physiology, University of Oviedo, 33006 Asturias, Spain; (P.P.-H.); (J.C.-S.); (A.C.-V.); (M.F.-S.); (C.T.-Z.)
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Asturias, Spain;
| | - Manuel Fernández-Sanjurjo
- Department of Functional Biology, Physiology, University of Oviedo, 33006 Asturias, Spain; (P.P.-H.); (J.C.-S.); (A.C.-V.); (M.F.-S.); (C.T.-Z.)
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Asturias, Spain;
| | - Benjamín Fernández-García
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Asturias, Spain;
- Department of Morphology and Cell Biology, Anatomy, University of Oviedo, 33006 Asturias, Spain
| | - Cristina Tomás-Zapico
- Department of Functional Biology, Physiology, University of Oviedo, 33006 Asturias, Spain; (P.P.-H.); (J.C.-S.); (A.C.-V.); (M.F.-S.); (C.T.-Z.)
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Asturias, Spain;
| | - Eduardo Iglesias-Gutiérrez
- Department of Functional Biology, Physiology, University of Oviedo, 33006 Asturias, Spain; (P.P.-H.); (J.C.-S.); (A.C.-V.); (M.F.-S.); (C.T.-Z.)
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Asturias, Spain;
| |
Collapse
|
25
|
Scarpa E, Cascione M, Griego A, Pellegrino P, Moschetti G, De Matteis V. Gold and silver nanoparticles in Alzheimer's and Parkinson's diagnostics and treatments. IBRAIN 2023; 9:298-315. [PMID: 37786760 PMCID: PMC10527799 DOI: 10.1002/ibra.12126] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 10/04/2023]
Abstract
Neurodegenerative diseases (NDs) impose substantial medical and public health burdens on people worldwide and represent one of the major threats to human health. The prevalence of these age-dependent disorders is dramatically increasing over time, a process intrinsically related to a constantly rising percentage of the elderly population in recent years. Among all the NDs, Alzheimer's and Parkinson's are considered the most debilitating as they cause memory and cognitive loss, as well as severely affecting basic physiological conditions such as the ability to move, speak, and breathe. There is an extreme need for new and more effective therapies to counteract these devastating diseases, as the available treatments are only able to slow down the pathogenic process without really stopping or resolving it. This review aims to elucidate the current nanotechnology-based tools representing a future hope for NDs treatment. Noble metal nano-systems, that is, gold and silver nanoparticles (NPs), have indeed unique physicochemical characteristics enabling them to deliver any pharmacological treatment in a more effective way within the central nervous system. This can potentially make NPs a new hope for reversing the actual therapeutic strategy based on slowing down an irreversible process into a more effective and permanent treatment.
Collapse
Affiliation(s)
- Edoardo Scarpa
- Department of Pharmaceutical Sciences (DISFARM)University of MilanMilanItaly
- Infection Dynamics Laboratory‐National Institute of Molecular Genetics (INGM)MilanItaly
| | - Mariafrancesca Cascione
- Department of Mathematics and Physics “Ennio De Giorgi”University of SalentoLecceItaly
- National Research Council of Italy (CNR)‐Institute for Microelectronics and Microsystems (IMM)LecceItaly
| | - Anna Griego
- Department of Pharmaceutical Sciences (DISFARM)University of MilanMilanItaly
- Infection Dynamics Laboratory‐National Institute of Molecular Genetics (INGM)MilanItaly
| | - Paolo Pellegrino
- Department of Mathematics and Physics “Ennio De Giorgi”University of SalentoLecceItaly
- National Research Council of Italy (CNR)‐Institute for Microelectronics and Microsystems (IMM)LecceItaly
| | - Giorgia Moschetti
- Department of Pharmaceutical Sciences (DISFARM)University of MilanMilanItaly
- Infection Dynamics Laboratory‐National Institute of Molecular Genetics (INGM)MilanItaly
| | - Valeria De Matteis
- Department of Mathematics and Physics “Ennio De Giorgi”University of SalentoLecceItaly
- National Research Council of Italy (CNR)‐Institute for Microelectronics and Microsystems (IMM)LecceItaly
| |
Collapse
|
26
|
Ribeiro J, Lopes I, Gomes AC. A New Perspective for the Treatment of Alzheimer's Disease: Exosome-like Liposomes to Deliver Natural Compounds and RNA Therapies. Molecules 2023; 28:6015. [PMID: 37630268 PMCID: PMC10458935 DOI: 10.3390/molecules28166015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
With the increment of the aging population in recent years, neurodegenerative diseases exert a major global disease burden, essentially as a result of the lack of treatments that stop the disease progression. Alzheimer's Disease (AD) is an example of a neurodegenerative disease that affects millions of people globally, with no effective treatment. Natural compounds have emerged as a viable therapy to fill a huge gap in AD management, and in recent years, mostly fueled by the COVID-19 pandemic, RNA-based therapeutics have become a hot topic in the treatment of several diseases. Treatments of AD face significant limitations due to the complex and interconnected pathways that lead to their hallmarks and also due to the necessity to cross the blood-brain barrier. Nanotechnology has contributed to surpassing this bottleneck in the treatment of AD by promoting safe and enhanced drug delivery to the brain. In particular, exosome-like nanoparticles, a hybrid delivery system combining exosomes and liposomes' advantageous features, are demonstrating great potential in the treatment of central nervous system diseases.
Collapse
Affiliation(s)
- Joana Ribeiro
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET) Associate Laboratory, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (J.R.); (I.L.)
- Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Ivo Lopes
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET) Associate Laboratory, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (J.R.); (I.L.)
| | - Andreia Castro Gomes
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET) Associate Laboratory, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (J.R.); (I.L.)
- Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
27
|
Imran Sajid M, Sultan Sheikh F, Anis F, Nasim N, Sumbria RK, Nauli SM, Kumar Tiwari R. siRNA drug delivery across the blood-brain barrier in Alzheimer's disease. Adv Drug Deliv Rev 2023; 199:114968. [PMID: 37353152 PMCID: PMC10528676 DOI: 10.1016/j.addr.2023.114968] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/29/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with a few FDA-approved drugs that provide modest symptomatic benefits and only two FDA-approved disease-modifying treatments for AD. The advancements in understanding the causative genes and non-coding sequences at the molecular level of the pathophysiology of AD have resulted in several exciting research papers that employed small interfering RNA (siRNA)-based therapy. Although siRNA is being sought by academia and biopharma industries, several challenges still need to be addressed. We comprehensively report the latest advances in AD pathophysiology, druggable targets, ongoing clinical trials, and the siRNA-based approaches across the blood-brain barrier for addressing AD. This review describes the latest delivery systems employed to address this barrier. Critical insights and future perspectives on siRNA therapy for AD are also provided.
Collapse
Affiliation(s)
- Muhammad Imran Sajid
- Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA; Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan
| | - Fahad Sultan Sheikh
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan
| | - Faiza Anis
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Federal Urdu University of Arts, Science and Technology, Karachi, Pakistan
| | - Nourina Nasim
- Department of Chemistry and Chemical Engineering, Syed Baber Ali School of Science and Engineering, Lahore University of Management Sciences, 54792 Lahore, Pakistan
| | - Rachita K Sumbria
- Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA; Department of Neurology, University of California, Irvine, CA, 92868, USA
| | - Surya M Nauli
- Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| | - Rakesh Kumar Tiwari
- Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA.
| |
Collapse
|
28
|
Singh S, Agrawal M, Vashist R, Patel RK, Sangave SD, Alexander A. Recent advancements on in vitro blood-brain barrier model: A reliable and efficient screening approach for preclinical and clinical investigation. Expert Opin Drug Deliv 2023; 20:1839-1857. [PMID: 38100459 DOI: 10.1080/17425247.2023.2295940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/13/2023] [Indexed: 12/17/2023]
Abstract
INTRODUCTION The efficiency of brain therapeutics is greatly hindered by the blood-brain barrier (BBB). BBB's protective function, selective permeability, and dynamic functionality maintain the harmony between the brain and peripheral region. Thus, the design of any novel drug carrier system requires the complete study and investigation of BBB permeability, efflux transport, and the effect of associated cellular and non-vascular unit trafficking on BBB penetrability. The in vitro BBB models offer a most promising, and reliable mode of initial investigation of BBB permeability and associated factors as strong evidence for further preclinical and clinical investigation. AREA COVERED This review work covers the structure and functions of BBB components and different types of in vitro BBB models along with factors affecting BBB model development and model selection criteria. EXPERT OPINION In vivo models assume to reciprocate the physiological environment to the maximum extent. However, the interspecies variability, NVUs trafficking, dynamic behavior of BBB, etc., lead to non-reproducible results. The in vitro models are comparatively less complex, and flexible, as per the study design, could generate substantial evidence and help identify suitable in vivo animal model selection.
Collapse
Affiliation(s)
- Snigdha Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Mukta Agrawal
- School of Pharmacy and Technology Management, Narsee Monjee Institute of Management Studies, Mahbubnagar, India
| | - Rajat Vashist
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Rohit K Patel
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | | | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati, India
| |
Collapse
|
29
|
Palimariciuc M, Balmus IM, Gireadă B, Ciobica A, Chiriță R, Iordache AC, Apostu M, Dobrin RP. The Quest for Neurodegenerative Disease Treatment-Focusing on Alzheimer's Disease Personalised Diets. Curr Issues Mol Biol 2023; 45:1519-1535. [PMID: 36826043 PMCID: PMC9955192 DOI: 10.3390/cimb45020098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Dementia represents a clinical syndrome characterised by progressive decline in memory, language, visuospatial and executive function, personality, and behaviour, causing loss of abilities to perform instrumental or essential activities of daily living. The most common cause of dementia is Alzheimer's disease (AD), which accounts for up to 80% of all dementia cases. Despite that extensive studies regarding the etiology and risk factors have been performed in recent decades, and how the current knowledge about AD pathophysiology significantly improved with the recent advances in science and technology, little is still known about its treatment options. In this controverted context, a nutritional approach could be a promising way to formulate improved AD management strategies and to further analyse possible treatment strategy options based on personalised diets, as Nutritional Psychiatry is currently gaining relevance in neuropsychiatric disease treatment. Based on the current knowledge of AD pathophysiology, as well as based on the repeatedly documented anti-inflammatory and antioxidant potential of different functional foods, we aimed to find, describe, and correlate several dietary compounds that could be useful in formulating a nutritional approach in AD management. We performed a screening for relevant studies on the main scientific databases using keywords such as "Alzheimer's disease", "dementia", "treatment", "medication", "treatment alternatives", "vitamin E", "nutrition", "selenium", "Ginkgo biloba", "antioxidants", "medicinal plants", and "traditional medicine" in combinations. Results: nutrients could be a key component in the physiologic and anatomic development of the brain. Several nutrients have been studied in the pursuit of the mechanism triggered by the pathology of AD: vitamin D, fatty acids, selenium, as well as neuroprotective plant extracts (i.e., Ginkgo biloba, Panax ginseng, Curcuma longa), suggesting that the nutritional patterns could modulate the cognitive status and provide neuroprotection. The multifactorial origin of AD development and progression could suggest that nutrition could greatly contribute to the complex pathological picture. The identification of adequate nutritional interventions and the not yet fully understood nutrient activity in AD could be the next steps in finding several innovative treatment options for neurodegenerative disorders.
Collapse
Affiliation(s)
- Matei Palimariciuc
- Department of Medicine III, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universității Street, 700115 Iasi, Romania
- Institute of Psychiatry “Socola”, 36 Bucium Street, 700282 Iasi, Romania
| | - Ioana-Miruna Balmus
- Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research, Alexandru Ioan Cuza University of Iasi, Alexandru Lapusneanu Street, No. 26, 700057 Iasi, Romania
| | - Bogdan Gireadă
- Department of Medicine III, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universității Street, 700115 Iasi, Romania
- Institute of Psychiatry “Socola”, 36 Bucium Street, 700282 Iasi, Romania
- Correspondence: (B.G.); (A.C.)
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, B dul Carol I, No. 11, 700506 Iasi, Romania
- Academy of Romanian Scientists, Splaiul Independentei nr. 54, Sector 5, 050094 Bucuresti, Romania
- Centre of Biomedical Research, Romanian Academy, B dul Carol I, No. 8, 700506 Iasi, Romania
- Correspondence: (B.G.); (A.C.)
| | - Roxana Chiriță
- Department of Medicine III, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universității Street, 700115 Iasi, Romania
- Institute of Psychiatry “Socola”, 36 Bucium Street, 700282 Iasi, Romania
| | - Alin-Constantin Iordache
- Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universitatii Strada, 700115 Iasi, Romania
| | - Mihai Apostu
- Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universității Street, 700115 Iasi, Romania
| | - Romeo Petru Dobrin
- Department of Medicine III, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universității Street, 700115 Iasi, Romania
- Institute of Psychiatry “Socola”, 36 Bucium Street, 700282 Iasi, Romania
| |
Collapse
|
30
|
Reddiar SB, de Veer M, Paterson BM, Sepehrizadeh T, Wai DCC, Csoti A, Panyi G, Nicolazzo JA, Norton RS. A Biodistribution Study of the Radiolabeled Kv1.3-Blocking Peptide DOTA-HsTX1[R14A] Demonstrates Brain Uptake in a Mouse Model of Neuroinflammation. Mol Pharm 2023; 20:255-266. [PMID: 36331024 DOI: 10.1021/acs.molpharmaceut.2c00614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The voltage-gated potassium channel Kv1.3 regulates the pro-inflammatory function of microglia and is highly expressed in the post-mortem brains of individuals with Alzheimer's and Parkinson's diseases. HsTX1[R14A] is a selective and potent peptide inhibitor of the Kv1.3 channel (IC50 ∼ 45 pM) that has been shown to decrease cytokine levels in a lipopolysaccharide (LPS)-induced mouse model of inflammation. Central nervous system exposure to HsTX1[R14A] was previously detected in this mouse model using liquid chromatography with tandem mass spectrometry, but this technique does not report on the spatial distribution of the peptide in the different brain regions or peripheral organs. Herein, the in vivo distribution of a [64Cu]Cu-labeled DOTA conjugate of HsTX1[R14A] was observed for up to 48 h by positron emission tomography (PET) in mice. After subcutaneous administration to untreated C57BL/6J mice, considerable uptake of the radiolabeled peptide was observed in the kidney, but it was undetectable in the brain. Biodistribution of a [68Ga]Ga-DOTA conjugate of HsTX1[R14A] was then investigated in the LPS-induced mouse model of neuroinflammation to assess the effects of inflammation on uptake of the peptide in the brain. A control peptide with very weak Kv1.3 binding, [68Ga]Ga-DOTA-HsTX1[R14A,Y21A,K23A] (IC50 ∼ 6 μM), was also tested. Significantly increased uptake of [68Ga]Ga-DOTA-HsTX1[R14A] was observed in the brains of LPS-treated mice compared to mice treated with control peptide, implying that the enhanced uptake was due to increased Kv1.3 expression rather than simply increased blood-brain barrier disruption. PET imaging also showed accumulation of [68Ga]Ga-DOTA-HsTX1[R14A] in inflamed joints and decreased clearance from the kidneys in LPS-treated mice. These biodistribution data highlight the potential of HsTX1[R14A] as a therapeutic for the treatment of neuroinflammatory diseases mediated by overexpression of Kv1.3.
Collapse
Affiliation(s)
- Sanjeevini Babu Reddiar
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Michael de Veer
- Monash Biomedical Imaging, Monash University, Melbourne, Victoria 3800, Australia
| | - Brett M Paterson
- Monash Biomedical Imaging, Monash University, Melbourne, Victoria 3800, Australia.,School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Tara Sepehrizadeh
- Monash Biomedical Imaging, Monash University, Melbourne, Victoria 3800, Australia
| | - Dorothy C C Wai
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Agota Csoti
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen 4010, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen 4010, Hungary
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia.,ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
31
|
Hoque M, Samanta A, Alam SSM, Zughaibi TA, Kamal MA, Tabrez S. Nanomedicine-based immunotherapy for Alzheimer's disease. Neurosci Biobehav Rev 2023; 144:104973. [PMID: 36435391 DOI: 10.1016/j.neubiorev.2022.104973] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/12/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease caused by the deposition of amyloid β (Aβ) fibrils forming extracellular plaques and the development of neurofibrillary tangles (NFT) of intracellular hyperphosphorylated tau protein. Currently, the AD treatments focus on improving cognitive and behavioral symptoms and have limited success. It is imperative to develop novel treatment approaches that can control/inhibit AD progression, especially in the elderly population. Immunotherapy provides a promising and safe treatment option for AD by boosting the patient's immune system. The minimum immune surveillance in the immune-privileged brain, however, makes immunotherapy for AD a challenging endeavor. Therefore, the success of AD immunotherapy depends mainly on the strategy by which therapeutics is delivered to the brain rather than its efficacy. The blood-brain barrier (BBB) is a major obstacle to therapeutic delivery into the brain microenvironment. Various nano-formulations have been exploited to improve the efficacy of AD immunotherapy. In this review, the applications of different types of nano-formulations in augmenting AD immunotherapy have been discussed.
Collapse
Affiliation(s)
- Mehboob Hoque
- Applied Bio-Chemistry (ABC) Lab, Department of Biological Sciences, Aliah University, Kolkata 700160, India
| | - Arijit Samanta
- Applied Bio-Chemistry (ABC) Lab, Department of Biological Sciences, Aliah University, Kolkata 700160, India
| | | | - Torki A Zughaibi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Medical Laboratory Science, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, China; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; Enzymoics, 7 Peterlee place, Hebersham, NSW 2770; Novel Global Community Educational Foundation, Australia
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Medical Laboratory Science, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
32
|
Natale G, Zhang Y, Hanes DW, Clouston SAP. Obesity in Late-Life as a Protective Factor Against Dementia and Dementia-Related Mortality. Am J Alzheimers Dis Other Demen 2023; 38:15333175221111658. [PMID: 37391890 PMCID: PMC10580725 DOI: 10.1177/15333175221111658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
OBJECTIVE We estimated the conversion from cognitively normal to mild cognitive impairment (MCI) to probable dementia and death for underweight, normal, overweight, and obese older adults, where the timing of examinations is associated with the severity of dementia. METHODS We analyzed six waves of the National Health and Aging Trends Study (NHATS). Body mass (BMI) was computed from height and weight. Multi-state survival models (MSMs) examined misclassification probability, time-to-event ratios, and cognitive decline. RESULTS Participants (n = 6078) were 77 years old, 62% had overweight and/or obese BMI. After adjusting for the effects of cardiometabolic factors, age, sex, and race, obesity was protective against developing dementia (aHR=.44; 95%CI [.29-.67]) and dementia-related mortality (aHR=.63; 95%CI [.42-.95]). DISCUSSION We found a negative relationship between obesity and dementia and dementia-related mortality, a finding that has been underreported in the literature. The continuing obesity epidemic might complicate the diagnosis and treatment of dementia.
Collapse
Affiliation(s)
- Ginny Natale
- Program in Public Health and Department of Family, Population, and Preventive Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Yun Zhang
- Program in Public Health and Department of Family, Population, and Preventive Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Douglas William Hanes
- Program in Public Health and Department of Family, Population, and Preventive Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Sean AP Clouston
- Program in Public Health and Department of Family, Population, and Preventive Medicine, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
33
|
Bu F, Guan R, Wang W, Liu Z, Yin S, Zhao Y, Chai J. Bioinformatics and systems biology approaches to identify the effects of COVID-19 on neurodegenerative diseases: A review. Medicine (Baltimore) 2022; 101:e32100. [PMID: 36626425 PMCID: PMC9750669 DOI: 10.1097/md.0000000000032100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing coronavirus disease (COVID-19), has been devastated by COVID-19 in an increasing number of countries and health care systems around the world since its announcement of a global pandemic on 11 March 2020. During the pandemic, emerging novel viral mutant variants have caused multiple outbreaks of COVID-19 around the world and are prone to genetic evolution, causing serious damage to human health. As confirmed cases of COVID-19 spread rapidly, there is evidence that SARS-CoV-2 infection involves the central nervous system (CNS) and peripheral nervous system (PNS), directly or indirectly damaging neurons and further leading to neurodegenerative diseases (ND), but the molecular mechanisms of ND and CVOID-19 are unknown. We employed transcriptomic profiling to detect several major diseases of ND: Alzheimer 's disease (AD), Parkinson' s disease (PD), and multiple sclerosis (MS) common pathways and molecular biomarkers in association with COVID-19, helping to understand the link between ND and COVID-19. There were 14, 30 and 19 differentially expressed genes (DEGs) between COVID-19 and Alzheimer 's disease (AD), Parkinson' s disease (PD) and multiple sclerosis (MS), respectively; enrichment analysis showed that MAPK, IL-17, PI3K-Akt and other signaling pathways were significantly expressed; the hub genes (HGs) of DEGs between ND and COVID-19 were CRH, SST, TAC1, SLC32A1, GAD2, GAD1, VIP and SYP. Analysis of transcriptome data suggests multiple co-morbid mechanisms between COVID-19 and AD, PD, and MS, providing new ideas and therapeutic strategies for clinical prevention and treatment of COVID-19 and ND.
Collapse
Affiliation(s)
- Fan Bu
- Heilongjiang University of Chinese Medicine, Haerbin, Heilongjiang Province, China
- * Correspondence: Fan Bu, Heilongjiang University of Chinese Medicine, Haerbin 150040, Heilongjiang Province, China (e-mail: )
| | - Ruiqian Guan
- Heilongjiang University of Chinese Medicine, Haerbin, Heilongjiang Province, China
- Heilongjiang University of Chinese Medicine Affiliated Second Hospital, Haerbin, Heilongjiang Province, China
| | - Wanyu Wang
- Heilongjiang University of Chinese Medicine, Haerbin, Heilongjiang Province, China
| | - Zhao Liu
- Heilongjiang University of Chinese Medicine, Haerbin, Heilongjiang Province, China
| | - Shijie Yin
- Heilongjiang University of Chinese Medicine, Haerbin, Heilongjiang Province, China
| | - Yonghou Zhao
- Heilongjiang University of Chinese Medicine, Haerbin, Heilongjiang Province, China
- Heilongjiang University of Chinese Medicine Affiliated Second Hospital, Haerbin, Heilongjiang Province, China
| | - Jianbo Chai
- Heilongjiang University of Chinese Medicine, Haerbin, Heilongjiang Province, China
| |
Collapse
|
34
|
Al-Ghraiybah NF, Wang J, Alkhalifa AE, Roberts AB, Raj R, Yang E, Kaddoumi A. Glial Cell-Mediated Neuroinflammation in Alzheimer's Disease. Int J Mol Sci 2022; 23:10572. [PMID: 36142483 PMCID: PMC9502483 DOI: 10.3390/ijms231810572] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder; it is the most common cause of dementia and has no treatment. It is characterized by two pathological hallmarks, the extracellular deposits of amyloid beta (Aβ) and the intraneuronal deposits of Neurofibrillary tangles (NFTs). Yet, those two hallmarks do not explain the full pathology seen with AD, suggesting the involvement of other mechanisms. Neuroinflammation could offer another explanation for the progression of the disease. This review provides an overview of recent advances on the role of the immune cells' microglia and astrocytes in neuroinflammation. In AD, microglia and astrocytes become reactive by several mechanisms leading to the release of proinflammatory cytokines that cause further neuronal damage. We then provide updates on neuroinflammation diagnostic markers and investigational therapeutics currently in clinical trials to target neuroinflammation.
Collapse
Affiliation(s)
- Nour F. Al-Ghraiybah
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Junwei Wang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Amer E. Alkhalifa
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Andrew B. Roberts
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Ruchika Raj
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Euitaek Yang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Amal Kaddoumi
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| |
Collapse
|
35
|
Ceïde ME, Eguchi D, Ayers EI, Lounsbury DW, Verghese J. Mediation Analyses of the Role of Apathy on Motoric Cognitive Outcomes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127376. [PMID: 35742625 PMCID: PMC9224534 DOI: 10.3390/ijerph19127376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/01/2022] [Accepted: 06/14/2022] [Indexed: 02/04/2023]
Abstract
Recent literature indicates that apathy is associated with poor cognitive and functional outcomes in older adults, including motoric cognitive risk syndrome (MCR), a predementia syndrome. However, the underlying biological pathway is unknown. The objectives of this study were to (1) examine the cross-sectional associations between inflammatory cytokines (Interleukin 6 (IL-6) and C-Reactive Protein (CRP)) and apathy and (2) explore the direct and indirect relationships of apathy and motoric cognitive outcomes as it relates to important cognitive risk factors. N = 347 older adults (≥65 years old) enrolled in the Central Control of Mobility in Aging Study (CCMA). Linear and logic regression models showed that IL-6, but not CRP was significantly associated with apathy adjusted for age, gender, and years of education (β = 0.037, 95% CI: 0.002-0.072, p = 0.04). Apathy was associated with a slower gait velocity (β = -14.45, 95% CI: -24.89-4.01, p = 0.01). Mediation analyses demonstrated that IL-6 modestly mediates the relationship between apathy and gait velocity, while apathy mediated the relationships between dysphoria and multimorbidity and gait velocity. Overall, our findings indicate that apathy may be an early predictor of motoric cognitive decline. Inflammation plays a modest role, but the underlying biology of apathy warrants further investigation.
Collapse
Affiliation(s)
- Mirnova E. Ceïde
- Division of Cognitive and Motor Aging, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (E.I.A.); (J.V.)
- Department of Psychiatry and Behavioral Sciences and Medicine, Montefiore Medical Center, Bronx, NY 10467, USA
- Correspondence: ; Tel.: +1-347-920-0112; Fax: +1-718-430-3829
| | - Daniel Eguchi
- Medical Program, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Emmeline I. Ayers
- Division of Cognitive and Motor Aging, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (E.I.A.); (J.V.)
| | - David W. Lounsbury
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Joe Verghese
- Division of Cognitive and Motor Aging, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (E.I.A.); (J.V.)
| |
Collapse
|