1
|
Gutierrez LS, Zandim-Barcelos DL, Eick S, Lopes MES, Cirelli JA, Nogueira AVB, Deschner J. Possible immunomodulatory role of Filifactor alocis through beta-defensin 2 in gingival keratinocytes. Clin Oral Investig 2024; 28:658. [PMID: 39592494 DOI: 10.1007/s00784-024-06043-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024]
Abstract
OBJECTIVES The present study aimed to investigate a possible immunomodulatory role of the periodontopathogen Filifactor alocis through the antimicrobial peptide hBD-2 on the expression of chemokines in human gingival keratinocytes. MATERIALS AND METHODS Cells were cultured in the presence or absence of periodontopathogenic bacteria, such as F. alocis, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and Treponema denticola, to evaluate the regulation of hBD-2, CXCL8 and CCL20. Furthermore, the cells were exposed or not to hBD-2 and the expression of CXCL8 and CCL20 and their receptors was evaluated. RESULTS All bacteria induced a significant upregulation of hBD-2, CXCL8, and CCL20 gene expressions. In addition, F. alocis significantly increased their protein levels, as detected by ELISA. Pre-incubation of the cells with the TLR2 inhibitor resulted in a significant downregulation of hBD-2 expression in F. alocis-treated cells. Gingival keratinocytes exposed to hBD-2 resulted in a significant and dose-dependent increase of all chemokines and their receptors. CONCLUSIONS F. alocis increased the production of chemotactic cytokines, suggesting an increase in the recruitment of immunoinflammatory cells in periodontal diseases. The chemotaxis-promoting effect is partly direct, but is also mediated via hBD-2. F. alocis stimulates the synthesis of hBD-2, which in turn could promote the expression and synthesis of these chemokines and their receptors. In addition, hBD-2 has an autostimulatory effect and stimulates the synthesis of these chemokines, so that the chemotaxis triggered by F. alocis is further fueled. CLINICAL RELEVANCE F. alocis and hBD-2 have a significant role in periodontitis, showing their importance for diagnostic and treatment approaches.
Collapse
Affiliation(s)
- Lorena S Gutierrez
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara, SP, 14801-903, Brazil
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, 55131, Mainz, Germany
| | - Daniela L Zandim-Barcelos
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara, SP, 14801-903, Brazil.
| | - Sigrun Eick
- Laboratory of Oral Microbiology, Department of Periodontology, University of Bern, Bern, 3010, Switzerland
| | - Maria Eduarda S Lopes
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara, SP, 14801-903, Brazil
| | - Joni A Cirelli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara, SP, 14801-903, Brazil
| | - Andressa V B Nogueira
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, 55131, Mainz, Germany
| | - James Deschner
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, 55131, Mainz, Germany
| |
Collapse
|
2
|
Shoorgashti R, Nikmaram R, Azimi Y, Rouientan A, Ebrahimi H, Lesan S. Effectiveness of cold plasma application in oral wound healing process: A scoping review. Oral Dis 2024; 30:5062-5081. [PMID: 39224064 DOI: 10.1111/odi.15119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 07/23/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE Cold atmospheric plasma (CAP) has shown an ability to promote wound healing by modulating biological processes without causing thermal damage. This scoping review aimed to evaluate the effectiveness of CAP application in the oral wound healing process. DESIGN An electronic literature search was conducted using PubMed/Medline, Embase, Web of Science, Scopus, and grey literature (Google Scholar). The search included all articles published up to October 11, 2023. Only studies focusing on the different CAP types' effects on oral cavity wounds or cells were included in the review. RESULTS This review analyzed 13 studies including seven cell culture studies, one animal study, and five human studies (three in vivo and two ex vivo). The findings from the reviewed articles suggest that CAP may have therapeutic potential. It can maintain cell viability and influence gene expression, accelerate wound healing, and modulate inflammation-related cytokines. DBD plasma exhibited time-sensitive effects on cellular behavior and microplasma irradiation positively impacted cell count, biochemical profiles, and cellular migration. CONCLUSION The application of CAP has been shown to have a positive impact on the healing of oral wounds in cell culture, animal, and human studies.
Collapse
Affiliation(s)
- Reyhaneh Shoorgashti
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Reza Nikmaram
- Quchan University of Advanced Technologies Engineering, Quchan, Iran
| | - Yasaman Azimi
- Faculty of Dentistry, School of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Abdolreza Rouientan
- Department of Plastic and Reconstructive Surgery, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homan Ebrahimi
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Simin Lesan
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Liu Z, Du X, Xu L, Shi Q, Tang X, Cao Y, Song K. The therapeutic perspective of cold atmospheric plasma in periodontal disease. Oral Dis 2024; 30:938-948. [PMID: 36825384 DOI: 10.1111/odi.14547] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/31/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
OBJECTIVES Periodontal disease (PD) is one of the most common infectious diseases with complex inflammatory conditions, having irreversibly destructive impacts on the periodontal supporting tissues. The application of cold atmospheric plasma (CAP) is a promising adjuvant therapy modality for PD. However, the mechanism of CAP in PD treatment is still poorly understood. The review motivates to outline the latest researches concerning the applications of CAP in PD treatment. METHODS We searched CAP-related literature through utilizing the well-established databases of Pubmed, Scopus and Web of Science according to the following keywords related to periodontal disease (periodontal, gingival, gingivitis, gingiva, periodontium, periodontitis). RESULTS A total of 18 concerning original studies were found. These studies could be classified according to three pathophysiological perspectives of PD. The therapeutic mechanisms of CAP may be attributed to the oxidative stress-related cell death of periodontal bacteria, the suppression of periodontal inflammation and pro-inflammatory cytokine secretion, as well as the acceleration of periodontal soft tissue wound healing and hard tissue reconstruction. CONCLUSIONS Cold atmospheric plasma has potential therapeutic effects on PD through three mechanisms: antimicrobial effect, inflammation attenuation, and tissue remodeling. This review hopefully provides a comprehensive perspective into the potential of CAP in PD therapy.
Collapse
Affiliation(s)
- Zhixin Liu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Xijin Du
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Lianyi Xu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Qi Shi
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Xuezhi Tang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yingguang Cao
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Ke Song
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
4
|
Dejonckheere CS, Layer JP, Nour Y, Layer K, Glasmacher A, Wiegreffe S, Fuhrmann A, Caglayan L, Grau F, Sarria GR, Scafa D, Koch D, Heimann M, Leitzen C, Köksal MA, Röhner F, Müdder T, Dejonckheere E, Schmeel FC, Anzböck T, Lindner K, Bachmann A, Abramian A, Kaiser C, Faridi A, Mustea A, Giordano FA, Stope MB, Schmeel LC. Non-invasive physical plasma for preventing radiation dermatitis in breast cancer: Results from an intrapatient-randomised double-blind placebo-controlled trial. Clin Transl Radiat Oncol 2024; 44:100699. [PMID: 38021092 PMCID: PMC10654149 DOI: 10.1016/j.ctro.2023.100699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
Background and Purpose To investigate the effect of topical non-invasive physical plasma (NIPP), a volatile mix generated out of ambient air, on prevention of acute radiation dermatitis (RD) during and after whole-breast irradiation (WBI). Materials and Methods Lateral and medial breast halves were randomised within each patient to receive either 120 s of NIPP or sham treatment daily during WBI. Standard skin care with urea lotion was applied to the whole breast. Blinded acute skin toxicity was assessed weekly for each breast half separately and included clinician- (CTCAE) and patient-reported (modified RISRAS), and objective (spectrophotometry) assessments. As an additional external control, a comparable standard of care (SoC) patient collective from a previous prospective trial was used. Results Sixty-four patients were included. There were no significant differences between breast halves. Post-hoc comparison with a similar SoC control collective revealed OR = 0.28 (95% CI 0.11-0.76; p = 0.014) for grade ≥ 2 RD upon WBI completion, along with less hyperpigmentation (p < 0.001), oedema (p = 0.020), dry (p < 0.001) and moist desquamation (p = 0.017), pain, itching, and burning (p < 0.001 for each). Tolerability of NIPP was excellent and side effects were not observed. Conclusion Even though there were no differences between intrapatient-randomised breast halves, the overall incidence and severity of acute radiation-induced skin toxicity were considerably lower when compared to a prospectively collected SoC cohort. Our data suggest the potential benefit of NIPP in RD prevention. A randomised trial with a physical control group is warranted to confirm these promising results (DRKS00026225).
Collapse
Affiliation(s)
| | - Julian Philipp Layer
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
- Institute of Experimental Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Younèss Nour
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Katharina Layer
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Andrea Glasmacher
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Shari Wiegreffe
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Arne Fuhrmann
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Lara Caglayan
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Franziska Grau
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | | | - Davide Scafa
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - David Koch
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Martina Heimann
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Christina Leitzen
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Mümtaz Ali Köksal
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Fred Röhner
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Thomas Müdder
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Egon Dejonckheere
- Faculty of Psychology and Educational Sciences, KU Leuven, 3000 Leuven, Belgium
- Department of Medical and Clinical Psychology, Tilburg School of Social and Behavioural Sciences, 5037 Tilburg, the Netherlands
| | | | - Teresa Anzböck
- Department of Gynaecology, Division of Gynaecological Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Kira Lindner
- Department of Gynaecology, Division of Senology, University Hospital Bonn, 53127 Bonn, Germany
| | - Anne Bachmann
- Department of Gynaecology, Division of Senology, University Hospital Bonn, 53127 Bonn, Germany
| | - Alina Abramian
- Department of Gynaecology, Division of Senology, University Hospital Bonn, 53127 Bonn, Germany
| | - Christina Kaiser
- Department of Gynaecology, Division of Senology, University Hospital Bonn, 53127 Bonn, Germany
| | - Andree Faridi
- Department of Gynaecology, Division of Senology, University Hospital Bonn, 53127 Bonn, Germany
| | - Alexander Mustea
- Department of Gynaecology, Division of Gynaecological Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Frank Anton Giordano
- Department of Radiation Oncology, University Medical Center Mannheim, 68167 Mannheim, Germany
| | - Matthias Bernhard Stope
- Department of Gynaecology, Division of Gynaecological Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | | |
Collapse
|
5
|
Eggers B, Stope MB, Marciniak J, Mustea A, Eick S, Deschner J, Nokhbehsaim M, Kramer FJ. Non-Invasive Physical Plasma Reduces the Inflammatory Response in Microbially Prestimulated Human Gingival Fibroblasts. Int J Mol Sci 2023; 24:16156. [PMID: 38003346 PMCID: PMC10671174 DOI: 10.3390/ijms242216156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Non-invasive physical plasma (NIPP), an electrically conductive gas, is playing an increasingly important role in medicine due to its antimicrobial and regenerative properties. However, NIPP is not yet well established in dentistry, although it has promising potential, especially for periodontological applications. The aim of the present study was to investigate the effect of NIPP on a commercially available human gingival fibroblast (HGF) cell line and primary HGFs in the presence of periodontitis-associated bacteria. First, primary HGFs from eight patients were characterised by immunofluorescence, and cell numbers were examined by an automatic cell counter over 5 days. Then, HGFs that were preincubated with Fusobacterium nucleatum (F.n.) were treated with NIPP. Afterwards, the IL-6 and IL-8 levels in the cell supernatants were determined by ELISA. In HGFs, F.n. caused a significant increase in IL-6 and IL-8, and this F.n.-induced upregulation of both cytokines was counteracted by NIPP, suggesting a beneficial effect of physical plasma on periodontal cells in a microbial environment. The application of NIPP in periodontal therapy could therefore represent a novel and promising strategy and deserves further investigation.
Collapse
Affiliation(s)
- Benedikt Eggers
- Department of Oral, Maxillofacial and Plastic Surgery, University Hospital Bonn, 53111 Bonn, Germany;
| | - Matthias Bernhard Stope
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, 53127 Bonn, Germany; (M.B.S.); (A.M.)
| | - Jana Marciniak
- Department of Orthodontics, University Hospital Bonn, 53111 Bonn, Germany;
| | - Alexander Mustea
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, 53127 Bonn, Germany; (M.B.S.); (A.M.)
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland;
| | - James Deschner
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany;
| | - Marjan Nokhbehsaim
- Section of Experimental Dento-Maxillo-Facial Medicine, University Hospital Bonn, 53111 Bonn, Germany;
| | - Franz-Josef Kramer
- Department of Oral, Maxillofacial and Plastic Surgery, University Hospital Bonn, 53111 Bonn, Germany;
| |
Collapse
|
6
|
Förster S, Niu Y, Eggers B, Nokhbehsaim M, Kramer FJ, Bekeschus S, Mustea A, Stope MB. Modulation of the Tumor-Associated Immuno-Environment by Non-Invasive Physical Plasma. Cancers (Basel) 2023; 15:cancers15041073. [PMID: 36831415 PMCID: PMC9953794 DOI: 10.3390/cancers15041073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Over the past 15 years, investigating the efficacy of non-invasive physical plasma (NIPP) in cancer treatment as a safe oxidative stress inducer has become an active area of research. So far, most studies focused on the NIPP-induced apoptotic death of tumor cells. However, whether NIPP plays a role in the anti-tumor immune responses need to be deciphered in detail. In this review, we summarized the current knowledge of the potential effects of NIPP on immune cells, tumor-immune interactions, and the immunosuppressive tumor microenvironment. In general, relying on their inherent anti-oxidative defense systems, immune cells show a more resistant character than cancer cells in the NIPP-induced apoptosis, which is an important reason why NIPP is considered promising in cancer management. Moreover, NIPP treatment induces immunogenic cell death of cancer cells, leading to maturation of dendritic cells and activation of cytotoxic CD8+ T cells to further eliminate the cancer cells. Some studies also suggest that NIPP treatment may promote anti-tumor immune responses via other mechanisms such as inhibiting tumor angiogenesis and the desmoplasia of tumor stroma. Though more evidence is required, we expect a bright future for applying NIPP in clinical cancer management.
Collapse
Affiliation(s)
- Sarah Förster
- Department of Pathology, University Hospital Bonn, 35127 Bonn, Germany
| | - Yuequn Niu
- Department of Pathology, University Hospital Bonn, 35127 Bonn, Germany
| | - Benedikt Eggers
- Department of Oral, Maxillofacial and Plastic Surgery, University Hospital Bonn, 53111 Bonn, Germany
| | - Marjan Nokhbehsaim
- Section of Experimental Dento-Maxillo-Facial Medicine, University Hospital Bonn, 53111 Bonn, Germany
| | - Franz-Josef Kramer
- Department of Oral, Maxillofacial and Plastic Surgery, University Hospital Bonn, 53111 Bonn, Germany
| | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany
| | - Alexander Mustea
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Matthias B. Stope
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, 53127 Bonn, Germany
- Correspondence: ; Tel.: +49-228-287-11361
| |
Collapse
|
7
|
Editorials for ‘Advances in Cold Plasma in Biomedicines’. Biomedicines 2022; 10:biomedicines10112731. [DOI: 10.3390/biomedicines10112731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022] Open
Abstract
Research in the field of plasma medicine has provided many explanations for various phenomena, as well as the involvement of the chemical elements of plasma; however, it still lacks in biological mechanism analyses [...]
Collapse
|
8
|
Modulation of Inflammatory Responses by a Non-Invasive Physical Plasma Jet during Gingival Wound Healing. Cells 2022; 11:cells11172740. [PMID: 36078148 PMCID: PMC9454534 DOI: 10.3390/cells11172740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Gingival wound healing plays an important role in the treatment of a variety of inflammatory diseases. In some cases, however, wound healing is delayed by various endogenous or exogenous factors. In recent years, non-invasive physical plasma (NIPP), a highly reactive gas, has become the focus of research, because of its anti-inflammatory and wound healing-promoting efficacy. So far, since NIPP application has been poorly elucidated in dentistry, the aim of this study was to further investigate the effect of NIPP on various molecules associated with inflammation and wound healing in gingival cells. Human gingival fibroblasts (HGF) and human gingival keratinocytes (HGK) were treated with NIPP at different application times. Cell viability and cell morphology were assessed using DAPI/phalloidin staining. Cyclooxygenase (COX)2; tumour necrosis factor (TNF); CC Motif Chemokine Ligand (CCL)2; and interleukin (IL)1B, IL6 and IL8 were analysed at the mRNA and protein level by a real-time PCR and ELISA. NIPP did not cause any damage to the cells. Furthermore, NIPP led to a downregulation of proinflammatory molecules. Our study shows that NIPP application does not damage the gingival tissue and that the promotion of wound healing is also due to an anti-inflammatory component.
Collapse
|
9
|
Dejonckheere CS, Torres-Crigna A, Layer JP, Layer K, Wiegreffe S, Sarria GR, Scafa D, Koch D, Leitzen C, Köksal MA, Müdder T, Abramian A, Kaiser C, Faridi A, Stope MB, Mustea A, Giordano FA, Schmeel LC. Non-Invasive Physical Plasma for Preventing Radiation Dermatitis in Breast Cancer: A First-In-Human Feasibility Study. Pharmaceutics 2022; 14:1767. [PMID: 36145515 PMCID: PMC9506560 DOI: 10.3390/pharmaceutics14091767] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/20/2022] Open
Abstract
Radiation dermatitis (RD) is the most common acute side effect of breast irradiation. More than a century following the therapeutic utilisation of X-rays, potent preventative and therapeutic options are still lacking. Non-invasive physical plasma (NIPP) is an emerging approach towards treatment of various dermatological disorders. In this study, we sought to determine the safety and feasibility of a NIPP device on RD. Thirty patients undergoing hypofractionated whole-breast irradiation were included. Parallel to radiation treatment, the irradiated breast was treated with NIPP with different application regimens. RD was assessed during and after NIPP/radiation, using clinician- and patient-reported outcomes. Additionally, safety and feasibility features were recorded. None of the patients was prescribed topical corticosteroids and none considered the treatment to be unpleasant. RD was less frequent and milder in comparison with standard skin care. Neither NIPP-related adverse events nor side effects were reported. This proven safety and feasibility profile of a topical NIPP device in the prevention and treatment of RD will be used as the framework for a larger intrapatient-randomised double-blind placebo-controlled trial, using objective and patient-reported outcome measures as an endpoint.
Collapse
Affiliation(s)
| | | | - Julian Philipp Layer
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
- Institute of Experimental Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Katharina Layer
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Shari Wiegreffe
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | | | - Davide Scafa
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - David Koch
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Christina Leitzen
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Mümtaz Ali Köksal
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Thomas Müdder
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Alina Abramian
- Department of Gynaecology, Division of Senology, University Hospital Bonn, 53127 Bonn, Germany
| | - Christina Kaiser
- Department of Gynaecology, Division of Senology, University Hospital Bonn, 53127 Bonn, Germany
| | - Andree Faridi
- Department of Gynaecology, Division of Senology, University Hospital Bonn, 53127 Bonn, Germany
| | - Matthias Bernhard Stope
- Department of Gynaecology and Gynaecological Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Alexander Mustea
- Department of Gynaecology and Gynaecological Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | | | | |
Collapse
|