1
|
Metry DW, Siegel DH, Keppler‐Noreuil KM. A Retrospective Study of Infant and Maternal Risk Factors in LUMBAR Syndrome. Mol Genet Genomic Med 2025; 13:e70093. [PMID: 40192237 PMCID: PMC11973928 DOI: 10.1002/mgg3.70093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 01/23/2025] [Accepted: 03/19/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND LUMBAR syndrome is the association of segmental infantile hemangiomas that affect the Lower part of the body with Urogenital anomalies, hemangioma Ulceration, spinal cord Malformations, Bony deformities, Anorectal malformations, Arterial anomalies and/or Renal anomalies. The etiology is not known but is suspected to be multifactorial, involving genetic and environmental factors. METHODS We retrospectively reviewed a large database of 109 published reports of LUMBAR syndrome to study potential associated clinical risk factors, the first such effort. RESULTS LUMBAR is significantly more common in full-term, normal birth weight, singleton girls. We found no statistically significant differences in disease severity between affected girls and boys. There were no reports in twins or other multiple births, no reports of familial recurrence, and no repeated maternal illnesses, exposures, or other prenatal risk factors. CONCLUSIONS Prospective studies in LUMBAR syndrome are needed to further evaluate maternal risk factors for prenatal hypoxia, gene-environment interactions, and genetic susceptibility variants.
Collapse
Affiliation(s)
- Denise W. Metry
- Department of DermatologyDriscoll Children's HospitalCorpus ChristiTexasUSA
| | - Dawn H. Siegel
- Department of Dermatology, and by Courtesy, Pediatrics, School of MedicineStanford UniversityPalo AltoCaliforniaUSA
| | - Kim M. Keppler‐Noreuil
- Department of Pediatrics, Division of Genetics and MetabolismUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| |
Collapse
|
2
|
Bhasker A, Veleri S. Fundamental origins of neural tube defects with a basis in genetics and nutrition. Exp Brain Res 2025; 243:79. [PMID: 40025180 DOI: 10.1007/s00221-025-07016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/30/2025] [Indexed: 03/04/2025]
Abstract
Neural tube defects (NTDs) are leading congenital malformations. Its global prevalence is one in 1000 pregnancies and it has high morbidity and mortality. It has multiple risk factors like genetic errors and environmental stressors like maternal malnutrition and in utero exposure to pollutants like chemicals. The genetic program determines neural tube development based on timely expression of many genes involved in developmental signaling pathways like BMP, PCP and SHH. BMP expression defines ectoderm. SOX represses BMP in ectoderm and convertes to the neuroectoderm. Subsequently, PCP molecules define the tissue patterning for convergent-extension, a critical step in neural tube genesis. Further, SHH sets spatial patterning of the neural tube. Nutrients are the essential major environmental input for embryogenesis. But it may also carry risk factors. Malnutrition, especially folate deficiency, during embryogenesis is a major cause for NTDs. Folate is integral in the One Carbon metabolic pathway. Its deficiency and error in the pathway are implicated in NTDs. Folate supplementation alone is insufficient to prevent NTDs. Thus, a comprehensive understanding of the various risk factors is necessary to strategize reduction of NTDs. We review the current knowledge of various risk factors, like genetic, metabolic, nutritional, and drugs causing NTDs and discuss the steps required to identify them in the early embryogenesis to avoid NTDs.
Collapse
Affiliation(s)
- Anjusha Bhasker
- Drug Safety Division, ICMR-National Institute of Nutrition, Department of Health Research, Ministry of Health & Family Welfare, Govt. of India, Hyderabad, 500007, India
| | - Shobi Veleri
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Rísová V, Saade R, Jakuš V, Gajdošová L, Varga I, Záhumenský J. Preconceptional and Periconceptional Folic Acid Supplementation in the Visegrad Group Countries for the Prevention of Neural Tube Defects. Nutrients 2024; 17:126. [PMID: 39796560 PMCID: PMC11723246 DOI: 10.3390/nu17010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/20/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
Neural tube defects (NTDs) are malformations of the central nervous system that represent the second most common cause of congenital morbidity and mortality, following cardiovascular abnormalities. Maternal nutrition, particularly folic acid, a B vitamin, is crucial in the etiology of NTDs. FA plays a key role in DNA methylation, synthesis, and repair, acting as a cofactor in one-carbon transfer reactions essential for neural tube development. Randomized trials have shown that FA supplementation during preconceptional and periconceptional periods reduces the incidence of NTDs by nearly 80%. Consequently, it is recommended that all women of reproductive age take 400 µg of FA daily. Many countries have introduced FA fortification of staple foods to prevent NTDs, addressing the high rate of unplanned pregnancies. These policies have increased FA intake and decreased NTD incidence. Although the precise mechanisms by which FA protects against NTDs remain unclear, compelling evidence supports its efficacy in preventing most NTDs, leading to national recommendations for FA supplementation in women. This review focuses on preconceptional and periconceptional FA supplementation in the female population of the Visegrad Group countries (Slovakia, Czech Republic, Poland, and Hungary). Our findings emphasize the need for a comprehensive approach to NTDs, including FA supplementation programs, tailored counseling, and effective national-level policies.
Collapse
Affiliation(s)
- Vanda Rísová
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia; (V.R.); (I.V.)
| | - Rami Saade
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia; (V.R.); (I.V.)
- 2nd Department of Gynecology and Obstetrics, University Hospital Bratislava and Comenius University, 821 01 Bratislava, Slovakia;
| | - Vladimír Jakuš
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia; (V.J.); (L.G.)
| | - Lívia Gajdošová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia; (V.J.); (L.G.)
| | - Ivan Varga
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia; (V.R.); (I.V.)
| | - Jozef Záhumenský
- 2nd Department of Gynecology and Obstetrics, University Hospital Bratislava and Comenius University, 821 01 Bratislava, Slovakia;
| |
Collapse
|
4
|
Anumudu CK, Ekwueme CT, Uhegwu CC, Ejileugha C, Augustine J, Okolo CA, Onyeaka H. A Review of the Mycotoxin Family of Fumonisins, Their Biosynthesis, Metabolism, Methods of Detection and Effects on Humans and Animals. Int J Mol Sci 2024; 26:184. [PMID: 39796041 PMCID: PMC11719890 DOI: 10.3390/ijms26010184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/14/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
Fumonisins, a class of mycotoxins predominantly produced by Fusarium species, represent a major threat to food safety and public health due to their widespread occurrence in staple crops including peanuts, wine, rice, sorghum, and mainly in maize and maize-based food and feed products. Although fumonisins occur in different groups, the fumonisin B series, particularly fumonisin B1 (FB1) and fumonisin B2 (FB2), are the most prevalent and toxic in this group of mycotoxins and are of public health significance due to the many debilitating human and animal diseases and mycotoxicosis they cause and their classification as by the International Agency for Research on Cancer (IARC) as a class 2B carcinogen (probable human carcinogen). This has made them one of the most regulated mycotoxins, with stringent regulatory limits on their levels in food and feeds destined for human and animal consumption, especially maize and maize-based products. Numerous countries have regulations on levels of fumonisins in foods and feeds that are intended to protect human and animal health. However, there are still gaps in knowledge, especially with regards to the molecular mechanisms underlying fumonisin-induced toxicity and their full impact on human health. Detection of fumonisins has been advanced through various methods, with immunological approaches such as Enzyme-Linked Immuno-Sorbent Assay (ELISA) and lateral flow immunoassays being widely used for their simplicity and adaptability. However, these methods face challenges such as cross-reactivity and matrix interference, necessitating the need for continued development of more sensitive and specific detection techniques. Chromatographic methods, including HPLC-FLD, are also employed in fumonisin analysis but require meticulous sample preparation and derivitization due to the low UV absorbance of fumonisins. This review provides a comprehensive overview of the fumonisin family, focusing on their biosynthesis, occurrence, toxicological effects, and levels of contamination found in foods and the factors affecting their presence. It also critically evaluates the current methods for fumonisin detection and quantification, including chromatographic techniques and immunological approaches such as ELISA and lateral flow immunoassays, highlighting the challenges associated with fumonisin detection in complex food matrices and emphasizing the need for more sensitive, rapid, and cost-effective detection methods.
Collapse
Affiliation(s)
- Christian Kosisochukwu Anumudu
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
- Department of Microbiology, Federal University Otuoke, Otuoke 562103, Bayelsa State, Nigeria; (C.T.E.); (C.C.U.); (J.A.)
| | - Chiemerie T. Ekwueme
- Department of Microbiology, Federal University Otuoke, Otuoke 562103, Bayelsa State, Nigeria; (C.T.E.); (C.C.U.); (J.A.)
- School of Health and Life Sciences, Teeside University, Darlington TS1 3BX, UK
| | - Chijioke Christopher Uhegwu
- Department of Microbiology, Federal University Otuoke, Otuoke 562103, Bayelsa State, Nigeria; (C.T.E.); (C.C.U.); (J.A.)
- Bioinformatics and Genomics Research Unit, Genomac Institute, Ogbomosho, Oyo State, Nigeria
| | - Chisom Ejileugha
- Lancaster Environment Center, Lancaster University, Lancaster LA1 4YQ, UK;
- Department of Science Laboratory Technology (Microbiology), Imo State Polytechnic, Omuma 474110, Imo State, Nigeria
| | - Jennifer Augustine
- Department of Microbiology, Federal University Otuoke, Otuoke 562103, Bayelsa State, Nigeria; (C.T.E.); (C.C.U.); (J.A.)
| | - Chioke Amaefuna Okolo
- Department of Food Science and Technology, Nnamdi Azikiwe University, Awka 420110, Anambra State, Nigeria;
- FOCAS Research Institute, Technological University Dublin, D07 EWV4 Dublin, Ireland
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
5
|
Berkhout JH, Glazier JA, Piersma AH, Belmonte JM, Legler J, Spencer RM, Knudsen TB, Heusinkveld HJ. A computational dynamic systems model for in silico prediction of neural tube closure defects. Curr Res Toxicol 2024; 8:100210. [PMID: 40034255 PMCID: PMC11875186 DOI: 10.1016/j.crtox.2024.100210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 03/05/2025] Open
Abstract
Neural tube closure is a critical morphogenetic event during early vertebrate development. This complex process is susceptible to perturbation by genetic errors and chemical disruption, which can induce severe neural tube defects (NTDs) such as spina bifida. We built a computational agent-based model (ABM) of neural tube development based on the known biology of morphogenetic signals and cellular biomechanics underlying neural fold elevation, bending and fusion. The computer model functionalizes cell signals and responses to render a dynamic representation of neural tube closure. Perturbations in the control network can then be introduced synthetically or from biological data to yield quantitative simulation and probabilistic prediction of NTDs by incidence and degree of defect. Translational applications of the model include mechanistic understanding of how singular or combinatorial alterations in gene-environmental interactions and animal-free assessment of developmental toxicity for an important human birth defect (spina bifida) and potentially other neurological problems linked to development of the brain and spinal cord.
Collapse
Affiliation(s)
- Job H. Berkhout
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | | | - Aldert H. Piersma
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | | | - Juliette Legler
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | | | - Thomas B. Knudsen
- Biocomplexity Institute, Indiana University, Bloomington, USA
- U.S. EPA/ORD, Research Triangle Park, NC, USA
| | - Harm J. Heusinkveld
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| |
Collapse
|
6
|
Bach AM, Peeler M, Caunca M, Olusanya BO, Rosendale N, Gano D. Brain health equity and the influence of social determinants across the life cycle. Semin Fetal Neonatal Med 2024; 29:101553. [PMID: 39537455 DOI: 10.1016/j.siny.2024.101553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Social determinants of health are social, economic and environmental factors known to influence health and development of infants, children and adults. Advancing equity in brain health relies upon interdisciplinary collaboration and recognition of the impact of social determinants on brain health through the lifespan and across generations. Critical periods of fetal, infant and early childhood development encompass intrinsic genetic and extrinsic environmental influences with complex gene-environment interactions. This review discusses the influence of social determinants on the continuum of brain health from preconception and pregnancy health, through fetal, infant and childhood neurodevelopment into adulthood. Opportunities for intervention to address the social determinants of brain health across the life cycle are highlighted.
Collapse
Affiliation(s)
- Ashley M Bach
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, USA
| | - Mary Peeler
- Department of Gynecology and Obstetrics, Johns Hopkins University, USA
| | - Michelle Caunca
- Department of Neurology, University of California San Francisco, USA
| | | | - Nicole Rosendale
- Department of Neurology, University of California San Francisco, USA; Philip R. Lee Institute for Health Policy Studies, University of California San Francisco, USA
| | - Dawn Gano
- Department of Neurology, University of California San Francisco, USA; Department of Pediatrics, University of California San Francisco, USA.
| |
Collapse
|
7
|
Singh NK, Choudhary S, Rai S, Yadav AK, Singh R. Association between the MTHFR (rs1801133) gene variation and serum trace elements levels (Copper and Zinc) in individuals diagnosed with neural tube defects. Clin Chim Acta 2024; 562:119856. [PMID: 38977170 DOI: 10.1016/j.cca.2024.119856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/29/2024] [Accepted: 07/06/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND AND AIMS Neural tube defects (NTDs) occur when the neural tube fails to close within 28 days of human embryonic development. This results in central nervous system disorders like anencephaly, spina bifida, and encephalocele. Early diagnosis and treatment are crucial to minimize their impact on an individual's health and well-being. The present study aims to define the association between prenatal exposure to trace elements (Cu and Zn) and the single nucleotide polymorphism (SNP) of the MTHFR gene involved in folate metabolism pathways in neural tube defects in children and their mothers. MATERIAL AND METHODS A cross-sectional study involving 331 participants (90 NTD cases, 88 healthy mothers, 85 NTD children, and 68 healthy children) from antenatal check-ups in Obstetrics and Gynaecology and Pediatric Surgery for Neural Tube Defects in the Outpatient Department (OPD) and Inpatient Department (IPD). Assessed Cu and Zn concentrations and their associations. Genomic DNA was extracted, and real-time PCR was used to determine genotypes. Atomic absorption spectrophotometry measured trace elements. Statistical analyses included Chi-Square tests, odds ratios, and Mann-Whitney U tests. RESULTS Significant associations were found between MTHFR C677T genotypes and NTD risk in mothers (p = 0.0491) and children (p = 0.0297). Allelic frequency analysis indicated a T allele association with NTD risk in children (p = 0.0107). Recessive models showed significant associations in mothers (p = 0.0169) and children (p = 0.1678). Cu levels differed significantly between NTD cases and controls (p < 0.0001), with MTHFR genotypes influencing Cu levels. Zinc levels also varied significantly (p < 0.0001). CONCLUSION This study reveals complex associations between MTHFR C677T genotypes, trace element concentrations, and NTD risk in mothers and children. This targeted approach allows healthcare providers to identify at-risk pregnancies early, enabling personalised interventions like folic acid supplementation and counselling to moderate neural tube defect (NTD) risk in a future pregnancy.
Collapse
Affiliation(s)
- Nitish Kumar Singh
- Department of Anatomy, Institute of Medical Science, Banaras Hindu University, Varanasi, India
| | - Sarita Choudhary
- Department of Pediatric Surgery, Institute of Medical Science, Banaras Hindu University Varanasi, India
| | - Sangeeta Rai
- Department of Obstetrics & Gynaecology, Institute of Medical Science, Banaras Hindu University, Varanasi, India
| | - Abhay Kumar Yadav
- Department of Anatomy, Institute of Medical Science, Banaras Hindu University, Varanasi, India
| | - Royana Singh
- Department of Anatomy, Institute of Medical Science, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
8
|
Krishnan P, Berndsen RE, Gore S. Dichorionic Diamniotic Twin Anencephaly and Exencephaly. Cureus 2024; 16:e67328. [PMID: 39310543 PMCID: PMC11413975 DOI: 10.7759/cureus.67328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 09/25/2024] Open
Abstract
We present a rare case of dichorionic diamniotic twin anencephaly and exencephaly discovered in a 35-year-old female at 13.1 weeks of gestation. Anencephaly and exencephaly are neural tube defects (NTD) with devastating consequences caused by the failure of the anterior neural groove closure leading to exencephaly, followed by brain disintegration causing anencephaly. While NTD themselves are common congenital anomalies, their presence in both twins of a dichorionic diamniotic gestation is exceedingly rare and has only been documented in one other instance. The uncertainty surrounding risk factors involved in this specific case underscores the importance of ongoing research to elucidate other potential determinants in the pathogenesis of NTD and to discover novel preventive strategies, particularly in twin pregnancies. Future research endeavors should explore the interplay of genetic, environmental, and other anomalous factors to deepen our understanding and improve clinical outcomes for affected pregnancies.
Collapse
Affiliation(s)
- Padmaja Krishnan
- Obstetrics and Gynecology, School of Osteopathic Medicine, Campbell University, Lillington, USA
| | - Rachel E Berndsen
- Obstetrics and Gynecology, School of Osteopathic Medicine, Campbell University, Lillington, USA
| | - Sarah Gore
- Obstetrics and Gynecology, Baldwin Woods OBGYN, Whiteville, USA
| |
Collapse
|
9
|
Boeck B, Westmark CJ. Bibliometric Analysis and a Call for Increased Rigor in Citing Scientific Literature: Folic Acid Fortification and Neural Tube Defect Risk as an Example. Nutrients 2024; 16:2503. [PMID: 39125384 PMCID: PMC11313885 DOI: 10.3390/nu16152503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
The health benefits of vitamin B9 (folate) are well documented, particularly in regard to neural tube defects during pregnancy; however, much remains to be learned regarding the health effects and risks of consuming folic acid supplements and foods fortified with folic acid. In 2020, our laboratory conducted a population-based analysis of the Food Fortification Initiative (FFI) dataset to determine the strength of the evidence regarding the prevalence of neural tube defects (NTD) at the national level in response to mandatory fortification of cereal grains with folic acid. We found a very weak correlation between the prevalence of NTDs and the level of folic acid fortification irrespective of the cereal grain fortified (wheat, maize, or rice). We found a strong linear relationship between reduced NTDs and higher socioeconomic status (SES). Our paper incited a debate on the proper statistics to employ for population-level data. Subsequently, there has been a large number of erroneous citations to our original work. The objective here was to conduct a bibliometric analysis to quantitate the accuracy of citations to Murphy and Westmark's publication entitled, "Folic Acid Fortification and Neural Tube Defect Risk: Analysis of the Food Fortification Initiative Dataset". We found a 70% inaccuracy rate. These findings highlight the dire need for increased rigor in citing scientific literature, particularly in regard to biomedical research that directly impacts public health policy.
Collapse
Affiliation(s)
- Brynne Boeck
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA;
| | - Cara J. Westmark
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA;
- Molecular Environmental Toxicology Center, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
10
|
Mukherjee SK, Papadakis JE, Arman DM, Islam J, Azim M, Rahman A, Ekramullah SM, Suchanda HS, Farooque A, Warf BC, Mazumdar M. The Importance of Neurosurgical Intervention and Surgical Timing for Management of Pediatric Patients with Myelomeningoceles in Bangladesh. World Neurosurg 2024; 187:e673-e682. [PMID: 38685347 PMCID: PMC11227413 DOI: 10.1016/j.wneu.2024.04.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
OBJECTIVE Reports on the management and survival of children with myelomeningocele defects in Bangladesh are limited. This study describes the characteristics and outcomes of these children, focusing on the timing of surgical repair and factors affecting survival. METHODS We enrolled patients with myelomeningoceles in a case-control study on arsenic exposure and spina bifida in Bangladesh. Cases were subsequently followed at regular intervals to assess survival. Demographic, clinical, and surgical characteristics were reviewed. Univariate tests identified factors affecting survival. RESULTS Between 2016 and 2022, we enrolled 272 patients with myelomeningocele. Postnatal surgical repair was performed in 63% of cases. However, surgery within 5 days after birth was infrequent (<10%) due to delayed presentation, and there was a high rate (29%) of preoperative deaths. Surgical repair significantly improved patient survival (P < 0.0001). Older age at time of surgery was also associated with improved survival rates, which most likely represents that those who survived to older ages prior to surgery accommodated better with their lesions. Patients who presented with ruptured lesions had lower survival rates. CONCLUSIONS Timely neurosurgical repair of myelomeningoceles in Bangladesh is hindered by late patient presentation, resulting in a high preoperative patient death rate. Neurosurgical intervention remains a significant predictor of survival. Increased access to neurosurgical care and education of families and non-neurosurgical providers on the need for timely surgical intervention are important for improving the survival of infants with myelomeningoceles.
Collapse
Affiliation(s)
- Sudipta Kumer Mukherjee
- Department of Paediatric Neurosurgery, National Institute of Neurosciences & Hospital (NINS), Dhaka, Bangladesh
| | - Joanna E Papadakis
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - D M Arman
- Department of Paediatric Neurosurgery, National Institute of Neurosciences & Hospital (NINS), Dhaka, Bangladesh
| | - Joynul Islam
- Department of Paediatric Neurosurgery, National Institute of Neurosciences & Hospital (NINS), Dhaka, Bangladesh
| | | | - Asifur Rahman
- Department of Neurosurgery, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh
| | - Sheikh Muhammad Ekramullah
- Department of Paediatric Neurosurgery, National Institute of Neurosciences & Hospital (NINS), Dhaka, Bangladesh
| | - Hafiza Sultana Suchanda
- Paediatric Neurosurgery Research Committee, National Institute of Neurosciences & Hospital (NINS), Dhaka, Bangladesh
| | - Afifah Farooque
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Benjamin C Warf
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Maitreyi Mazumdar
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
11
|
Zhang J, Yang L, Sun Y, Zhang L, Wang Y, Liu M, Li X, Liang Y, Zhao H, Liu Z, Qiu Z, Zhang T, Xie J. Up-regulation of miR-10a-5p expression inhibits the proliferation and differentiation of neural stem cells by targeting Chl1. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1483-1497. [PMID: 38841745 PMCID: PMC11532229 DOI: 10.3724/abbs.2024078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/07/2024] [Indexed: 06/07/2024] Open
Abstract
Neural tube defects (NTDs) are characterized by the failure of neural tube closure during embryogenesis and are considered the most common and severe central nervous system anomalies during early development. Recent microRNA (miRNA) expression profiling studies have revealed that the dysregulation of several miRNAs plays an important role in retinoic acid (RA)-induced NTDs. However, the molecular functions of these miRNAs in NTDs remain largely unidentified. Here, we show that miR-10a-5p is significantly upregulated in RA-induced NTDs and results in reduced cell growth due to cell cycle arrest and dysregulation of cell differentiation. Moreover, the cell adhesion molecule L1-like ( Chl1) is identified as a direct target of miR-10a-5p in neural stem cells (NSCs) in vitro, and its expression is reduced in RA-induced NTDs. siRNA-mediated knockdown of intracellular Chl1 affects cell proliferation and differentiation similar to those of miR-10a-5p overexpression, which further leads to the inhibition of the expressions of downstream ERK1/2 MAPK signaling pathway proteins. These cellular responses are abrogated by either increased expression of the direct target of miR-10a-5p ( Chl1) or an ERK agonist such as honokiol. Overall, our study demonstrates that miR-10a-5p plays a major role in the process of NSC growth and differentiation by directly targeting Chl1, which in turn induces the downregulation of the ERK1/2 cascade, suggesting that miR-10a-5p and Chl1 are critical for NTD formation in the development of embryos.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Biochemistry and Molecular BiologySchool of Basic Medical ScienceShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
- of Cell Biology and GeneticsSchool of Basic Medical ScienceShanxi Medical UniversityTaiyuan030001China
| | - Lihong Yang
- Department of Biochemistry and Molecular BiologySchool of Basic Medical ScienceShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Yuqing Sun
- Department of Biochemistry and Molecular BiologySchool of Basic Medical ScienceShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Li Zhang
- Department of Biochemistry and Molecular BiologySchool of Basic Medical ScienceShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Yufei Wang
- Department of Biochemistry and Molecular BiologySchool of Basic Medical ScienceShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Ming Liu
- of Cell Biology and GeneticsSchool of Basic Medical ScienceShanxi Medical UniversityTaiyuan030001China
| | - Xiujuan Li
- Department of Biochemistry and Molecular BiologySchool of Basic Medical ScienceShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Yuxiang Liang
- Department of Biochemistry and Molecular BiologySchool of Basic Medical ScienceShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Hong Zhao
- Department of Biochemistry and Molecular BiologySchool of Basic Medical ScienceShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Zhizhen Liu
- Department of Biochemistry and Molecular BiologySchool of Basic Medical ScienceShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Zhiyong Qiu
- Beijing Municipal Key Laboratory of Child Development and NutriomicsCapital Institute of PediatricsBeijing100020China
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and NutriomicsCapital Institute of PediatricsBeijing100020China
| | - Jun Xie
- Department of Biochemistry and Molecular BiologySchool of Basic Medical ScienceShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| |
Collapse
|
12
|
Li X, Li G, Cui S, Hou Y, Li Z, Yan Z, Huang T, Zhao T, Su H, Zhou B, Zhang J, Ao R, Zhao H, Qiu Y, Liu Z, Xie J. Arsenic disturbs neural tube closure involving AMPK/PKB-mTORC1-mediated autophagy in mice. Food Chem Toxicol 2024; 186:114538. [PMID: 38387523 DOI: 10.1016/j.fct.2024.114538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/01/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Arsenic exposure is a significant risk factor for folate-resistant neural tube defects (NTDs), but the potential mechanism is unclear. In this study, a mouse model of arsenic-induced NTDs was established to investigate how arsenic affects early neurogenesis leading to malformations. The results showed that in utero exposure to arsenic caused a decline in the normal embryos, an elevated embryo resorption, and a higher incidence of malformed embryos. Cranial and spinal deformities were the main malformation phenotypes observed. Meanwhile, arsenic-induced NTDs were accompanied by an oxidant/antioxidant imbalance manifested by elevated levels of reactive oxygen species (ROS) and decreased antioxidant activities. In addition, changes in the expression of autophagy-related genes and proteins (ULK1, Atg5, LC3B, p62) as well as an increase in autophagosomes were observed in arsenic-induced aberrant brain vesicles. Also, the components of the upstream pathway regulating autophagy (AMPK, PKB, mTOR, Raptor) were altered accordingly after arsenic exposure. Collectively, our findings propose a mechanism for arsenic-induced NTDs involving AMPK/PKB-mTORC1-mediated autophagy. Blocking autophagic cell death due to excessive autophagy provides a novel strategy for the prevention of folate-resistant NTDs, especially for arsenic-exposed populations.
Collapse
Affiliation(s)
- Xiujuan Li
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China
| | - Gexuan Li
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China; School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Shuo Cui
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China; School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Yue Hou
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China; School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Zelin Li
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China
| | - Ziyi Yan
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China; School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Tingjuan Huang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China
| | - Taoran Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China
| | - Hongkai Su
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China
| | - Bingrui Zhou
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China
| | - Juan Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China
| | - Ruifang Ao
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China
| | - Hong Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China
| | - Yulan Qiu
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Zhizhen Liu
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China.
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
13
|
Ledet Iii LF, Plaisance CJ, Daniel CP, Wagner MJ, Alvarez I, Burroughs CR, Rieger R, Siddaiah H, Ahmadzadeh S, Shekoohi S, Kaye AD, Varrassi G. Spina Bifida Prevention: A Narrative Review of Folic Acid Supplements for Childbearing Age Women. Cureus 2024; 16:e53008. [PMID: 38406082 PMCID: PMC10894015 DOI: 10.7759/cureus.53008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 01/26/2024] [Indexed: 02/27/2024] Open
Abstract
Neural tube defects (NTDs) are malformations that occur during embryonic development, and they account for most central nervous system birth anomalies. Genetic and environmental factors have been shown to play a role in the etiology of NTDs. The different types of NTDs are classified according to anatomic location and severity of the defect, with most of the neural axis anomalies occurring in the caudal spinal or cranial areas. Spina bifida is a type of NTD that is characterized by an opening in the vertebral arch, and the level of severity is determined by the extent to which the neural tissue protrudes through the opened arch(es). Prevention of NTDs by administration of folic acid has been studied and described in the literature, yet there are approximately 300,000 cases of NTDs that occur annually, with 88,000 deaths occurring per year worldwide. A daily intake of at least 400 μg of folic acid is recommended especially for women of childbearing age. To provide the benefits of folic acid, prenatal vitamins are recommended in pregnancy, and many countries have been fortifying foods such as cereal grain products with folic acid; however, not all countries have instituted folic acid fortification programs. The present investigation includes a description of the pharmacology of folic acid, neural tube formation, defects such as spina bifida, and the relevance of folic acid to developing spina bifida. Women's knowledge and awareness of folic acid regarding its importance in the prevention of spina bifida is a major factor in reducing incidence worldwide.
Collapse
Affiliation(s)
- Lloyd F Ledet Iii
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Connor J Plaisance
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Charles P Daniel
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Maxwell J Wagner
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Ivan Alvarez
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Caroline R Burroughs
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Ross Rieger
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Harish Siddaiah
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Shahab Ahmadzadeh
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Sahar Shekoohi
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | | |
Collapse
|
14
|
Lema AS, Suleyman JS. Lethal Neural Tube Defects: Reports of Anencephaly and Craniorachischisis Cases and Literature Review. Case Rep Obstet Gynecol 2023; 2023:4017625. [PMID: 38148996 PMCID: PMC10751168 DOI: 10.1155/2023/4017625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 11/24/2023] [Accepted: 12/06/2023] [Indexed: 12/28/2023] Open
Abstract
Neural tube defects are serious birth defects of the central nervous system that result from a multifaceted disruption of normal embryogenesis of the nervous system. Although largely preventable, they nonetheless pose a serious threat to global morbidity, disability, mortality, and financial expenses. Despite this, it has been neglected and has only been the subject of limited research until recently. Furthermore, surveillance efforts for neural tube defects remain limited, and no decline in defects has been documented in less developed countries. Here, we report two cases of craniorachischisis and one case of discordant twins for anencephaly. Moreover, the relevant works of literature that are necessary to understand and address this unrelenting phenomenon are provided.
Collapse
Affiliation(s)
- Alemayehu Shiferaw Lema
- Department of Forensic Medicine and Toxicology, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Jemila Salih Suleyman
- Department of Forensic Medicine and Toxicology, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| |
Collapse
|
15
|
Edri T, Cohen D, Shabtai Y, Fainsod A. Alcohol induces neural tube defects by reducing retinoic acid signaling and promoting neural plate expansion. Front Cell Dev Biol 2023; 11:1282273. [PMID: 38116205 PMCID: PMC10728305 DOI: 10.3389/fcell.2023.1282273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023] Open
Abstract
Introduction: Neural tube defects (NTDs) are among the most debilitating and common developmental defects in humans. The induction of NTDs has been attributed to abnormal folic acid (vitamin B9) metabolism, Wnt and BMP signaling, excess retinoic acid (RA), dietary components, environmental factors, and many others. In the present study we show that reduced RA signaling, including alcohol exposure, induces NTDs. Methods: Xenopus embryos were exposed to pharmacological RA biosynthesis inhibitors to study the induction of NTDs. Embryos were treated with DEAB, citral, or ethanol, all of which inhibit the biosynthesis of RA, or injected to overexpress Cyp26a1 to reduce RA. NTD induction was studied using neural plate and notochord markers together with morphological analysis. Expression of the neuroectodermal regulatory network and cell proliferation were analyzed to understand the morphological malformations of the neural plate. Results: Reducing RA signaling levels using retinaldehyde dehydrogenase inhibitors (ethanol, DEAB, and citral) or Cyp26a1-driven degradation efficiently induce NTDs. These NTDs can be rescued by providing precursors of RA. We mapped this RA requirement to early gastrula stages during the induction of neural plate precursors. This reduced RA signaling results in abnormal expression of neural network genes, including the neural plate stem cell maintenance genes, geminin, and foxd4l1.1. This abnormal expression of neural network genes results in increased proliferation of neural precursors giving rise to an expanded neural plate. Conclusion: We show that RA signaling is required for neural tube closure during embryogenesis. RA signaling plays a very early role in the regulation of proliferation and differentiation of the neural plate soon after the induction of neural progenitors during gastrulation. RA signaling disruption leads to the induction of NTDs through the mis regulation of the early neuroectodermal network, leading to increased proliferation resulting in the expansion of the neural plate. Ethanol exposure induces NTDs through this mechanism involving reduced RA levels.
Collapse
Affiliation(s)
| | | | | | - Abraham Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
16
|
Tesfay N, Hailu G, Habtetsion M, Woldeyohannes F. Birth prevalence and risk factors of neural tube defects in Ethiopia: a systematic review and meta-analysis. BMJ Open 2023; 13:e077685. [PMID: 37940152 PMCID: PMC10632862 DOI: 10.1136/bmjopen-2023-077685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023] Open
Abstract
OBJECTIVE This study aims to estimate the prevalence of neural tube defects (NTDs) and to identify potential risk factors in the Ethiopian context. STUDY DESIGN Systematic review and meta-analysis. STUDY PARTICIPANTS A total of 611 064 participants were included in the review obtained from 42 studies. METHODS PubMed (Medline), Embase and Cochrane Library databases in combination with other potential sources of literature were systematically searched, whereby studies conducted between January 2010 and December 2022 were targeted in the review process. All observational studies were included and heterogeneity between studies was verified using Cochrane Q test statistics and I2 test statistics. Small study effects were checked using Egger's statistical test at a 5% significance level. RESULT The pooled prevalence of all NTDs per 10 000 births in Ethiopia was 71.48 (95% CI 57.80 to 86.58). The between-study heterogeneity was high (I2= 97.49%, p<0.0001). Birth prevalence of spina bifida (33.99 per 10 000) was higher than anencephaly (23.70 per 10 000), and encephalocele (4.22 per 10 000). Unbooked antenatal care (AOR 2.26, 95% CI (1.30 to 3.94)), preconception intake of folic acid (AOR 0.41, 95% CI (0.26 to 0.66)), having chronic medical illness (AOR 2.06, 95% CI (1.42 to 2.99)), drinking alcohol (AOR 2.70, 95% CI (1.89 to 3.85)), smoking cigarette (AOR 2.49, 95% CI (1.51 to 4.11)), chewing khat (AOR 3.30, 95% CI (1.88 to 5.80)), exposure to pesticides (AOR 3.87, 95% CI (2.63 to 5.71)), maternal age ≥35 (AOR 1.90, 95% CI (1.13 to 3.25)), maternal low educational status (AOR 1.60, 95% CI (1.13 to 2.24)), residing in urban areas (AOR 0.75, 95% CI (0.58 to 0.97))and family history of NTDs (AOR 2.51, 95% CI (1.36 to 4.62)) were associated with NTD cases. CONCLUSION The prevalence of NTDs in Ethiopia is seven times as high as in other Western countries where prevention measures are put in place. Heredity, maternal and environmental factors are associated with a high prevalence of NTDs. Mandatory fortification of staple food with folic acid should be taken as a priority intervention to curb the burden of NTDs. To smoothen and overlook the pace of implementation of mass fortification, screening, and monitoring surveillance systems should be in place along with awareness-raising measures. PROSPERO REGISTRATION NUMBER CRD42023413490.
Collapse
Affiliation(s)
- Neamin Tesfay
- Centre of Public Health Emergency Management, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Girmay Hailu
- Centre of Public Health Emergency Management, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Medhanye Habtetsion
- Centre of Public Health Emergency Management, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Fistum Woldeyohannes
- Health Financing Program, Clinton Health Access Initiative, Addis Ababa, Ethiopia
| |
Collapse
|
17
|
Russ JB, Ostrem BEL. Acquired Brain Injuries Across the Perinatal Spectrum: Pathophysiology and Emerging Therapies. Pediatr Neurol 2023; 148:206-214. [PMID: 37625929 DOI: 10.1016/j.pediatrneurol.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/29/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023]
Abstract
The development of the central nervous system can be directly disrupted by a variety of acquired factors, including infectious, inflammatory, hypoxic-ischemic, and toxic insults. Influences external to the fetus also impact neurodevelopment, including placental health, maternal comorbidities, adverse experiences, environmental exposures, and social determinants of health. Acquired perinatal brain insults tend to affect the developing brain in a stage-specific manner that reflects the susceptible cell types, developmental processes, and risk factors present at the time of the insult. In this review, we discuss the pathophysiology, neurodevelopmental outcomes, and management of common acquired perinatal brain conditions. In the fetal brain, we divide insults based on trimester, and in the postnatal brain, we focus on common pathologies that have a presentation dependent on gestational age at birth: white matter injury and germinal matrix hemorrhage/intraventricular hemorrhage in preterm infants and hypoxic-ischemic encephalopathy in term infants. Although specific treatments for fetal and newborn brain disorders are currently limited, we emphasize therapies in preclinical or early clinical phases of the development pipeline. The growing number of novel cell type- and stage-specific emerging therapies suggests that in the near future we may have a dramatically improved ability to treat acquired perinatal brain disorders and to mitigate the associated neurodevelopmental consequences.
Collapse
Affiliation(s)
- Jeffrey B Russ
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | - Bridget E L Ostrem
- Department of Neurology, University of California, San Francisco, San Francisco, California.
| |
Collapse
|
18
|
Mengiste FG, Shibeshi MS, Gechera DY. Neural Tube Defect in a Resource Limited Setting: Clinical Profile and Short Term Outcome. Pediatric Health Med Ther 2023; 14:289-299. [PMID: 37746523 PMCID: PMC10517686 DOI: 10.2147/phmt.s421868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023] Open
Abstract
Background There is a huge burden of neural tube defect (NTD) in Ethiopia, and surgical management is not readily available. We aimed to assess the clinical profile and hospital outcome of children with NTD that were operated in Hawassa University Comprehensive Specialized Hospital, Hawassa, Ethiopia. Methods A retrospective cross-sectional study on 250 children with NTD that were treated in a tertiary hospital from March 2016 to May 2020 was conducted to describe the clinical profile and treatment outcome at discharge. Logistic regression analysis was carried out to evaluate factors that determine mortality. Results Out of the 250 children, 50.4% were male. Myelomeningocele was the most common type of NTD (77.2%) followed by meningocele (10.4%). Only 3 mothers (1.2%) received periconceptional folic acid. Prenatal diagnosis of NTD was made in only 22 (8.8%) cases. 52.8% of the NTDs were ruptured at presentation and 50.8% had associated sepsis. At presentation, 42.4% were ≤72 hours of age and only 18 neonates (7.2%) were operated within 72 hours of admission. 54% had associated hydrocephalus, 31.6% had Chiari II malformation and 19.6% had club foot. Surgical site infection, post MMC repair hydrocephalus, and meningitis were seen in 8%, 14% and 16.8% of the participants, respectively. The mean duration of hospitalization was 24 ± 14.4 days. Twenty patients (8%) died before discharge from hospital. Prematurity [AOR: 26 (95% CI: 8.01, 86.04), P < 0.001] and the presence of meningitis [AOR: 3.8 (95% CI: 1.12,12.9), P = 0.03]were determinants of mortality. Conclusion NTDs are substantial health problem in this part of the country. Periconceptional folic acid supplementation is almost non-existent. Prenatal detection of NTDs is very low and management is delayed in the majority of cases. Myelomeningocele is the most common type of NTD. There is high in-hospital mortality, and prematurity and the presence of meningitis are its determinants.
Collapse
|
19
|
Gelineau-van Waes J, van Waes MA, Hallgren J, Hulen J, Bredehoeft M, Ashley-Koch AE, Krupp D, Gregory SG, Stessman HA. Gene-nutrient interactions that impact magnesium homeostasis increase risk for neural tube defects in mice exposed to dolutegravir. Front Cell Dev Biol 2023; 11:1175917. [PMID: 37377737 PMCID: PMC10292217 DOI: 10.3389/fcell.2023.1175917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
In 2018, data from a surveillance study in Botswana evaluating adverse birth outcomes raised concerns that women on antiretroviral therapy (ART) containing dolutegravir (DTG) may be at increased risk for neural tube defects (NTDs). The mechanism of action for DTG involves chelation of Mg2+ ions in the active site of the viral integrase. Plasma Mg2+ homeostasis is maintained primarily through dietary intake and reabsorption in the kidneys. Inadequate dietary Mg2+ intake over several months results in slow depletion of plasma Mg2+ and chronic latent hypomagnesemia, a condition prevalent in women of reproductive age worldwide. Mg2+ is critical for normal embryonic development and neural tube closure. We hypothesized that DTG therapy might slowly deplete plasma Mg2+ and reduce the amount available to the embryo, and that mice with pre-existing hypomagnesemia due to genetic variation and/or dietary Mg2+ insufficiency at the time of conception and initiation of DTG treatment would be at increased risk for NTDs. We used two different approaches to test our hypothesis: 1) we selected mouse strains that had inherently different basal plasma Mg2+ levels and 2) placed mice on diets with different concentrations of Mg2+. Plasma and urine Mg2+ were determined prior to timed mating. Pregnant mice were treated daily with vehicle or DTG beginning on the day of conception and embryos examined for NTDs on gestational day 9.5. Plasma DTG was measured for pharmacokinetic analysis. Our results demonstrate that hypomagnesemia prior to conception, due to genetic variation and/or insufficient dietary Mg2+ intake, increases the risk for NTDs in mice exposed to DTG. We also analyzed whole-exome sequencing data from inbred mouse strains and identified 9 predicted deleterious missense variants in Fam111a that were unique to the LM/Bc strain. Human FAM111A variants are associated with hypomagnesemia and renal Mg2+ wasting. The LM/Bc strain exhibits this same phenotype and was the strain most susceptible to DTG-NTDs. Our results suggest that monitoring plasma Mg2+ levels in patients on ART regimens that include DTG, identifying other risk factors that impact Mg2+ homeostasis, and correcting deficiencies in this micronutrient might provide an effective strategy for mitigating NTD risk.
Collapse
Affiliation(s)
- J. Gelineau-van Waes
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE, United States
| | | | - J. Hallgren
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE, United States
| | - J. Hulen
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE, United States
| | - M. Bredehoeft
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE, United States
| | - A. E. Ashley-Koch
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States
| | - D. Krupp
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - S. G. Gregory
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| | - H. A. Stessman
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE, United States
| |
Collapse
|
20
|
Rai S, Leydier L, Sharma S, Katwala J, Sahu A. A quest for genetic causes underlying signaling pathways associated with neural tube defects. Front Pediatr 2023; 11:1126209. [PMID: 37284286 PMCID: PMC10241075 DOI: 10.3389/fped.2023.1126209] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/28/2023] [Indexed: 06/08/2023] Open
Abstract
Neural tube defects (NTDs) are serious congenital deformities of the nervous system that occur owing to the failure of normal neural tube closures. Genetic and non-genetic factors contribute to the etiology of neural tube defects in humans, indicating the role of gene-gene and gene-environment interaction in the occurrence and recurrence risk of neural tube defects. Several lines of genetic studies on humans and animals demonstrated the role of aberrant genes in the developmental risk of neural tube defects and also provided an understanding of the cellular and morphological programs that occur during embryonic development. Other studies observed the effects of folate and supplementation of folic acid on neural tube defects. Hence, here we review what is known to date regarding altered genes associated with specific signaling pathways resulting in NTDs, as well as highlight the role of various genetic, and non-genetic factors and their interactions that contribute to NTDs. Additionally, we also shine a light on the role of folate and cell adhesion molecules (CAMs) in neural tube defects.
Collapse
Affiliation(s)
- Sunil Rai
- Department of Molecular Biology, Medical University of the Americas, Charlestown, Saint Kitts and Nevis
| | - Larissa Leydier
- Department of Molecular Biology, Medical University of the Americas, Charlestown, Saint Kitts and Nevis
| | - Shivani Sharma
- Department of Molecular Biology, Medical University of the Americas, Charlestown, Saint Kitts and Nevis
| | - Jigar Katwala
- Department of Molecular Biology, Medical University of the Americas, Charlestown, Saint Kitts and Nevis
| | - Anurag Sahu
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
21
|
The impact of amino acid metabolism on adult neurogenesis. Biochem Soc Trans 2023; 51:233-244. [PMID: 36606681 DOI: 10.1042/bst20220762] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023]
Abstract
Adult neurogenesis is a multistage process during which newborn neurons are generated through the activation and proliferation of neural stem cells (NSCs) and integrated into existing neural networks. Impaired adult neurogenesis has been observed in various neurological and psychiatric disorders, suggesting its critical role in cognitive function, brain homeostasis, and neural repair. Over the past decades, mounting evidence has identified a strong association between metabolic status and adult neurogenesis. Here, we aim to summarize how amino acids and their neuroactive metabolites affect adult neurogenesis. Furthermore, we discuss the causal link between amino acid metabolism, adult neurogenesis, and neurological diseases. Finally, we propose that systematic elucidation of how amino acid metabolism regulates adult neurogenesis has profound implications not only for understanding the biological underpinnings of brain development and neurological diseases, but also for providing potential therapeutic strategies to intervene in disease progression.
Collapse
|