1
|
Liu M, Zhuang X, Zhang H, Ji W, Yuan G. tRNA-derived small RNAs in digestive tract diseases: Progress and perspectives. Genes Dis 2025; 12:101326. [PMID: 40083327 PMCID: PMC11904584 DOI: 10.1016/j.gendis.2024.101326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 03/16/2025] Open
Abstract
tRNA-derived small RNAs (tsRNAs) are non-coding small RNAs that are produced through the precise cleavage of tRNA molecules under specific conditions. tsRNA has multiple functions, including inhibiting translation, acting in association with classical small RNA effector mechanisms, or acting in conjunction with Argonaute proteins that affect cell proliferation, migration, cycle, and apoptosis. Recent studies have revealed the clinical potential of tsRNAs in numerous diseases. This article aims to provide a comprehensive and up-to-date review of the classification and biological function of tsRNAs in gastrointestinal diseases. Furthermore, this review explores the underlying mechanisms by which tsRNAs are believed to exert their effects in both tumor and non-tumor digestive tract diseases. Therefore, specific tsRNAs prove promising for disease diagnosis, prognosis prediction, and therapeutic interventions as novel biomarkers for digestive tract diseases.
Collapse
Affiliation(s)
- Mingrui Liu
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University Guangzhou, Guangdong 510080, China
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Xiaojun Zhuang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Haiqing Zhang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University Guangzhou, Guangdong 510080, China
| | - Weidong Ji
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University Guangzhou, Guangdong 510080, China
| | - Gang Yuan
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
- International Medical Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
- Phase I Clinical Trial Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
2
|
Saad AAA, Zhang K, Deng Q, Zhou J, Ge L, Wang H. The functions and modifications of tRNA-derived small RNAs in cancer biology. Cancer Metastasis Rev 2025; 44:38. [PMID: 40072687 DOI: 10.1007/s10555-025-10254-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 02/19/2025] [Indexed: 03/14/2025]
Abstract
Recent progress in noncoding RNA research has highlighted transfer RNA-derived small RNAs (tsRNAs) as key regulators of gene expression, linking them to numerous cellular functions. tsRNAs, which are produced by ribonucleases such as angiogenin and Dicer, are classified based on their size and cleavage positions. They play diverse regulatory roles at the transcriptional, post-transcriptional, and translational levels. Furthermore, tRNAs undergo various modifications that influence their biogenesis, stability, functionality, biochemical characteristics, and protein-binding affinity. tsRNAs, with their aberrant expression patterns and modifications, act as both oncogenes and tumor suppressors. This review explores the biogenetic pathways of tsRNAs and their complex roles in gene regulation. We then focus on the importance of RNA modifications in tsRNAs, evaluating their impact on the biogenesis and biological functions on tsRNAs. Furthermore, we summarize recent data indicating that tsRNAs exhibit varied expression profiles across different cancer types, highlighting their potential as innovative biomarkers and therapeutic targets. This discussion integrates both existing and new knowledge about tsRNAs, emphasizing their importance in cancer biology and clinical advancement.
Collapse
Grants
- (Nos. 82472761, 82173833, 82272658, and 82403178) National Natural Science Foundation of China
- (Nos. 82472761, 82173833, 82272658, and 82403178) National Natural Science Foundation of China
- (Nos. 82472761, 82173833, 82272658, and 82403178) National Natural Science Foundation of China
- (Nos. 82472761, 82173833, 82272658, and 82403178) National Natural Science Foundation of China
- (Nos. 82472761, 82173833, 82272658, and 82403178) National Natural Science Foundation of China
- (Nos. 82472761, 82173833, 82272658, and 82403178) National Natural Science Foundation of China
- (No. 2023B1515040006 and 2021A1515220048) Guangdong Basic and Applied Basic Research Foundation
- (No. 2023B1515040006 and 2021A1515220048) Guangdong Basic and Applied Basic Research Foundation
- (No. 2023B1515040006 and 2021A1515220048) Guangdong Basic and Applied Basic Research Foundation
- (No. 2023B1515040006 and 2021A1515220048) Guangdong Basic and Applied Basic Research Foundation
- (No. 2023B1515040006 and 2021A1515220048) Guangdong Basic and Applied Basic Research Foundation
- (No. 2023B1515040006 and 2021A1515220048) Guangdong Basic and Applied Basic Research Foundation
- (No. 2023B1111020007) Key-Area Research and Development Program of Guangdong Province
- (No. 2023B1111020007) Key-Area Research and Development Program of Guangdong Province
- (No. 2023B1111020007) Key-Area Research and Development Program of Guangdong Province
- (No. 2023B1111020007) Key-Area Research and Development Program of Guangdong Province
- (No. 2023B1111020007) Key-Area Research and Development Program of Guangdong Province
- (No. 2023B1111020007) Key-Area Research and Development Program of Guangdong Province
- (No. 2024A04J6480) Guangzhou Science and Technology Program
- (No. 2024A04J6480) Guangzhou Science and Technology Program
- (No. 2024A04J6480) Guangzhou Science and Technology Program
- (No. 2024A04J6480) Guangzhou Science and Technology Program
- (No. 2024A04J6480) Guangzhou Science and Technology Program
- (No. 2024A04J6480) Guangzhou Science and Technology Program
- (2023B1212060022) Guangdong Provincial Key Laboratory of Construction Foundation
- (2023B1212060022) Guangdong Provincial Key Laboratory of Construction Foundation
- (2023B1212060022) Guangdong Provincial Key Laboratory of Construction Foundation
- (2023B1212060022) Guangdong Provincial Key Laboratory of Construction Foundation
- (2023B1212060022) Guangdong Provincial Key Laboratory of Construction Foundation
- (2023B1212060022) Guangdong Provincial Key Laboratory of Construction Foundation
- (No. 2022YFC2601800) Shenzhen Bay Scholars Program, the National Key Research and Development Program of China
- (No. 2022YFC2601800) Shenzhen Bay Scholars Program, the National Key Research and Development Program of China
- (No. 2022YFC2601800) Shenzhen Bay Scholars Program, the National Key Research and Development Program of China
- (No. 2022YFC2601800) Shenzhen Bay Scholars Program, the National Key Research and Development Program of China
- (No. 2022YFC2601800) Shenzhen Bay Scholars Program, the National Key Research and Development Program of China
- (No. 2022YFC2601800) Shenzhen Bay Scholars Program, the National Key Research and Development Program of China
- (Grant No. 2024kjTzn03) CMC Excellent-talent Program
- (Grant No. 2024kjTzn03) CMC Excellent-talent Program
- (Grant No. 2024kjTzn03) CMC Excellent-talent Program
- (Grant No. 2024kjTzn03) CMC Excellent-talent Program
- (Grant No. 2024kjTzn03) CMC Excellent-talent Program
- (Grant No. 2024kjTzn03) CMC Excellent-talent Program
- (Grant No. CYYZZ24-01) Organized Research Projects of Chengdu Medical College
- (Grant No. CYYZZ24-01) Organized Research Projects of Chengdu Medical College
- (Grant No. CYYZZ24-01) Organized Research Projects of Chengdu Medical College
- (Grant No. CYYZZ24-01) Organized Research Projects of Chengdu Medical College
- (Grant No. CYYZZ24-01) Organized Research Projects of Chengdu Medical College
- (Grant No. CYYZZ24-01) Organized Research Projects of Chengdu Medical College
- (Grant No. 23L009) Natural Science Foundation of Chengdu Medical College
- (Grant No. 23L009) Natural Science Foundation of Chengdu Medical College
- (Grant No. 23L009) Natural Science Foundation of Chengdu Medical College
- (Grant No. 23L009) Natural Science Foundation of Chengdu Medical College
- (Grant No. 23L009) Natural Science Foundation of Chengdu Medical College
- (Grant No. 23L009) Natural Science Foundation of Chengdu Medical College
- (Grant Nos. 2022LHTD-02, 23LHNBZZD07, 24LHBBYY1-08, 24LHBBYY1-09, 24LHFYSZ1-27) Clinical Science Research Foundation of Chengdu Medical College
- (Grant Nos. 2022LHTD-02, 23LHNBZZD07, 24LHBBYY1-08, 24LHBBYY1-09, 24LHFYSZ1-27) Clinical Science Research Foundation of Chengdu Medical College
- (Grant Nos. 2022LHTD-02, 23LHNBZZD07, 24LHBBYY1-08, 24LHBBYY1-09, 24LHFYSZ1-27) Clinical Science Research Foundation of Chengdu Medical College
- (Grant Nos. 2022LHTD-02, 23LHNBZZD07, 24LHBBYY1-08, 24LHBBYY1-09, 24LHFYSZ1-27) Clinical Science Research Foundation of Chengdu Medical College
- (Grant Nos. 2022LHTD-02, 23LHNBZZD07, 24LHBBYY1-08, 24LHBBYY1-09, 24LHFYSZ1-27) Clinical Science Research Foundation of Chengdu Medical College
- (Grant Nos. 2022LHTD-02, 23LHNBZZD07, 24LHBBYY1-08, 24LHBBYY1-09, 24LHFYSZ1-27) Clinical Science Research Foundation of Chengdu Medical College
- (No. 2024M753801) China Postdoctoral Science Foundation
- (No. 2024M753801) China Postdoctoral Science Foundation
- (No. 2024M753801) China Postdoctoral Science Foundation
- (No. 2024M753801) China Postdoctoral Science Foundation
- (No. 2024M753801) China Postdoctoral Science Foundation
- (No. 2024M753801) China Postdoctoral Science Foundation
- (No. GZC20233241) Postdoctoral Fellowship Program (Grade C) of China Postdoctoral Science Foundation
- (No. GZC20233241) Postdoctoral Fellowship Program (Grade C) of China Postdoctoral Science Foundation
- (No. GZC20233241) Postdoctoral Fellowship Program (Grade C) of China Postdoctoral Science Foundation
- (No. GZC20233241) Postdoctoral Fellowship Program (Grade C) of China Postdoctoral Science Foundation
- (No. GZC20233241) Postdoctoral Fellowship Program (Grade C) of China Postdoctoral Science Foundation
- (No. GZC20233241) Postdoctoral Fellowship Program (Grade C) of China Postdoctoral Science Foundation
Collapse
Affiliation(s)
- Abdulaziz Ahmed A Saad
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, The State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Kun Zhang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Nanbu People'S Hospital; Affiliated Cancer Hospital of Chengdu Medical College, School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, 610500, China
| | - Qianqian Deng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, The State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jiawang Zhou
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, The State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Lichen Ge
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Hongsheng Wang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, The State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Chen Y, Shao Z, Wu S. Research progress on the tsRNA biogenesis, function, and application in lung cancer. Noncoding RNA Res 2025; 10:63-69. [PMID: 39309197 PMCID: PMC11414277 DOI: 10.1016/j.ncrna.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/18/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
In recent years, there has been a mounting occurrence of lung cancer, which stands as one of the most prevalent malignancies globally. This rise in incidence poses a significant hazard to human health, making lung cancer a matter of grave concern. It has been shown that tRNA-derived small non-coding RNA (tsRNA) is involved in the development of tumors, especially lung cancer, through mechanisms such as regulating mRNA stability, influencing protein translation, and acting as epigenetic regulators. Recent studies have shown that tsRNA is abnormally expressed in the plasma and tissues of lung cancer patients, and its expression level is closely related to the malignancy degree and postoperative recurrence of lung cancer. Therefore, for lung cancer patients, tsRNA represents a promising non-invasive biomarker, exhibiting significant potential for facilitating early diagnosis and prognostic evaluation, and for achieving precision treatment of lung cancer by regulating its expression. This article focuses on the biogenesis of tsRNA and its ability to promote lung cancer cell proliferation and invasion. In addition, the specific clinical significance of tsRNA in lung cancer was discussed. Finally, we discuss the need for further improvement of small RNA sequencing technology, and the future research directions and strategies of tsRNA in lung cancer and tumor diseases were summarized.
Collapse
Affiliation(s)
- Yu Chen
- Department of Respiratory Medicine, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Zhuowei Shao
- Department of Respiratory Medicine, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Shibo Wu
- Department of Respiratory Medicine, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
4
|
Jiang X, Li X, Li Y, Zhang Y, Gu X, Zong W, Shen X, Ju S. Systematic assessment of serum i-tRF-AsnGTT in gastric cancer: a potential clinical biomarker. Carcinogenesis 2025; 46:bgae044. [PMID: 39023209 DOI: 10.1093/carcin/bgae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/07/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024] Open
Abstract
Since gastric cancer (GC) shows no apparent signs in its early stages, most patients are diagnosed later with a poor prognosis. We therefore seek more sensitive and specific GC biomarkers. Small RNAs formed from tRNAs represent a novel class of non-coding RNAs that are highly abundant in bodily fluids and essential to biological metabolism. This study explores the potential of i-tRF-AsnGTT in gastric cancer diagnostics. To begin with, we sequenced i-tRF-AsnGTT using high-throughput methods. i-tRF-AsnGTT expression levels in GC were determined using real-time fluorescence polymerase chain reaction. Agarose gel electrophoresis, Sanger sequencing, and repeated freezing and thawing were performed to verify molecular properties. A correlation was found between clinical and pathological parameters and i-tRF-AsnGTT expression levels through the χ2 test, and receiver operating characteristic was used to analyze its diagnostic value in GC. In serum, i-tRF-AsnGTT has a low and stable expression level. It can differentiate between patients with gastric cancer and gastritis and healthy donors with better diagnostic efficacy. In combination with clinicopathological parameters, i-tRF-AsnGTT correlates with tumor differentiation; infiltration depth of tumors; tumor, node, metastasis stage; lymph node metastases; and neural/vascular invasion. Serum i-tRF-AsnGTT expression is low in GC patients. Serum from postoperative patients shows increased i-tRF-AsnGTT expression levels. Potentially, this could be used as a biomarker to help diagnose gastric cancer and monitor its prognosis.
Collapse
Affiliation(s)
- Xiaodan Jiang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Xun Li
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Yang Li
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Yu Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Xinliang Gu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Wei Zong
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Xianjuan Shen
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| |
Collapse
|
5
|
Zhang B, Pan Y, Li Z, Hu K. tRNA-derived small RNAs: their role in the mechanisms, biomarkers, and therapeutic strategies of colorectal cancer. J Transl Med 2025; 23:51. [PMID: 39806419 PMCID: PMC11727791 DOI: 10.1186/s12967-025-06109-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent malignancy and the second leading cause of cancer-related mortality worldwide, with an increasing shift towards younger age of onset. In recent years, there has been increasing recognition of the significance of tRNA-derived small RNAs (tsRNAs), encompassing tRNA-derived fragments (tRFs) and tRNA halves (tiRNAs). Their involvement in regulating translation, gene expression, reverse transcription, and epigenetics has gradually come to light. Emerging research has revealed dysregulation of tsRNAs in CRC, implicating their role in CRC initiation and progression, and highlighting their potential in early diagnosis, prognosis, and therapeutic strategies. Although the clinical application of tsRNAs is still in its early stages, recent findings highlight a close relationship between the biogenesis and function of tsRNAs, tRNA chemical modifications, and the tumor immune microenvironment (TIME). Additionally, similar to other small RNAs, tsRNAs can be effectively delivered via nanoparticles (NPs). Consequently, future research should focus on elucidating the clinical significance of tsRNAs concerning base modifications, TIME regulation, cancer immunotherapy, and NPs delivery systems to facilitate their clinical translation.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yanru Pan
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Zhe Li
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China.
| | - Kefeng Hu
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China.
| |
Collapse
|
6
|
Li H, Zhang L, Li ML, Chen ZF, Fei SK. Progress in application and research of tsRNAs in digestive system tumors. Shijie Huaren Xiaohua Zazhi 2024; 32:872-877. [DOI: 10.11569/wcjd.v32.i12.872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/04/2024] [Accepted: 10/30/2024] [Indexed: 12/28/2024] Open
Abstract
Transfer RNA-derived small RNAs (tsRNAs) are a class of non-coding small RNAs derived from mature transfer RNAs or transfer RNA precursors under specific conditions, and they exhibit abnormal expression in various digestive system tumors. In recent years, research has revealed that abnormal expression of tsRNAs can not only serve as biomarkers for the early diagnosis of digestive system tumors but also play significant regulatory roles in the proliferation, invasion, and metastasis of digestive system tumor cells. tsRNAs provide a novel group of biomarkers for early diagnosis and new therapeutic directions for patients with digestive system tumors. This article reviews the progress in application and research of tsRNAs in common digestive system tumors such as gastric cancer, liver cancer, and colorectal cancer, providing new directions for their clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Hui Li
- Department of Hepatobiliary, Pancreatic, and Splenic Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
| | - Liang Zhang
- Department of Nephrology, Rheumatology, and Immunology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
| | - Ming-Liang Li
- Department of Hepatobiliary, Pancreatic, and Splenic Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
| | - Zhi-Fei Chen
- Department of General Surgery, The Third Hospital of Changsha, Changsha 410000, Hunan Province, China
| | - Shu-Ke Fei
- Department of Hepatobiliary, Pancreatic, and Splenic Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
| |
Collapse
|
7
|
Gong L, Hu Y, Pan L, Cheng Y. tRNA-derived small RNAs (tsRNAs): establishing their dominance in the regulation of human cancer. Front Genet 2024; 15:1466213. [PMID: 39659673 PMCID: PMC11628509 DOI: 10.3389/fgene.2024.1466213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
The main function of transfer RNAs (tRNAs) is to carry amino acids into the ribosome and synthesize proteins under the guidance of messenger RNAs (mRNAs). In addition to this, it has been observed that tRNAs undergo precise cleavage at specific loci, giving rise to an extensive array of distinct small RNAs, termed tRNA-derived small RNAs (tsRNAs). Existing studies have shown that tsRNAs are widely present across various organisms and comprehensively regulate gene expression, aberrant expression of tsRNAs is inextricably linked to tumorigenesis and development, thus, a systematic understanding of tsRNAs is necessary. This review aims to comprehensively delineate the genesis and expression patterns of tsRNAs, elucidate their diverse functions and emphasize their prospective clinical application as biomarkers and targets for therapy. It is noteworthy that we innovatively address the roles played by tsRNAs in human cancers at the level of the hallmarks of tumorigenesis proposed by Hanahan in anticipation of a broad understanding of tsRNAs and to guide the treatment of tumors.
Collapse
Affiliation(s)
- Li Gong
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, China
| | - Yajie Hu
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, China
| | - Ling Pan
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, China
- Research Center for Basic Medical Sciences, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yufeng Cheng
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, China
- Research Center for Basic Medical Sciences, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
8
|
Wang Q, Ying X, Huang Q, Wang Z, Duan S. Exploring the role of tRNA-derived small RNAs (tsRNAs) in disease: implications for HIF-1 pathway modulation. J Mol Med (Berl) 2024; 102:973-985. [PMID: 38850298 DOI: 10.1007/s00109-024-02458-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 04/26/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
The tRNA-derived small RNAs (tsRNAs) can be categorized into two main groups: tRNA-derived fragments (tRFs) and tRNA-derived stress-induced RNAs (tiRNAs). Each group possesses specific molecular sizes, nucleotide compositions, and distinct physiological functions. Notably, hypoxia-inducible factor-1 (HIF-1), a transcriptional activator dependent on oxygen, comprises one HIF-1β subunit and one HIF-α subunit (HIF-1α/HIF-2α/HIF-3α). The activation of HIF-1 plays a crucial role in gene transcription, influencing key aspects of cancer biology such as angiogenesis, cell survival, glucose metabolism, and invasion. The involvement of HIF-1α activation has been demonstrated in numerous human diseases, particularly cancer, making HIF-1 an attractive target for potential disease treatments. Through a series of experiments, researchers have identified two tiRNAs that interact with the HIF-1 pathway, impacting disease development: 5'tiRNA-His-GTG in colorectal cancer (CRC) and tiRNA-Val in diabetic retinopathy (DR). Specifically, 5'tiRNA-His-GTG promotes CRC development by targeting LATS2, while tiRNA-Val inhibits Sirt1, leading to HIF-1α accumulation and promoting DR development. Clinical data have further indicated that certain tsRNAs' expression levels are associated with the prognosis and pathological features of CRC patients. In CRC tumor tissues, the expression level of 5'tiRNA-His-GTG is significantly higher compared to normal tissues, and it shows a positive correlation with tumor size. Additionally, KEGG analysis has revealed multiple tRFs involved in regulating the HIF-1 pathway, including tRF-Val-AAC-016 in diabetic foot ulcers (DFU) and tRF-1001 in pathological ocular angiogenesis. This comprehensive article reviews the biological functions and mechanisms of tsRNAs related to the HIF-1 pathway in diseases, providing a promising direction for subsequent translational medicine research.
Collapse
Affiliation(s)
- Qurui Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, 310015, China
| | - Xiaowei Ying
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, 310015, China
| | - Qinyuan Huang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, 310015, China
| | - Zehua Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, 310015, China
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, 310015, China.
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, 310015, China.
| |
Collapse
|
9
|
Mao C, Yuan W, Fang R, Wu Y, Zhang Z, Cong H. Transfer RNA‑derived small RNAs: A class of potential biomarkers in multiple cancers (Review). Oncol Lett 2024; 28:293. [PMID: 38737976 PMCID: PMC11082847 DOI: 10.3892/ol.2024.14427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/11/2024] [Indexed: 05/14/2024] Open
Abstract
Transfer (t)RNA-derived small RNAs (tsRNAs) are a class of novel non-coding small RNAs that are created via precise cleavage of tRNAs or tRNA precursors by different enzymes. tsRNAs are specific biological molecules that serve essential roles in cell proliferation, apoptosis, transcriptional regulation, post-transcriptional modification and translational regulation. Additionally, tsRNAs participate in the pathogenesis of several diseases, particularly in the development of malignant tumors. At present, the process of discovering and understanding the functions of tsRNAs is still in its early stages. The present review introduces the known biological functions and mechanisms of tsRNAs, and discusses the tsRNAs progression in several types of cancers as well as the possibility of tsRNAs becoming novel tumor biomarkers. Furthermore, tsRNAs may promote and hinder tumor formation according to different mechanisms and act as oncogenic or oncostatic molecules. Therefore, tsRNAs may be future potential tumor biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Chunyan Mao
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Wentao Yuan
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Ronghua Fang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yi Wu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Zhihan Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Hui Cong
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
- Department of Blood Transfusion, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
10
|
Du J, Huang T, Zheng Z, Fang S, Deng H, Liu K. Biological function and clinical application prospect of tsRNAs in digestive system biology and pathology. Cell Commun Signal 2023; 21:302. [PMID: 37904174 PMCID: PMC10614346 DOI: 10.1186/s12964-023-01341-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/27/2023] [Indexed: 11/01/2023] Open
Abstract
tsRNAs are small non-coding RNAs originating from tRNA that play important roles in a variety of physiological activities such as RNA silencing, ribosome biogenesis, retrotransposition, and epigenetic inheritance, as well as involvement in cellular differentiation, proliferation, and apoptosis. tsRNA-related abnormalities have a significant influence on the onset, development, and progression of numerous human diseases, including malignant tumors through affecting the cell cycle and specific signaling molecules. This review introduced origins together with tsRNAs classification, providing a summary for regulatory mechanism and physiological function while dysfunctional effect of tsRNAs in digestive system diseases, focusing on the clinical prospects of tsRNAs for diagnostic and prognostic biomarkers. Video Abstract.
Collapse
Affiliation(s)
- Juan Du
- Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Tianyi Huang
- Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Zhen Zheng
- Department of Radiation Oncology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Shuai Fang
- The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Hongxia Deng
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China.
| | - Kaitai Liu
- Department of Radiation Oncology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
11
|
Shi H, Xie J, Pei S, He D, Hou H, Xu S, Fu Z, Shi X. Digging out the biology properties of tRNA-derived small RNA from black hole. Front Genet 2023; 14:1232325. [PMID: 37953919 PMCID: PMC10637384 DOI: 10.3389/fgene.2023.1232325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
An unique subclass of functional non-coding RNAs generated by transfer RNA (tRNA) under stress circumstances is known as tRNA-derived small RNA (tsRNA). tsRNAs can be divided into tRNA halves and tRNA-derived fragments (tRFs) based on the different cleavage sites. Like microRNAs, tsRNAs can attach to Argonaute (AGO) proteins to target downstream mRNA in a base pairing manner, which plays a role in rRNA processing, gene silencing, protein expression and viral infection. Notably, tsRNAs can also directly bind to protein and exhibit functions in transcription, protein modification, gene expression, protein stabilization, and signaling pathways. tsRNAs can control the expression of tumor suppressor genes and participate in the initiation of cancer. It can also mediate the progression of diseases by regulating cell viability, migration ability, inflammatory factor content and autophagy ability. Precision medicine targeting tsRNAs and drug therapy of plant-derived tsRNAs are expected to be used in clinical practice. In addition, liquid biopsy technology based on tsRNAs indicates a new direction for the non-invasive diagnosis of diseases.
Collapse
Affiliation(s)
- Hengmei Shi
- Department of Obstetrics and Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Jiaheng Xie
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shengbin Pei
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Danni He
- Department of Obstetrics and Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Huyang Hou
- Department of Obstetrics and Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Shipeng Xu
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Ziyi Fu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoyan Shi
- Department of Obstetrics and Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| |
Collapse
|
12
|
Christodoulou S, Katsaraki K, Vassiliu P, Danias N, Michalopoulos N, Tzikos G, Sideris DC, Arkadopoulos N. High Intratumoral i-tRF-Gly GCC Expression Predicts Short-Term Relapse and Poor Overall Survival of Colorectal Cancer Patients, Independent of the TNM Stage. Biomedicines 2023; 11:1945. [PMID: 37509584 PMCID: PMC10377136 DOI: 10.3390/biomedicines11071945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/22/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Colorectal cancer (CRC), one of the most prevalent types of cancer, requires the discovery of new tumor biomarkers for accurate patient prognosis. In this work, the prognostic value of the tRNA fragment i-tRF-GlyGCC in CRC was examined. Total RNA extraction from 211 CRC patient cancer tissue specimens and 83 adjacent normal tissues was conducted. Each RNA extract was subjected to in vitro polyadenylation and reverse transcription. A real-time quantitative PCR assay was used to quantify i-tRF-GlyGCC in all samples. Extensive biostatics analysis showed that i-tRF-GlyGCC levels in CRC tissues were significantly lower than in matched normal colorectal tissues. Additionally, the disease-free survival (DFS) and overall survival (OS) time intervals were considerably shorter in CRC patients with high i-tRF-GlyGCC expression. i-tRF-GlyGCC expression maintained its prognostic value independently of other established prognostic factors, as shown by the multivariate Cox regression analysis. Additionally, survival analysis after TNM stage stratification revealed that higher i-tRF-GlyGCC levels were linked to shorter DFS time intervals in patients with TNM stage II tumors, as well as an increased probability of having a worse OS for patients in TNM stage II. In conclusion, i-tRF-GlyGCC has the potential to be a useful molecular tissue biomarker in CRC, independent of other clinicopathological variables.
Collapse
Affiliation(s)
- Spyridon Christodoulou
- Fourth Department of Surgery, University General Hospital "Attikon", National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Katerina Katsaraki
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Panteleimon Vassiliu
- Fourth Department of Surgery, University General Hospital "Attikon", National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Nikolaos Danias
- Fourth Department of Surgery, University General Hospital "Attikon", National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Nikolaos Michalopoulos
- Fourth Department of Surgery, University General Hospital "Attikon", National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Georgios Tzikos
- Propaedeutic Department of Surgery, University General Hospital "AHEPA", Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Diamantis C Sideris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Nikolaos Arkadopoulos
- Fourth Department of Surgery, University General Hospital "Attikon", National and Kapodistrian University of Athens, 12462 Athens, Greece
| |
Collapse
|
13
|
Lee S, Kim J, Valdmanis PN, Kim HK. Emerging roles of tRNA-derived small RNAs in cancer biology. Exp Mol Med 2023; 55:1293-1304. [PMID: 37430089 PMCID: PMC10393972 DOI: 10.1038/s12276-023-01038-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/29/2023] [Accepted: 05/09/2023] [Indexed: 07/12/2023] Open
Abstract
Transfer RNAs (tRNAs) play an essential role in mRNA translation by delivering amino acids to growing polypeptide chains. Recent data demonstrate that tRNAs can be cleaved by ribonucleases, and the resultant cleavage products, tRNA-derived small RNAs (tsRNAs), have crucial roles in physiological and pathological conditions. They are classified into more than six types according to their size and cleavage positions. Since the initial discovery of the physiological functions of tsRNAs more than a decade ago, accumulating data have demonstrated that tsRNAs play critical roles in gene regulation and tumorigenesis. These tRNA-derived molecules have various regulatory functions at the transcriptional, post-transcriptional, and translational levels. More than a hundred types of modifications are found on tRNAs, affecting the biogenesis, stability, function, and biochemical properties of tsRNA. Both oncogenic and tumor suppressor functions have been reported for tsRNAs, which play important roles in the development and progression of various cancers. Abnormal expression patterns and modification of tsRNAs are associated with various diseases, including cancer and neurological disorders. In this review, we will describe the biogenesis, versatile gene regulation mechanisms, and modification-mediated regulation mechanisms of tsRNA as well as the expression patterns and potential therapeutic roles of tsRNAs in various cancers.
Collapse
Affiliation(s)
- Saebyeol Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jungeun Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Paul N Valdmanis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, 98115, USA
| | - Hak Kyun Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
14
|
Gao H, Zhang Q, Wu W, Gu J, Li J. The diagnostic and prognostic value of tsRNAs in gastric cancers: a systematic review and meta-analysis. Expert Rev Mol Diagn 2023; 23:985-997. [PMID: 37649251 DOI: 10.1080/14737159.2023.2254237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common types of cancer worldwide. Recent studies have shown that tsRNAs play important roles in GC and that changes in the expression levels of tsRNAs can be used for GC diagnosis and treatment response prediction. RESEARCH DESIGN AND METHODS Hazard ratios (HRs), odds ratios (ORs) and 95% confidence intervals (CIs) were used to evaluate the correlation between tsRNA expression and prognosis and other clinicopathologic features of GC patients. The sensitivity, specificity, area under the receiver operating characteristic curve (AUC) and diagnostic odds ratio (DOR) were analyzed to evaluate the diagnostic value of tsRNAs. RESULTS The results showed that patients with tsRNA upregulation had a poor prognosis (HR = 2.48, 95% CI: 1.85-3.34), while patients with tsRNA downregulation had a favorable prognosis (HR = 0.55, 95% CI: 0.31-0.98). In addition, tsRNA expression was significantly correlated with various clinicopathological features in patients with GC. Finally, in diagnostic studies, GC-related tsRNAs could differentiate healthy controls (AUC = 0.81, DOR = 7.74) from patients with inflammation (AUC = 0.74, DOR = 4.44). CONCLUSIONS tsRNAs have potential clinical application in GC diagnosis and prognosis evaluation. It is necessary to further assess and verify the practicability and feasibility of additional specific tsRNAs as GC markers in the future.
Collapse
Affiliation(s)
- Hua Gao
- Taicang Hospital of Traditional Chinese Medicine, Suzhou, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Qiankun Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
| | - Weibing Wu
- Taicang Hospital of Traditional Chinese Medicine, Suzhou, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Gu
- Taicang Hospital of Traditional Chinese Medicine, Suzhou, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Jia Li
- Taicang Hospital of Traditional Chinese Medicine, Suzhou, China
- Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
15
|
Wang XY, Zhou YJ, Chen HY, Chen JN, Chen SS, Chen HM, Li XB. 5’tiRNA-Pro-TGG, a novel tRNA halve, promotes oncogenesis in sessile serrated lesions and serrated pathway of colorectal cancer. World J Gastrointest Oncol 2023; 15:1005-1018. [PMID: 37389118 PMCID: PMC10302996 DOI: 10.4251/wjgo.v15.i6.1005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/27/2023] [Accepted: 04/17/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Transfer RNA (tRNA)-derived small RNAs (tsRNAs) are small fragments that form when tRNAs severe. tRNA halves (tiRNAs), a subcategory of tsRNA, are involved in the oncogenic processes of many tumors. However, their specific role in sessile serrated lesions (SSLs), a precancerous lesion often observed in the colon, has not yet been elucidated.
AIM To identify SSL-related tiRNAs and their potential role in the development of SSLs and serrated pathway of colorectal cancer (CRC).
METHODS Small-RNA sequencing was conducted in paired SSLs and their adjacent normal control (NC) tissues. The expression levels of five SSL-related tiRNAs were validated by q-polymerase chain reaction. Cell counting kit-8 and wound healing assays were performed to detect cell proliferation and migration. The target genes and sites of tiRNA-1:33-Pro-TGG-1 (5′tiRNA-Pro-TGG) were predicted by TargetScan and miRanda algorithms. Metabolism-associated and immune-related pathways were analyzed by single-sample gene set enrichment analysis. Functional analyses were performed to establish the roles of 5′tiRNA-Pro-TGG based on the target genes.
RESULTS In total, we found 52 upregulated tsRNAs and 28 downregulated tsRNAs in SSLs compared to NC. The expression levels of tiRNA-1:33-Gly-CCC-2, tiRNA-1:33-Pro-TGG-1, and tiRNA-1:34-Thr-TGT-4-M2 5′tiRNAs were higher in SSLs than those in NC, while that of 5′tiRNA-Pro-TGG was associated with the size of SSLs. It was demonstrated that 5′tiRNA-Pro-TGG promoted cell proliferation and migration of RKO cell in vitro. Then, heparanase 2 (HPSE2) was identified as a potential target gene of 5′tiRNA-Pro-TGG. Its lower expression was associated with a worse prognosis in CRC. Further, lower expression of HPSE2 was observed in SSLs compared to normal controls or conventional adenomas and in BRAF-mutant CRC compared to BRAF-wild CRC. Bioinformatics analyses revealed that its low expression was associated with a low interferon γ response and also with many metabolic pathways such as riboflavin, retinol, and cytochrome p450 drug metabolism pathways.
CONCLUSION tiRNAs may profoundly impact the development of SSLs. 5′tiRNA-Pro-TGG potentially promotes the progression of serrated pathway CRC through metabolic and immune pathways by interacting with HPSE2 and regulating its expression in SSLs and BRAF-mutant CRC. In the future, it may be possible to use tiRNAs as novel biomarkers for early diagnosis of SSLs and as potential therapeutic targets in serrated pathway of CRC.
Collapse
Affiliation(s)
- Xin-Yuan Wang
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Yu-Jie Zhou
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Hai-Ying Chen
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Jin-Nan Chen
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Shan-Shan Chen
- Department of Spleen and Stomach and Rheumatology, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Hui-Min Chen
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Xiao-Bo Li
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| |
Collapse
|
16
|
Christodoulou S, Sotiropoulou CD, Vassiliu P, Danias N, Arkadopoulos N, Sideris DC. MicroRNA-675-5p Overexpression Is an Independent Prognostic Molecular Biomarker of Short-Term Relapse and Poor Overall Survival in Colorectal Cancer. Int J Mol Sci 2023; 24:9990. [PMID: 37373137 DOI: 10.3390/ijms24129990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Colorectal cancer (CRC) is the main cause of cancer-related deaths globally, highlighting the importance of accurate biomarkers for early detection and accurate prognosis. MicroRNAs (miRNAs) have emerged as effective cancer biomarkers. The aim of this study was to investigate the prognostic potential of miR-675-5p as a molecular prognostic biomarker in CRC. For this reason, a quantitative PCR assay was developed and applied to determine miR-675-5p expression in cDNAs from 218 primary CRC and 90 paired normal colorectal tissue samples. To assess the significance of miR-675-5p expression and its association with patient outcome, extensive biostatistical analysis was performed. miR-675-5p expression was found to be significantly downregulated in CRC tissue samples compared to that in adjacent normal colorectal tissues. Moreover, high miR-675-5p expression was associated with shorter disease-free (DFS) and overall survival (OS) in CRC patients, while it maintained its unfavorable prognostic value independently of other established prognostic factors. Furthermore, TNM stage stratification demonstrated that higher miR-675-5p levels were associated with shorter DFS and OS intervals, particularly in patients with CRC of TNM stage II or III. In conclusion, our findings suggest that miR-675-5p overexpression constitutes a promising molecular biomarker of unfavorable prognosis in CRC, independent of other established prognostic factors, including TNM staging.
Collapse
Affiliation(s)
- Spyridon Christodoulou
- Fourth Department of Surgery, University General Hospital "Attikon", National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Christina D Sotiropoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Panteleimon Vassiliu
- Fourth Department of Surgery, University General Hospital "Attikon", National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Nikolaos Danias
- Fourth Department of Surgery, University General Hospital "Attikon", National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Nikolaos Arkadopoulos
- Fourth Department of Surgery, University General Hospital "Attikon", National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Diamantis C Sideris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| |
Collapse
|
17
|
Di Fazio A, Gullerova M. An old friend with a new face: tRNA-derived small RNAs with big regulatory potential in cancer biology. Br J Cancer 2023; 128:1625-1635. [PMID: 36759729 PMCID: PMC10133234 DOI: 10.1038/s41416-023-02191-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
Transfer RNAs (tRNAs) are small non-coding RNAs (sncRNAs) essential for protein translation. Emerging evidence suggests that tRNAs can also be processed into smaller fragments, tRNA-derived small RNAs (tsRNAs), a novel class of sncRNAs with powerful applications and high biological relevance to cancer. tsRNAs biogenesis is heterogeneous and involves different ribonucleases, such as Angiogenin and Dicer. For many years, tsRNAs were thought to be just degradation products. However, accumulating evidence shows their roles in gene expression: either directly via destabilising the mRNA or the ribosomal machinery, or indirectly via regulating the expression of ribosomal components. Furthermore, tsRNAs participate in various biological processes linked to cancer, including apoptosis, cell cycle, immune response, and retroviral insertion into the human genome. It is emerging that tsRNAs have significant therapeutic potential. Endogenous tsRNAs can be used as cancer biomarkers, while synthetic tsRNAs and antisense oligonucleotides can be employed to regulate gene expression. In this review, we are recapitulating the regulatory roles of tsRNAs, with a focus on cancer biology.
Collapse
Affiliation(s)
- Arianna Di Fazio
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Monika Gullerova
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK.
| |
Collapse
|
18
|
Fu M, Gu J, Wang M, Zhang J, Chen Y, Jiang P, Zhu T, Zhang X. Emerging roles of tRNA-derived fragments in cancer. Mol Cancer 2023; 22:30. [PMID: 36782290 PMCID: PMC9926655 DOI: 10.1186/s12943-023-01739-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 02/01/2023] [Indexed: 02/15/2023] Open
Abstract
tRNA-derived fragments (tRFs) are an emerging category of small non-coding RNAs that are generated from cleavage of mature tRNAs or tRNA precursors. The advance in high-throughput sequencing has contributed to the identification of increasing number of tRFs with critical functions in distinct physiological and pathophysiological processes. tRFs can regulate cell viability, differentiation, and homeostasis through multiple mechanisms and are thus considered as critical regulators of human diseases including cancer. In addition, increasing evidence suggest the extracellular tRFs may be utilized as promising diagnostic and prognostic biomarkers for cancer liquid biopsy. In this review, we focus on the biogenesis, classification and modification of tRFs, and summarize the multifaceted functions of tRFs with an emphasis on the current research status and perspectives of tRFs in cancer.
Collapse
Affiliation(s)
- Min Fu
- grid.452247.2Institute of Digestive Diseases, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, 212002 Jiangsu China ,grid.440785.a0000 0001 0743 511XJiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Jianmei Gu
- grid.260483.b0000 0000 9530 8833Departmemt of Clinical Laboratory Medicine, Nantong Tumor Hospital/Affiliated Tumor Hospital of Nantong University, Nantong, 226361 Jiangsu China
| | - Maoye Wang
- grid.440785.a0000 0001 0743 511XJiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Jiahui Zhang
- grid.440785.a0000 0001 0743 511XJiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Yanke Chen
- grid.440785.a0000 0001 0743 511XJiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Pengcheng Jiang
- grid.452247.2Institute of Digestive Diseases, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, 212002 Jiangsu China
| | - Taofeng Zhu
- Department of Pulmonary and Critical Care Medicine, Yixing Hospital Affiliated to Jiangsu University, Yixing, 214200, Jiangsu, China.
| | - Xu Zhang
- Institute of Digestive Diseases, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China. .,Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
19
|
Hu Y, Zhao J, Shen Y, Zhang C, Xia Q, Zhang G, Wang B, Wei B, Yu R, Ma J, Guo Y. Predictive value of tumor-infiltrating lymphocytes detected by flow cytometry in colorectal cancer. Int Immunopharmacol 2022; 113:109286. [DOI: 10.1016/j.intimp.2022.109286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022]
|
20
|
Xiong Q, Zhang Y, Li J, Zhu Q. Small Non-Coding RNAs in Human Cancer. Genes (Basel) 2022; 13:genes13112072. [PMID: 36360311 PMCID: PMC9690286 DOI: 10.3390/genes13112072] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Small non-coding RNAs are widespread in the biological world and have been extensively explored over the past decades. Their fundamental roles in human health and disease are increasingly appreciated. Furthermore, a growing number of studies have investigated the functions of small non-coding RNAs in cancer initiation and progression. In this review, we provide an overview of the biogenesis of small non-coding RNAs with a focus on microRNAs, PIWI-interacting RNAs, and a new class of tRNA-derived small RNAs. We discuss their biological functions in human cancer and highlight their clinical application as molecular biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Qunli Xiong
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yaguang Zhang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Junjun Li
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Qing Zhu
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence:
| |
Collapse
|
21
|
Yang C, Song J, Park S, Ham J, Park W, Park H, An G, Hong T, Kim HS, Song G, Lim W. Targeting Thymidylate Synthase and tRNA-Derived Non-Coding RNAs Improves Therapeutic Sensitivity in Colorectal Cancer. Antioxidants (Basel) 2022; 11:2158. [PMID: 36358529 PMCID: PMC9686910 DOI: 10.3390/antiox11112158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/01/2023] Open
Abstract
Some colorectal cancer (CRC) patients are resistant to 5-fluorouracil (5-FU), and high expression levels of thymidylate synthase (TS) contribute to this resistance. This study investigated whether quercetin, a representative polyphenol compound, could enhance the effect of 5-FU in CRC cells. Quercetin suppressed TS levels that were increased by 5-FU in CRC cells and promoted the expression of p53. Quercetin also induced intracellular and mitochondrial reactive oxygen species (ROS) production and Ca2+ dysregulation in a 5-FU-independent pathway in CRC cells. Furthermore, quercetin decreased mitochondrial membrane potential in CRC cells and inhibited mitochondrial respiration. Moreover, quercetin regulated the expression of specific tiRNAs, including tiRNAHisGTG, and transfection of a tiRNAHisGTG mimic further enhanced the apoptotic effect of quercetin in CRC cells. An enhanced sensitivity to 5-FU was also confirmed in colitis-associated CRC mice treated with quercetin. The treatment of quercetin decreased survival rates of the CRC mouse model, with reductions in the number of tumors and in the disease activity index. Also, quercetin suppressed TS and PCNA protein expression in the distal colon tissue of CRC mice. These results suggest that quercetin has the potential to be used as an adjuvant with 5-FU for the treatment of CRC.
Collapse
Affiliation(s)
- Changwon Yang
- Department of Biotechnology, Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Jisoo Song
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Korea
| | - Sunwoo Park
- Department of Plant & Biomaterials Science, Gyeongsang National University, Jinju 52725, Korea
| | - Jiyeon Ham
- Department of Biotechnology, Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Wonhyoung Park
- Department of Biotechnology, Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Hahyun Park
- Department of Biotechnology, Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Garam An
- Department of Biotechnology, Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Taeyeon Hong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Korea
| | - Hee Seung Kim
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul 03080, Korea
| | - Gwonhwa Song
- Department of Biotechnology, Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|