1
|
Sabeel Z, Wang J, Dong J, Liu Y, Yu C, Yang Z. The duality of GSK-3β in urinary bladder cancer: Tumor suppressor and promoter roles through multiple signaling pathways. Biochim Biophys Acta Rev Cancer 2025; 1880:189324. [PMID: 40258445 DOI: 10.1016/j.bbcan.2025.189324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 04/11/2025] [Accepted: 04/12/2025] [Indexed: 04/23/2025]
Abstract
Urinary bladder cancer (UBC), the tenth most common cancer globally, is primarily categorized into non-muscle-invasive (NMIBC) and muscle-invasive (MIBC) types. NMIBC has a low risk of metastasis but tends to recur frequently after transurethral resection, whereas MIBC is associated with a higher likelihood of metastasis and poorer prognosis. At diagnosis, roughly 75 % of UBC patients have NMIBC, while the remaining 25 % present with tumor invasion into the bladder's muscle layer. The molecular complexity of UBC has driven research toward identifying subtypes for more personalized treatment approaches. Glycogen synthase kinase-3β (GSK-3β) has emerged as a pivotal regulator in UBC through its dual roles across six key pathways: (1) Wnt/β-catenin regulation (tumor suppression vs oncogenic activation), (2) ER stress responses (apoptosis induction vs cytoprotection), (3) Akt/GSK-3β/β-catenin/c-Myc signaling, (4) PI3K/Akt/mTOR interactions, (5) NF-κB-mediated immune modulation, and (6) Snail1/β-catenin-driven epithelial mesenchymal transition (EMT). Our analysis reveals that GSK-3β's context-dependent functions create both therapeutic opportunities and challenges - while inhibition suppresses tumor growth via β-catenin degradation, it may simultaneously activate NF-κB-mediated oncogenic processes. These paradoxical effects are particularly evident in the tumor microenvironment, where GSK-3β modulation differentially regulates CD8+ T cell function and macrophage polarization. Understanding these complex pathway interactions is crucial for developing precision therapies that exploit GSK-3β's tumor-suppressive roles while mitigating its oncogenic potential.
Collapse
Affiliation(s)
- Zufa Sabeel
- College of Life Science and Technology, State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Jianfeng Wang
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
| | - Jian Dong
- College of Life Science and Technology, State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Yan Liu
- College of Life Science and Technology, State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Changyuan Yu
- College of Life Science and Technology, State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China.
| | - Zhao Yang
- College of Life Science and Technology, State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China.
| |
Collapse
|
2
|
Bailly C. Alkaloids from the medicinal plant Incarvillea sinensis: Molecular diversity, synthesis, pharmacological properties and mechanism of action. Fitoterapia 2025; 183:106548. [PMID: 40246087 DOI: 10.1016/j.fitote.2025.106548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/10/2025] [Accepted: 04/13/2025] [Indexed: 04/19/2025]
Abstract
The plant genus Incarvillea includes several species used in traditional medicine for the treatment of inflammatory diseases and neurodegenerative pathologies in Central Asia. This is the case for the species Incarvillea sinensis Lam. (jiao-hao) used in Chinese medicine for the treatment of rheumatism and various ailments. A variety of alkaloids has been isolated from the plant, including molecules with analgesic properties but also natural products endowed with antitumor activities. The present review provides a survey of the alkaloids isolated from I. sinensis, with a focus on incarvilline-type compounds including incarvillateine, incarvine and incasine derivatives. Bioactive compounds have been identified and used as template for the design of antinociceptive agents or antitumor agents, in the incarvillateine and incarvine series, respectively. The incarvillateine series is difficult to exploit because of the compound has been suspected to trigger neuroinflammation. However, incarvillateine derivatives incorporating a truxillic acid-like moiety are studied as antinociceptive agents. The incarvine series looks more promising with the discovery of antimetastatic products, like incarvine C targeting the GTPase Rac1, frequently overexpressed or mutated in solid tumors. Incarvines C and G represent interesting scaffold to design compounds interfering with the cytoskeleton dynamic via Rac1 inhibition. Altogether, the review shed light on the medicinal interest of Incarvillea sinensis and its bioactive phytoconstituents. The goal is to encourage further studies into the discovery of new Incarvillea natural products and the elucidation of their mechanism of action, while promoting the responsible use of the natural resources.
Collapse
Affiliation(s)
- Christian Bailly
- CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institut, University of Lille, F-59000 Lille, France; Institute of Pharmaceutical Chemistry Albert Lespagnol (ICPAL), Faculty of Pharmacy, University of Lille, F-59006 Lille, France; OncoWitan, Scientific Consulting Office, F-59290 Lille, France.
| |
Collapse
|
3
|
Li D, Linghu M, Tang J, Yang G, Li C, Yao H, Lei H, Huang Y, Huang X. Leveraging AAV1-Rac1T17N to prevent experimental proliferative vitreoretinopathy. J Transl Med 2025; 23:374. [PMID: 40140939 PMCID: PMC11948691 DOI: 10.1186/s12967-025-06391-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Platelet-derived growth factor receptor β (PDGFRβ) is the principal PDGFR isoform in retinal pigment epithelial (RPE) cells from the epiretinal membranes of patients with proliferative vitreoretinopathy (PVR). Ras-related C3 Botulinum toxin substrate 1 (Rac1), a member of the Rho family, is a crucial factor in the cell migration and contraction processes that are inherent to the pathogenesis of PVR. The mutants Rac1T17N and Rac1Q61L can block and promote Rac1 activation, respectively. The major objective of this research was to ascertain whether PDGFRβ mediates vitreous-induced Rac1 activation and whether Rac1T17N could be leveraged for the prevention of PVR pathogenesis in a rabbit model. METHODS A pull-down assay was used to examine GTP Rac1 levels, which are indicative of Rac1 activation, and western blotting was used to assess cellular protein expression. A CCK8 assay, a wound healing assay, a transwell invasion assay and a collagen contraction assay were employed to analyze cell proliferation, migration, invasion and contraction capacity, respectively. A PVR model was created by injecting platelet-rich plasma and human retinal pigment epithelial cells (ARPE-19) into the vitreous cavities of rabbits, and this model was used to evaluate the severity of PVR impacted by intravitreally injected ARPE-19 cells transduced with adeno-associated virus (AAV)1-Rac1T17N or Rac1Q61L. PVR grade was evaluated by a double-blinded investigator according to the Fastenberg classification; in addition, ultrasound and histological analyses were performed to assess PVR severity. RESULTS Vitreous-induced GTP Rac1 is mediated by PDGFRβ. There was a significant decrease in vitreous-induced GTP Rac1 in ARPE-19 cells transduced with AAV1-Rac1T17N compared with those transduced with AAV1-GFP. In addition, the suppression of GTP Rac1 production in human RPE cells by transduction with AAV1-Rac1T17N inhibited vitreous-induced proliferation, migration, invasion, and contractility. Importantly, the results of the animal experiments indicated that although there was a significant increase in PVR potential in rabbits intravitreally injected with ARPE-19 cells infected with AAV1-Rac1Q61L, there was a significant decrease in PVR potential in rabbits intravitreally injected with ARPE-19 cells infected with AAV1-Rac1T17N (P < 0.01). CONCLUSIONS AAV1-Rac1T17N has great potential for PVR therapy.
Collapse
Affiliation(s)
- Duo Li
- Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Emergency Surgery, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou, 570102, China
| | - Minli Linghu
- Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
| | - Jisen Tang
- Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Emergency Surgery, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou, 570102, China
| | - Gukun Yang
- Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Emergency Surgery, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou, 570102, China
| | - Chuanwu Li
- Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
| | - Hang Yao
- Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
| | - Hetian Lei
- Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China.
| | - Yikeng Huang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| | - Xionggao Huang
- Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China.
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Emergency Surgery, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou, 570102, China.
| |
Collapse
|
4
|
He Z, Song K, Han H, Wang L, Chen Z, Shang W. RAC1 promotes the occurrence and development of tongue squamous cell carcinoma by regulating RAC1/PAK1/LIMK1 signaling pathway. Sci Rep 2025; 15:8831. [PMID: 40087375 PMCID: PMC11909172 DOI: 10.1038/s41598-025-92538-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 02/28/2025] [Indexed: 03/17/2025] Open
Abstract
Tongue squamous cell carcinoma (TSCC) remains an unsolved medical problem due to its poor local recurrence rate and prognosis. The purpose of this study was to investigate the expression characteristics of RAC-related C3 botulinum toxin substrate 1(RAC1) in TSCCS and its role in tumor invasion and metastasis. In this study, immunohistochemical staining was used to detect RAC1 expression in 150 tongue cancer specimens. The correlation between RAC1 and clinical-pathological characteristics is analyzed, along with the association between protein levels and disease-specific survival, metastasis-free survival, and local recurrence-free survival. In vitro experiments, RAC1 was knocked down by short hairpin RNA transfection to reveal the role of RAC1 in the invasion and metastasis of TSCC. The regulatory effects of RAC1 on CAL27 cell migration and invasion were evaluated by scratch and invasion methods. The influence of RAC1 expression on tumor growth was scrutinized using a subcutaneous transplant model in nude mice. RAC1 is overexpressed in TSCC and positively correlates with tumor invasion and metastasis. Moreover, elevated RAC1 expression is associated with poorer differentiation. Survival analysis further indicates that high expression of RAC1 is linked to increased recurrence and metastasis rates, as well as poorer prognosis. Additionally, both in vivo and in vitro studies demonstrate that RAC1 may impact tumor progression by modulating the epithelial-mesenchymal transition process through the RAC1/PAK1/LIMK1 signaling pathways. RAC1 overexpression is closely related to the progression of TSCC, and may provide a new prognostic indicator and therapeutic target for tongue cancer.
Collapse
Affiliation(s)
- Zongxuan He
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, Shandong Province, China
- School of Stomatology, Qingdao University, Qingdao, Shandong Province, China
| | - Kai Song
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, Shandong Province, China
- School of Stomatology, Qingdao University, Qingdao, Shandong Province, China
| | - Hongyu Han
- Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong Province, China
| | - Lin Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, Shandong Province, China
- School of Stomatology, Qingdao University, Qingdao, Shandong Province, China
| | - Zhenggang Chen
- Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong Province, China.
| | - Wei Shang
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, Shandong Province, China.
- School of Stomatology, Qingdao University, Qingdao, Shandong Province, China.
| |
Collapse
|
5
|
Shao Z, Ren H, Wang X, Zhang Q, Xue J, Chi Y, Xiu B, Wu J. Comprehensive Pan-Cancer Analysis of RAC1 Decoding the Impact on Cancer Prognosis and B cell immune Regulation. Int J Med Sci 2025; 22:662-679. [PMID: 39898257 PMCID: PMC11783080 DOI: 10.7150/ijms.104488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/04/2025] [Indexed: 02/04/2025] Open
Abstract
RAC1, a member of the Rho family GTPases, has been implicated in various cancers, yet its pan-cancer landscape and role in the tumor immune microenvironment remain underexplored. This study presents a comprehensive analysis of RAC1 across 33 cancer types, revealing its high expression in a broad range of cancers and its association with poor prognosis. RAC1 expression correlates with genomic alterations, including CNVs, TMB, and MSI. RAC1 knockdown reduces cell proliferation and metastasis in breast and lung cancer cells, suggesting its oncogenic potential. Notably, RAC1 is negatively correlated with B cell infiltration, indicating its role in regulating the immune microenvironment. Functional enrichment analysis showed that high RAC1 expression is linked to lower enrichment in B cell activation and immune response pathways. Single-cell transcriptome analysis identified RAC1 expression primarily in epithelial cells, associated with tumor progression, and spatial transcriptome analysis showed a mutually exclusive co-localization between B cell infiltration regions and RAC1-expressing epithelial cells. Based on RAC1 expression and B cell interaction, a prognostic signature was established to predict prognosis at the pan-cancer level.
Collapse
Affiliation(s)
- Zhibo Shao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hengyu Ren
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xuliren Wang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qi Zhang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jingyan Xue
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yayun Chi
- Pathology Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Bingqiu Xiu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jiong Wu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
6
|
Karthikeyan S, Casey PJ, Wang M. RAB4A is a master regulator of cancer cell stemness upstream of NUMB-NOTCH signaling. Cell Death Dis 2024; 15:778. [PMID: 39463384 PMCID: PMC11514220 DOI: 10.1038/s41419-024-07172-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/03/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
Cancer stem cells (CSCs) are a group of specially programmed tumor cells that possess the characteristics of perpetual cell renewal, increased invasiveness, and often, drug resistance. Hence, eliminating CSCs is a major challenge for cancer treatment. Understanding the cellular programs that maintain CSCs, and identifying the critical regulators for such programs, are major undertakings in both basic and translational cancer research. Recently, we have reported that RAB4A is a major regulator of epithelial-to-mesenchymal transition (EMT) and it does so mainly through regulating the activation of RAC1 GTPase. In the current study, we have delineated a new signaling circuitry through which RAB4A transmits its control of cancer stemness. Using in vitro and in vivo studies, we show that RAB4A, as the upstream regulator, relays signal stepwise to NUMB, NOTCH1, RAC1, and then SOX2 to control the self-renewal property of multiple cancer cells of diverse tissue origins. Knockdown of NUMB, or overexpression of NICD (the active fragment NOTCH1) or SOX2, rescued the in vitro sphere-forming and in vivo tumor-forming abilities that were lost upon RAB4A knockdown. Furthermore, we discovered that the chain of control is mostly through transcriptional regulation at every step of the pathway. The discovery of the novel signaling axis of RAB4A-NUMB-NOTCH-SOX2 opens the path for further expansion of the signaling chain and for the identification of new regulators and interacting proteins important for CSC functions, which can be explored to develop new and effective therapies.
Collapse
Affiliation(s)
| | - Patrick J Casey
- Program in Cancer Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Mei Wang
- Program in Cancer Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore.
- Department of Biochemistry, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
7
|
Li Y, Gu A, Yang L, Wang Q. RAC1 serves as a prognostic factor and correlated with immune infiltration in liver hepatocellular carcinoma. J Cancer Res Clin Oncol 2024; 150:418. [PMID: 39264423 PMCID: PMC11393158 DOI: 10.1007/s00432-024-05933-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/28/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (LIHC) has severe consequences due to late diagnosis and the lack of effective therapies. Currently, potential biomarkers for the diagnosis and prognosis of LIHC have not been systematically evaluated. Previous studies have reported that RAC1 is associated with the B cell receptor signaling pathway in various tumor microenvironments, but its relationship with LIHC remains unclear. We investigated the relationship between RAC1 and the prognosis and immune infiltration microenvironment of LIHC, exploring its potential as a prognostic biomarker for this type of cancer. METHODS In this study, we analyzed data from The Cancer Genome Atlas (TCGA) using the Wilcoxon signed-rank test and logistic regression to assess the association between RAC1 expression and clinical characteristics in LIHC patients. Additionally, Kaplan-Meier and Cox regression methods were employed to confirm the impact of RAC1 expression levels on overall survival. Immunohistochemistry was used to validate RAC1 protein expression in LIHC. We constructed RAC1 knockdown LIHC cells and studied the effects of RAC1 protein on cell proliferation and migration at both cellular and animal levels. RESULTS RAC1 expression levels were significantly elevated in LIHC tissues compared to normal tissues. High RAC1 expression was strongly associated with advanced pathological stages and was identified as an independent factor negatively affecting overall survival. At both cellular and animal levels, RAC1 knockdown significantly inhibited the proliferation and migration of LIHC cells. Furthermore, RAC1 expression was positively correlated with the infiltration of Th2 cells and macrophages in the tumor microenvironment, suggesting that RAC1 may contribute to the deterioration of the tumor immunosuppressive microenvironment and potentially lead to reduced patient survival. CONCLUSION These findings indicate that RAC1 expression promotes LIHC proliferation and migration and influences the landscape of immune cell infiltration in the tumor microenvironment. Based on these results, RAC1 is proposed as a potential prognostic biomarker for LIHC, associated with both cancer progression and tumor immune cell infiltration.
Collapse
Affiliation(s)
- Yuan Li
- Department of Chemotherapy, The Second Hospital of Nanjing,Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Aidong Gu
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing,Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Lili Yang
- Department of Chemotherapy, The Second Hospital of Nanjing,Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Qingbo Wang
- Department of Chemotherapy, The Second Hospital of Nanjing,Affiliated to Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
8
|
Zhao P, Zhang J, Song W, Qi D, Huang Y, Su Y, Wu R, Zhang L, Zhang S. Incarvine C and its analogues inhibit the formation of cell cytoskeleton by targeting Rac1. Bioorg Chem 2024; 149:107512. [PMID: 38833990 DOI: 10.1016/j.bioorg.2024.107512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/17/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
Ras-related C3 botulinum toxin substrate 1 (Rac1) has emerged as a key regulator in the treatment of cancer metastasis because of its involvement in the formation of cell plate pseudopods and effects on cell migration. In this study, we found that incarvine C, a natural product isolated from Incarvillea sinensis, and its seven analogues exhibited antitumour activity by inhibiting cell cytoskeleton formation, with moderate cytotoxicity. Accordingly, these compounds inhibited the cytoskeleton-mediated migration and invasion of MDA-MB-231 cells, with inhibition rates ranging from 37.30 % to 69.72 % and 51.27 % to 70.90 % in vitro, respectively. Moreover, they induced G2/M phase cell cycle arrest in MDA-MB-231 cells. A pull-down assay revealed that the interaction between Rac1 and its downstream effector protein PAK1 was inhibited by these compounds and that the compound Ano-6 exhibited substantial activity, with an inhibition rate of more than 90 %. Molecular docking showed that incarvine C and its analogues could bind to the nucleotide-binding pocket of Rac1, maintaining high levels of inactivated Rac1. As Ano-6 exhibited significant activity in vitro, its anti-cancer activity was tested in vivo. Four weeks of oral treatment with Ano-6 was well-tolerated in mice, and it induced a potential anti-tumour response in xenografts of MDA-MB-231 cells. Further studies demonstrated that Ano-6 was enriched in tumour tissues after 2 h of administration and induced an increase in the number of dead tumour cells. In summary, these findings not only reveal the mechanism of incarvine C but also provide a new molecular template for Rac1 inhibitors and identify a promising candidate for breast cancer treatment.
Collapse
Affiliation(s)
- Pengxiang Zhao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251 Ningda Road, Xining 810016, Qinghai, China; Department of Pharmacy, Medical College of Qinghai University, 16 Kunlun Road, Xining 810016, Qinghai, China
| | - Jie Zhang
- Qinghai University Affiliated Hospital, 29 Tongren Road, Xining 810016, Qinghai, China
| | - Weirong Song
- Department of Pharmacy, Medical College of Qinghai University, 16 Kunlun Road, Xining 810016, Qinghai, China
| | - Danshi Qi
- Department of Pharmacy, Medical College of Qinghai University, 16 Kunlun Road, Xining 810016, Qinghai, China
| | - Yongchun Huang
- Department of Pharmacy, Medical College of Qinghai University, 16 Kunlun Road, Xining 810016, Qinghai, China
| | - Yudong Su
- Department of Pharmacy, Medical College of Qinghai University, 16 Kunlun Road, Xining 810016, Qinghai, China
| | - Rumeng Wu
- Department of Pharmacy, Medical College of Qinghai University, 16 Kunlun Road, Xining 810016, Qinghai, China
| | - Lirong Zhang
- Department of Pharmacy, Medical College of Qinghai University, 16 Kunlun Road, Xining 810016, Qinghai, China
| | - Shoude Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251 Ningda Road, Xining 810016, Qinghai, China; Department of Pharmacy, Medical College of Qinghai University, 16 Kunlun Road, Xining 810016, Qinghai, China.
| |
Collapse
|
9
|
Morimoto K, Ishitobi J, Noguchi K, Kira R, Kitayama Y, Goto Y, Fujiwara D, Michigami M, Harada A, Takatani-Nakase T, Fujii I, Futaki S, Kanada M, Nakase I. Extracellular Microvesicles Modified with Arginine-Rich Peptides for Active Macropinocytosis Induction and Delivery of Therapeutic Molecules. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17069-17079. [PMID: 38563247 PMCID: PMC11011658 DOI: 10.1021/acsami.3c14592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Extracellular vesicles (EVs), including exosomes and microvesicles (MVs), transfer bioactive molecules from donor to recipient cells in various pathophysiological settings, thereby mediating intercellular communication. Despite their significant roles in extracellular signaling, the cellular uptake mechanisms of different EV subpopulations remain unknown. In particular, plasma membrane-derived MVs are larger vesicles (100 nm to 1 μm in diameter) and may serve as efficient molecular delivery systems due to their large capacity; however, because of size limitations, receptor-mediated endocytosis is considered an inefficient means for cellular MV uptake. This study demonstrated that macropinocytosis (lamellipodia formation and plasma membrane ruffling, causing the engulfment of large fluid volumes outside cells) can enhance cellular MV uptake. We developed experimental techniques to induce macropinocytosis-mediated MV uptake by modifying MV membranes with arginine-rich cell-penetrating peptides for the intracellular delivery of therapeutic molecules.
Collapse
Affiliation(s)
- Kenta Morimoto
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Jojiro Ishitobi
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Kosuke Noguchi
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Ryoichi Kira
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Yukiya Kitayama
- Department
of Applied Chemistry, Graduate School of
Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho,
Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Yuto Goto
- Department
of Applied Chemistry, Graduate School of
Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho,
Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Daisuke Fujiwara
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Masataka Michigami
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Atsushi Harada
- Department
of Applied Chemistry, Graduate School of
Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho,
Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Tomoka Takatani-Nakase
- Department
of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women’s University, 11-68, Koshien Kyuban-cho, Nishinomiya 663-8179, Hyogo, Japan
- Institute
for Bioscience, Mukogawa Women’s University, 11-68, Koshien Kyuban-cho, Nishinomiya 663-8179, Hyogo, Japan
| | - Ikuo Fujii
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Shiroh Futaki
- Institute
for Chemical Research, Kyoto University, Uji 611-0011, Kyoto, Japan
| | - Masamitsu Kanada
- Institute
for Quantitative Health Science and Engineering (IQ), Michigan State
University, East Lansing, Michigan 48824, United States
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, Michigan 48824, United States
| | - Ikuhiko Nakase
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| |
Collapse
|
10
|
Bailly C, Degand C, Laine W, Sauzeau V, Kluza J. Implication of Rac1 GTPase in molecular and cellular mitochondrial functions. Life Sci 2024; 342:122510. [PMID: 38387701 DOI: 10.1016/j.lfs.2024.122510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
Rac1 is a member of the Rho GTPase family which plays major roles in cell mobility, polarity and migration, as a fundamental regulator of actin cytoskeleton. Signal transduction by Rac1 occurs through interaction with multiple effector proteins, and its activity is regulated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). The small protein is mainly anchored to the inner side of the plasma membrane but it can be found in endocellular compartments, notably endosomes and cell nuclei. The protein localizes also into mitochondria where it contributes to the regulation of mitochondrial dynamics, including both mitobiogenesis and mitophagy, in addition to signaling processes via different protein partners, such as the proapoptotic protein Bcl-2 and chaperone sigma-1 receptor (σ-1R). The mitochondrial form of Rac1 (mtRac1) has been understudied thus far, but it is as essential as the nuclear or plasma membrane forms, via its implication in regulation of oxidative stress and DNA damages. Rac1 is subject to diverse post-translational modifications, notably to a geranylgeranylation which contributes importantly to its mitochondrial import and its anchorage to mitochondrial membranes. In addition, Rac1 contributes to the mitochondrial translocation of other proteins, such as p53. The mitochondrial localization and functions of Rac1 are discussed here, notably in the context of human diseases such as cancers. Inhibitors of Rac1 have been identified (NSC-23766, EHT-1864) and some are being developed for the treatment of cancer (MBQ-167) or central nervous system diseases (JK-50561). Their effects on mtRac1 warrant further investigations. An overview of mtRac1 is provided here.
Collapse
Affiliation(s)
- Christian Bailly
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France; University of Lille, Faculty of Pharmacy, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), 3 rue du Professeur Laguesse, 59000 Lille, France; OncoWitan, Consulting Scientific Office, Lille (Wasquehal) 59290, France.
| | - Claire Degand
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France
| | - William Laine
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France
| | - Vincent Sauzeau
- Université de Nantes, CHU Nantes, CNRS, INSERM, Institut du thorax, Nantes, France
| | - Jérôme Kluza
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France
| |
Collapse
|
11
|
Tao L, Xu X, Fang Z, Christopoulos P, Cortinovis D, Lu Y. RAC1 as a potential pan-cancer diagnostic, prognostic, and immunological biomarker. Transl Cancer Res 2024; 13:1533-1553. [PMID: 38617518 PMCID: PMC11009796 DOI: 10.21037/tcr-23-2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/21/2024] [Indexed: 04/16/2024]
Abstract
Background Ras-related C3 botulinum toxin substrate 1 (RAC1) is an important member of the Rho GTPase family involved in tumorigenesis. However, its role and potential clinical utility across cancer entities in solid tumors is unknown. Methods We analyzed data from various databases, including The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression Project, cBioPortal, Tumor Immune Estimation Resource 2 (TIMER2), and published articles. A prognostic nomogram for liver hepatocellular carcinoma (LIHC) patients was developed based on RAC1-guanosine triphosphate (GTP) gene expression levels, which were validated using immunohistochemistry (IHC). Results In this study, RAC1 was highly expressed in most cancers and correlated with prognosis and pathological stages. Furthermore, significant associations were observed between RAC1 and DNA methylation, immune cell infiltration, immune-related genes, tumor mutational burden, and microsatellite instability in most tumors. As a use case, we employed gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) to analyze the biologic importance of RAC1 expression and established a prognostic nomogram based on tumor stage and RAC1 expression, which can better predict the overall survival rate of patients with LIHC better than tumor stage alone. The gene expression results were validated with IHC, which confirmed a higher expression of the RAC1-GTP protein in LIHC compared to paracancerous tissues. Conclusions This extensive solid tumor analysis provides sound evidence that RAC1 can serve as both as an immunotherapy target and as a diagnostic and prognostic biomarker.
Collapse
Affiliation(s)
- Linglong Tao
- Department of Radiation Oncology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Xiaoyu Xu
- Department of Radiation Oncology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Zhengxuying Fang
- Department of Radiation Oncology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Petros Christopoulos
- Department of Oncology, Thoraxklinik and National Center for Tumor Diseases (NCT) at Heidelberg University Hospital, Heidelberg, Germany
- Translational Lung Research Center Heidelberg, Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Diego Cortinovis
- SC Medical Oncology/SS Lung Unit, Fondazione IRCCS San Gerardo dei Tintori Monza, Monza, Italy
| | - Yi Lu
- Department of Radiation Oncology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| |
Collapse
|
12
|
Bailly C, Beignet J, Loirand G, Sauzeau V. Rac1 as a therapeutic anticancer target: Promises and limitations. Biochem Pharmacol 2022; 203:115180. [PMID: 35853497 DOI: 10.1016/j.bcp.2022.115180] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022]
Abstract
Small molecule inhibitors of GTPases are increasingly considered for the treatment of multiple human pathologies. The GTPase Rac1 (Ras-related C3 botulinum toxin substrate 1) plays major roles in vital cellular processes, notably in the control cell motility and dynamic, the regulation of oxidative stress, and in inflammatory and immune surveillance. As such, Rac1 is viewed as a potential target to combat cancers but also diverse inflammatory, metabolic, neurodegenerative, respiratory, cardiovascular, viral, and parasitic diseases. Potent and selective Rac1 inhibitors have been identified and designed, such as compounds GYS32661 and MBQ-167 both in preclinical development for the treatment of advanced solid tumors. The pleiotropic roles and ubiquitous expression of the protein can be viewed as limitations for anticancer approaches. However, the frequent overexpression and/or hyperactivation of the Rac1 in difficult-to-treat chemoresistant cancers, make Rac1 an attractive target in oncology. The key roles of Rac1 in multiple cellular pathways, together with its major implications in carcinogenesis, tumor proliferation and metastasis, support the development of small molecule inhibitors. The challenge is high and the difficulty shall not be underestimated, but the target is innovative and promising in combination with chemo- and/or immuno-therapy. Opportunities and challenges associated with the targeting of Rac1 are discussed.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, Lille (Wasquehal), 59290, France.
| | - Julien Beignet
- SATT Ouest Valorisation, 30 boulevard Vincent Gâche, CS 70211, 44202 Nantes cedex, France
| | - Gervaise Loirand
- Université de Nantes, CHU Nantes, CNRS, INSERM, Institut du thorax, Nantes, France
| | - Vincent Sauzeau
- Université de Nantes, CHU Nantes, CNRS, INSERM, Institut du thorax, Nantes, France
| |
Collapse
|