1
|
Neto DCF, Diz JSF, Guimarães SJA, Dos Santos EM, Nascimento MDDSB, de Azevedo-Santos APS, França TCC, LaPlante SR, do Nascimento CJ, Lima JA. Guanylhydrazone and semicarbazone derivatives as potential prototypes for the design of cholinesterase inhibitors against Alzheimer's disease: biological evaluation and molecular modeling studies. Chem Biol Interact 2025; 415:111515. [PMID: 40246050 DOI: 10.1016/j.cbi.2025.111515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Despite being present in many drugs, guanylhydrazones and semicarbazones are two functional groups that have been little investigated as potential therapeutic strategies for the treatment of Alzheimer's disease (AD). For this reason, we initiated the synthesis and evaluation of these compounds as potential anticholinesterase agents, aiming to offer new alternatives for drug development against AD. In the severe phase of AD butyrylcholinesterase (BChE) becomes the main enzyme responsible for the hydrolysis of acetylcholine (ACh). Therefore, in this project, we present the results of BChE inhibitory activity, enzyme kinetics, cytotoxicity, and molecular modeling studies for three guanylhydrazone and two semicarbazone derivatives that were previously synthesized and evaluated as acetylcholinesterase (AChE) inhibitors. Among the compounds tested, guanylhydrazones (1, 2, and 3) showed inhibitory activity against BChE, exhibiting a mixed non-competitive inhibition profile. Specifically, compound 2 (phenanthrenequinone) demonstrated superior inhibitory potency with an IC50 of 0.68 μM, compared to compound 1 (acridinone) with an IC50 of 3.87 μM, and compound 3 (benzodioxole) with an IC50 of 101.7 μM. In contrast, semicarbazones (4 and 5) showed no BChE inhibition up to the highest concentration tested (300 μM). Importantly, all five compounds were found to be non-cytotoxic. Our results suggest that these compounds have potential as drug prototypes targeting different phases of AD. Compounds 3, 4, and 5 may be more effective in the early phase, when AChE activity remains high; compound 1 could be useful in the intermediate phase; and compound 2 appears particularly promising for the severe phase, when BChE plays a more dominant role.
Collapse
Affiliation(s)
- Denise Cristian Ferreira Neto
- Medicinal Chemistry Group, Department of Chemistry, Military Institute of Engineering, Praça General Tibúrcio 80, 22290-270, Rio de Janeiro, RJ, Brazil; Department of Chemistry, Federal University of Roraima, Av. Cap. Ene Garcês, 2413, 69310-000, Boa Vista, Roraima, Brazil.
| | - Joyce Sobreiro Francisco Diz
- Laboratory of Molecular Modeling Applied to the Chemical and Biological Defense (LMCBD), Military Institute of Engineering (IME), Praça General Tibúrcio 80, 22290-270, Rio de Janeiro, Brazil; Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (CTEx), Av. das Américas 28705, Área 4, 23020-470, Rio de Janeiro, RJ, Brazil
| | - Sulayne Janayna Araújo Guimarães
- Laboratory for Applied Cancer Immunology, Biological and Health Sciences Center, Federal University of Maranhão, Avenida dos Portugueses, 1966, Bacanga, 65080-805, São Luís, Maranhão, Brazil
| | - Eduardo Mendes Dos Santos
- Federal University of Maranhão, Postgraduate Program in Adult Health (PPGSAD), Avenida dos Portugueses, 1966, Bacanga, 65080-805, São Luís, Maranhão, Brazil
| | | | - Ana Paula Silva de Azevedo-Santos
- Laboratory for Applied Cancer Immunology, Biological and Health Sciences Center, Federal University of Maranhão, Avenida dos Portugueses, 1966, Bacanga, 65080-805, São Luís, Maranhão, Brazil
| | - Tanos Celmar Costa França
- Laboratory of Molecular Modeling Applied to the Chemical and Biological Defense (LMCBD), Military Institute of Engineering (IME), Praça General Tibúrcio 80, 22290-270, Rio de Janeiro, Brazil; Université de Québec, INRS - Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec, H7V 1B7, Canada; Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
| | - Steven R LaPlante
- Université de Québec, INRS - Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Claudia Jorge do Nascimento
- Institute of Biosciences, Federal University of the State of Rio de Janeiro, Av. Pasteur, 296, Urca, 22290-250, Rio de Janeiro, Brazil
| | - Josélia Alencar Lima
- Federal University of Maranhão, Postgraduate Program in Adult Health (PPGSAD), Avenida dos Portugueses, 1966, Bacanga, 65080-805, São Luís, Maranhão, Brazil.
| |
Collapse
|
2
|
Azam U, Naseer MM, Rochais C. Analysis of skeletal diversity of multi-target directed ligands (MTDLs) targeting Alzheimer's disease. Eur J Med Chem 2025; 286:117277. [PMID: 39848035 DOI: 10.1016/j.ejmech.2025.117277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/25/2025]
Abstract
Alzheimer's disease (AD) remains a significant healthcare challenge, necessitating innovative therapeutic approaches to address its complex and multifactorial nature. Traditional drug discovery strategies targeting single molecular targets are not sufficient for the effective treatment of AD. In recent years, MTDLs have emerged as promising candidates for AD therapy, aiming to simultaneously modulate multiple pathological targets. Among the various strategies employed in MTDL design, pharmacophore hybridization offers a versatile approach to integrate diverse pharmacophoric features within a single molecular scaffold. This strategy provides access to a wide array of chemical space for the design and development of novel therapeutic agents. This review, therefore, provides a comprehensive overview of skeletal diversity exhibited by MTDLs designed recently for AD therapy based on pharmacophore hybridization approach. A diverse range of pharmacophoric elements and core scaffolds hybridized to construct MTDLs that has the potential to target multiple pathological features of AD including amyloid-beta aggregation, tau protein hyperphosphorylation, cholinergic dysfunction, oxidative stress, and neuroinflammation are discussed. Through the comprehensive analysis and integration of structural insights of key biomolecular targets, this review aims to enhance optimization efforts in MTDL design, ultimately striving towards a comprehensive cure for the multifaceted pathophysiology of the disease.
Collapse
Affiliation(s)
- Uzma Azam
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Moazzam Naseer
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan; Université de Caen Normandie, Normandie Univ., CERMN, 14000, Caen, France.
| | - Christophe Rochais
- Université de Caen Normandie, Normandie Univ., CERMN, 14000, Caen, France.
| |
Collapse
|
3
|
Leuci R, Brunetti L, Tufarelli V, Cerini M, Paparella M, Puvača N, Piemontese L. Role of copper chelating agents: between old applications and new perspectives in neuroscience. Neural Regen Res 2025; 20:751-762. [PMID: 38886940 PMCID: PMC11433910 DOI: 10.4103/nrr.nrr-d-24-00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/12/2024] [Accepted: 04/03/2024] [Indexed: 06/20/2024] Open
Abstract
The role of copper element has been an increasingly relevant topic in recent years in the fields of human and animal health, for both the study of new drugs and innovative food and feed supplements. This metal plays an important role in the central nervous system, where it is associated with glutamatergic signaling, and it is widely involved in inflammatory processes. Thus, diseases involving copper (II) dyshomeostasis often have neurological symptoms, as exemplified by Alzheimer's and other diseases (such as Parkinson's and Wilson's diseases). Moreover, imbalanced copper ion concentrations have also been associated with diabetes and certain types of cancer, including glioma. In this paper, we propose a comprehensive overview of recent results that show the importance of these metal ions in several pathologies, mainly Alzheimer's disease, through the lens of the development and use of copper chelators as research compounds and potential therapeutics if included in multi-target hybrid drugs. Seeing how copper homeostasis is important for the well-being of animals as well as humans, we shortly describe the state of the art regarding the effects of copper and its chelators in agriculture, livestock rearing, and aquaculture, as ingredients for the formulation of feed supplements as well as to prevent the effects of pollution on animal productions.
Collapse
Affiliation(s)
- Rosalba Leuci
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Bari, Italy
| | - Leonardo Brunetti
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Bari, Italy
| | - Vincenzo Tufarelli
- Department of Precision and Regenerative Medicine and Jonian Area (DiMePRe-J), Section of Veterinary Science and Animal Production, University of Bari Aldo Moro, Bari, Italy
| | - Marco Cerini
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Bari, Italy
| | - Marco Paparella
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Bari, Italy
| | - Nikola Puvača
- Department of Engineering Management in Biotechnology, Faculty of Economics and Engineering Management in Novi Sad, University Business Academy in Novi Sad, Novi Sad, Serbia
| | - Luca Piemontese
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
4
|
Elkotamy MS, Elgohary MK, Alkabbani MA, Hefina MM, Tawfik HO, Fares M, Eldehna WM, Abdel-Aziz HA. Design, synthesis, and evaluation of novel benzofuran and pyrazole-based derivatives as dual AChE/BuChE inhibitors with antioxidant properties for Alzheimer's disease management. Eur J Med Chem 2025; 283:117158. [PMID: 39673864 DOI: 10.1016/j.ejmech.2024.117158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/19/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
As a complicated neurodegenerative disorder with several clinical hallmarks, Alzheimer's disease (AD) requires multi-target treatment medicines to address multiple elements of disease progression. In this study, we reported two novel series of compounds: benzofuran-based donepezil analogs (9a-i) and their pyrazole-based counterparts (11a-i) as potential dual inhibitors of AChE and BuChE with additional antioxidant properties, aiming to address multiple pathological aspects of AD simultaneously. The design strategy employed bioisosteric replacement, substituting donepezil's indanone motif with a benzofuran ring in series (9a-i) to maintain crucial hydrogen bonding interactions with the Phe295 residue in the enzyme's active site. Subsequently, the benzofuran ring underwent cleavage, yielding pyrazole-tethered hydroxyphenyl derivatives (11a-i). The biological evaluation revealed that benzofuran-based derivative 9g exhibited exceptional efficacy against both AChE and BuChE, with IC50 values of 0.39 and 0.51 μg/ml, respectively, although it lacked antioxidant activity. Compound 11f demonstrated dual inhibition of AChE (IC50 = 1.24 μg/ml) and BuChE (IC50 = 1.85 μg/ml) while also displaying strong DPPH free radical scavenging activity (IC50 = 3.15 μg/ml). In vivo toxicity studies on compound 11f revealed a favorable safety profile, with no signs of toxicity or adverse events in acute oral toxicity tests in male Wistar rats. Chronic administration of 11f resulted in negligible differences in blood profiles, hepatic enzymes, urea, creatinine, and albumin levels compared to the control group. Histopathological examination of hepatic and kidney tissues from treated rats showed normal histology without damage. In silico molecular docking analysis was performed to rationalize the design approaches and support the experimental findings. This study provides valuable insights into the development of multi-target compounds for potential Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Mahmoud S Elkotamy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Cairo, 11829, Egypt.
| | - Mohamed K Elgohary
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Cairo, 11829, Egypt
| | - Mahmoud Abdelrahman Alkabbani
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Cairo, 11829, Egypt
| | - Mohamed M Hefina
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Mohamed Fares
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Cairo, 11829, Egypt; School of Pharmacy, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt.
| | - Hatem A Abdel-Aziz
- Applied Organic Chemistry Department, National Research Center, Dokki, Cairo, 12622, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Canal El Mahmoudia St., Alexandria, 21648, Egypt.
| |
Collapse
|
5
|
Dias I, Bon L, Banas A, Chavarria D, Borges F, Guerreiro-Oliveira C, Cardoso SM, Sanna D, Garribba E, Chaves S, Santos MA. Exploiting the potential of rivastigmine-melatonin derivatives as multitarget metal-modulating drugs for neurodegenerative diseases. J Inorg Biochem 2025; 262:112734. [PMID: 39378762 DOI: 10.1016/j.jinorgbio.2024.112734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/19/2024] [Accepted: 09/08/2024] [Indexed: 10/10/2024]
Abstract
The multifaceted nature of the neurodegenerative diseases, as Alzheimer's disease (AD) and Parkinson's disease (PD) with several interconnected etiologies, and the absence of effective drugs, led herein to the development and study of a series of multi-target directed ligands (MTDLs). The developed RIV-IND hybrids, derived from the conjugation of an approved anti-AD drug, rivastigmine (RIV), with melatonin analogues, namely indole (IND) derivatives, revealed multifunctional properties, by associating the cholinesterase inhibition of the RIV drug with antioxidant activity, biometal (Cu(II), Zn(II), Fe(III)) chelation properties, inhibition of amyloid-β (Aβ) aggregation (self- and Cu-induced) and of monoamine oxidases (MAOs), as well as neuroprotection capacity in cell models of AD and PD. In particular, two hybrids with hydroxyl-substituted indoles (5a2 and 5a3) could be promising multifunctional compounds that inspire further development of novel anti-neurodegenerative drugs.
Collapse
Affiliation(s)
- Inês Dias
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Leo Bon
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Angelika Banas
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Daniel Chavarria
- CIQUP-IMS, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Fernanda Borges
- CIQUP-IMS, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Catarina Guerreiro-Oliveira
- CNC-Center for Neuroscience and Cell Biology, Faculty of Medicine University of Coimbra (FMUC), 3004-504 Coimbra, Portugal
| | - Sandra M Cardoso
- CNC-Center for Neuroscience and Cell Biology, Faculty of Medicine University of Coimbra (FMUC), 3004-504 Coimbra, Portugal; Faculty of Medicine, University of Coimbra (FMUC), 3004-504 Coimbra, Portugal
| | - Daniele Sanna
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Trav. La Crucca 3, I-07040 Sassari, Italy
| | - Eugenio Garribba
- Dipartimento di Medicina, Chimica e Farmacia, Università di Sassari, Viale San Pietro, 07100 Sassari, Italy
| | - Sílvia Chaves
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - M Amélia Santos
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| |
Collapse
|
6
|
Don Bosco RB, Selvan Christyraj JRS, Yesudhason BV. Synergistic activity of nootropic herbs as potent therapeutics for Alzheimer's disease: A cheminformatics, pharmacokinetics, and system pharmacology approach. J Alzheimers Dis Rep 2024; 8:1745-1762. [PMID: 40034353 PMCID: PMC11863741 DOI: 10.1177/25424823241307019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/11/2024] [Indexed: 03/05/2025] Open
Abstract
Background Alzheimer's disease (AD) is a progressive neurodegenerative disorder, which subdues over 55 million people and finding a cure, still remains disenchanting. Indian medicinal herbs notably, Withania somnifera, Bacopa monnieri, Curcuma longa, and Clitoria ternatea are traditionally utilized for their memory-enhancing properties. Objective We computationally investigated the therapeutic potential of four nootropic herbs by uncovering the molecular mechanisms underlying their treatment for AD. Methods Cheminformatics, pharmacokinetics, and system pharmacology studies were carried out to predict the phytocompounds drug-like properties, protein targets, targets functional association and enrichment analysis. A comparative study was performed with phytocompounds and FDA-approved drugs. Investigation on the expression of protein targets in the hippocampus and entorhinal cortex of the AD brain was performed. Network was constructed to depict the interaction between phytocompounds, drugs, and molecular targets. Results Through comparative analysis, we found that the phytocompounds shared common targets with both FDA drugs and drugs under clinical trials. We identified potential active compounds notably, Withaferin A, Withanolide-D, Withanolide-E, Withanolide-G, and Humulene epoxide II, that can combat AD. Interestingly, the enzyme inhibition scores of the identified drugs were much higher than FDA-approved drugs. In addition, regulatory proteins such as AβPP, acetylcholinesterase, BACE1, and PTPN1 were the targets of 8, 16, 9, and 22 phytocompounds, respectively. Nonetheless, AR and CYP19A, were the primary targets of most phytocompounds. Conclusions Herbal medicines can synergistically stimulate multiple protein targets, rendering a holistic and integrative treatment, encouraging a promising avenue to treat AD.
Collapse
Affiliation(s)
- Reiya Bosco Don Bosco
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, India
| | - Johnson Retnaraj Samuel Selvan Christyraj
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, India
| | - Beryl Vedha Yesudhason
- Johnson Retnaraj Samuel Selvan Christyraj and Beryl Vedha Yesudhason, Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India.
Emails: ;
| |
Collapse
|
7
|
Leuci R, Simic S, Carrieri A, Chaves S, La Spada G, Brunetti L, Tortorella P, Loiodice F, Laghezza A, Catto M, Santos MA, Tufarelli V, Wackerlig J, Piemontese L. Rivastigmine structure-based hybrids as potential multi-target anti-Alzheimer's drug candidates. Bioorg Chem 2024; 153:107895. [PMID: 39454499 DOI: 10.1016/j.bioorg.2024.107895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
In recent years, an increasing amount of work has been carried out regarding the study of the etiopathology of Alzheimer's Disease (AD). This neurodegenerative disease is characterized by several organic and molecular correlates, which paint a complex picture that also reflects the historic challenge faced by the worldwide scientific community in finding an effective cure for it. In this paper, we describe the synthesis of novel rivastigmine derivatives and their characterization as wide-spectrum enzyme (AChE, BChE, FAAH, MAO-A and MAO-B) inhibitors with potential application in the therapy of AD following the paradigm of multi-target design. 5 (ROS151) and 23 show similar inhibitory profile compared to donepezil on cholinesterases, and ca. two hundred twenty-three and eighty-seven times more active than rivastigmine on AChE. Moreover, ROS151 was found to be a potential metal chelator. Compounds 6 and 8 are very interesting and original multi-functional promising hybrids, with comparable potency on distinct panels of enzymes. All these promising rivastigmine-like hybrids were assayed for their pharmacokinetic properties by using different bio-analytical techniques, showing interesting applicability profiles. Moreover, cytotoxicity assays displayed a safety profile on three different cell lines.
Collapse
Affiliation(s)
- Rosalba Leuci
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70126 Bari, Italy
| | - Stefan Simic
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | - Antonio Carrieri
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70126 Bari, Italy
| | - Sílvia Chaves
- Centro de Química Estrutural, Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisboa 1049-001, Portugal
| | - Gabriella La Spada
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70126 Bari, Italy
| | - Leonardo Brunetti
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70126 Bari, Italy
| | - Paolo Tortorella
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70126 Bari, Italy
| | - Fulvio Loiodice
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70126 Bari, Italy
| | - Antonio Laghezza
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70126 Bari, Italy
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70126 Bari, Italy
| | - M Amélia Santos
- Centro de Química Estrutural, Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisboa 1049-001, Portugal
| | - Vincenzo Tufarelli
- Department of Precision and Regenerative Medicine and Jonian Area (DiMePRe-J), Section of Veterinary Science and Animal Production, University of Bari Aldo Moro, Valenzano, 70010, Italy
| | - Judith Wackerlig
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | - Luca Piemontese
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70126 Bari, Italy.
| |
Collapse
|
8
|
Cacabelos R, Martínez-Iglesias O, Cacabelos N, Carrera I, Corzo L, Naidoo V. Therapeutic Options in Alzheimer's Disease: From Classic Acetylcholinesterase Inhibitors to Multi-Target Drugs with Pleiotropic Activity. Life (Basel) 2024; 14:1555. [PMID: 39768263 PMCID: PMC11678002 DOI: 10.3390/life14121555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
Alzheimer's disease (AD) is a complex/multifactorial brain disorder involving hundreds of defective genes, epigenetic aberrations, cerebrovascular alterations, and environmental risk factors. The onset of the neurodegenerative process is triggered decades before the first symptoms appear, probably due to a combination of genomic and epigenetic phenomena. Therefore, the primary objective of any effective treatment is to intercept the disease process in its presymptomatic phases. Since the approval of acetylcholinesterase inhibitors (Tacrine, Donepezil, Rivastigmine, Galantamine) and Memantine, between 1993 and 2003, no new drug was approved by the FDA until the advent of immunotherapy with Aducanumab in 2021 and Lecanemab in 2023. Over the past decade, more than 10,000 new compounds with potential action on some pathogenic components of AD have been tested. The limitations of these anti-AD treatments have stimulated the search for multi-target (MT) drugs. In recent years, more than 1000 drugs with potential MT function have been studied in AD models. MT drugs aim to address the complex and multifactorial nature of the disease. This approach has the potential to offer more comprehensive benefits than single-target therapies, which may be limited in their effectiveness due to the intricate pathology of AD. A strategy still unexplored is the combination of epigenetic drugs with MT agents. Another option could be biotechnological products with pleiotropic action, among which nosustrophine-like compounds could represent an attractive, although not definitive, example.
Collapse
Affiliation(s)
- Ramón Cacabelos
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, 15165 Corunna, Spain; (O.M.-I.); (N.C.); (I.C.); (L.C.); (V.N.)
| | | | | | | | | | | |
Collapse
|
9
|
Thawabteh AM, Ghanem AW, AbuMadi S, Thaher D, Jaghama W, Karaman D, Karaman R. Recent Advances in Therapeutics for the Treatment of Alzheimer's Disease. Molecules 2024; 29:5131. [PMID: 39519769 PMCID: PMC11547905 DOI: 10.3390/molecules29215131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
The most prevalent chronic neurodegenerative illness in the world is Alzheimer's disease (AD). It results in mental symptoms including behavioral abnormalities and cognitive impairment, which have a substantial financial and psychological impact on the relatives of the patients. The review discusses various pathophysiological mechanisms contributing to AD, including amyloid beta, tau protein, inflammation, and other factors, while emphasizing the need for effective disease-modifying therapeutics that alter disease progression rather than merely alleviating symptoms. This review mainly covers medications that are now being studied in clinical trials or recently approved by the FDA that fall under the disease-modifying treatment (DMT) category, which alters the progression of the disease by targeting underlying biological mechanisms rather than merely alleviating symptoms. DMTs focus on improving patient outcomes by slowing cognitive decline, enhancing neuroprotection, and supporting neurogenesis. Additionally, the review covers amyloid-targeting therapies, tau-targeting therapies, neuroprotective therapies, and others. This evaluation specifically looked at studies on FDA-approved novel DMTs in Phase II or III development that were carried out between 2021 and 2024. A thorough review of the US government database identified clinical trials of biologics and small molecule drugs for 14 agents in Phase I, 34 in Phase II, and 11 in Phase III that might be completed by 2028.
Collapse
Affiliation(s)
- Amin Mahmood Thawabteh
- Department of Chemistry, Birzeit University, Birzeit P.O. Box 14, West Bank, Palestine;
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Birzeit P.O. Box 14, West Bank, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Aseel Wasel Ghanem
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Birzeit P.O. Box 14, West Bank, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Sara AbuMadi
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Birzeit P.O. Box 14, West Bank, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Dania Thaher
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Birzeit P.O. Box 14, West Bank, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Weam Jaghama
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Birzeit P.O. Box 14, West Bank, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Donia Karaman
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem 20002, Palestine;
| | - Rafik Karaman
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem 20002, Palestine;
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
10
|
Sun T, Zhen T, Harakandi CH, Wang L, Guo H, Chen Y, Sun H. New insights into butyrylcholinesterase: Pharmaceutical applications, selective inhibitors and multitarget-directed ligands. Eur J Med Chem 2024; 275:116569. [PMID: 38852337 DOI: 10.1016/j.ejmech.2024.116569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
Butyrylcholinesterase (BChE), also known as pseudocholinesterase and serum cholinesterase, is an isoenzyme of acetylcholinesterase (AChE). It mediates the degradation of acetylcholine, especially under pathological conditions. Proverbial pharmacological applications of BChE, its mutants and modulators consist of combating Alzheimer's disease (AD), influencing multiple sclerosis (MS), addressing cocaine addiction, detoxifying organophosphorus poisoning and reflecting the progression or prognosis of some diseases. Of interest, recent reports have shed light on the relationship between BChE and lipid metabolism. It has also been proved that BChE is going to increase abnormally as a compensator for AChE in the middle and late stages of AD, and BChE inhibitors can alleviate cognitive disorders and positively influence some pathological features in AD model animals, foreboding favorable prospects and potential applications. Herein, the selective BChE inhibitors and BChE-related multitarget-directed ligands published in the last three years were briefly summarized, along with the currently known pharmacological applications of BChE, aiming to grasp the latest research directions. Thereinto, some emerging strategies for designing BChE inhibitors are intriguing, and the modulators based on target combination of histone deacetylase and BChE against AD is unprecedented. Furthermore, the involvement of BChE in the hydrolysis of ghrelin, the inhibition of low-density lipoprotein (LDL) uptake, and the down-regulation of LDL receptor (LDLR) expression suggests its potential to influence lipid metabolism disorders. This compelling prospect likely stimulates further exploration in this promising research direction.
Collapse
Affiliation(s)
- Tianyu Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Tengfei Zhen
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | | | - Lei Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Huanchao Guo
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China.
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
11
|
Nguyen HD, Kim MS. In silico exploration of promising heterocyclic molecules against both acetylcholinesterase and butyrylcholinesterase enzymes. J Biomol Struct Dyn 2024; 42:7128-7149. [PMID: 37477246 DOI: 10.1080/07391102.2023.2238068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
We aimed to further explore the relationship between heterocyclic molecules and their associated biological activities for acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. A dataset of 36 heterocycles was used to predict the activity of AChE and BChE inhibitors (the pIC50 values ranged from 7.84 to 12.49). A quantitative structure-activity relationship (QSAR) study was generated with the help of four different models (BMA, MNLR, MLR, and ANN). Four of the models were statistically acceptable based on both internal and external validation. The descriptors used in the models were similar to the X-ray structures of the target-ligand complexes, which made it possible to predict the pIC50 for AChE and BChE enzymes. Five selected molecules (compounds 6 (C21H21F3N4O), compound 7 (C22H23F3N4O), and compound 8 (C22H23F3N4O2) belong to the oxadiazole derivative group; compound 16 (C17H13ClN2O3) is classified into the chemical structures of different N, O, and S-based heterocycle groups; and compound 25 (C19H17NO2) pertains to the pyrimidine derivative group) possessed high pIC50 values for AChE and BChE enzymes (pIC50 values for AChE and BChE ranged from 9.01 to 10.32). The range of docking scores between the AChE and BChE receptors and their respective candidates was from -8.1 to -9.2 kcal/mol. The pharmacokinetics, biological activities, and physicochemical properties of five selected compounds supported their ability to protect against AD because they are not toxic, have a cholinergic effect, can cross the blood-brain barrier, and are well absorbed by the gastrointestinal tract.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Min-Sun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| |
Collapse
|
12
|
Ma Y, Liu S, Zhou Q, Li Z, Zhang Z, Yu B. Approved drugs and natural products at clinical stages for treating Alzheimer's disease. Chin J Nat Med 2024; 22:699-710. [PMID: 39197961 DOI: 10.1016/s1875-5364(24)60606-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Indexed: 09/01/2024]
Abstract
Alzheimer's disease (AD) remains the foremost cause of dementia and represents a significant unmet healthcare need globally. The complex pathogenesis of AD, characterized by various pathological and physiological events, has historically challenged the development of anti-AD drugs. However, recent breakthroughs in AD drug development, including the approvals of aducanumab, lecanemab, and sodium oligomannate (GV-971), have ended a nearly two-decade hiatus in the introduction of new AD drugs. These developments have addressed long-standing challenges in AD drug development, marking a substantial shift in the therapeutic landscape of AD. Moreover, natural products (NPs) have shown promise in AD drug research, with several currently under clinical investigation. Their distinct properties and mechanisms of action offer new avenues to complement and enhance existing AD treatment approaches. This review article aims to provide an overview of the recent advancements and prospects in AD therapeutics, focusing on both NPs and approved drugs.
Collapse
Affiliation(s)
- Yajing Ma
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China
| | - Sufang Liu
- Department of Biomedical Sciences, College of Dentistry, Texas A & M University, Dallas 75246, USA
| | - Qingfeng Zhou
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China
| | - Zhonghua Li
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Zhijian Zhang
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China.
| | - Bin Yu
- College of Chemistry, Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
13
|
Vicente-Zurdo D, Rosales-Conrado N, León-González ME. Unravelling the in vitro and in vivo potential of selenium nanoparticles in Alzheimer's disease: A bioanalytical review. Talanta 2024; 269:125519. [PMID: 38086100 DOI: 10.1016/j.talanta.2023.125519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by progressive cognitive decline and the accumulation of beta-amyloid plaques and tau tangles in the brain. Current therapies have limited efficacy, prompting the search for novel treatments. Selenium nanoparticles (SeNPs) have emerged as promising candidates for AD therapy due to their unique physicochemical properties and potential therapeutic effects. This review provides an overview of SeNPs and their potential application in AD treatment, as well as the main bioanalytical techniques applied in this field. SeNPs possess antioxidant and anti-inflammatory properties, making them potential candidates to combat the oxidative stress and neuroinflammation associated with AD. Moreover, SeNPs have shown the ability to cross the blood-brain barrier (BBB), allowing them to target brain regions affected by AD pathology. Various methods for synthesizing SeNPs are explored, including chemical, physical and biological synthesis approaches. Based on the employment of algae, yeast, fungi, and plants, green methods offer a promising and biocompatible alternative for SeNPs production. In vitro studies have demonstrated the potential of SeNPs in reducing beta-amyloid aggregation and inhibiting tau hyperphosphorylation, providing evidence of their neuroprotective effects on neuronal cells. In vivo studies using transgenic mouse models and AD-induced symptoms have shown promising results, with SeNPs treatment leading to cognitive improvements and reduced amyloid plaque burden in the hippocampus. Looking ahead, future trends in SeNPs research involve developing innovative brain delivery strategies to enhance their therapeutic potential, exploring alternative animal models to complement traditional mouse studies, and investigating multi-targeted SeNPs formulations to address multiple aspects of AD pathology. Overall, SeNPs represent a promising avenue for AD treatment, and further research in this field may pave the way for effective and much-needed therapeutic interventions for individuals affected by this debilitating disease.
Collapse
Affiliation(s)
- David Vicente-Zurdo
- Dpto. Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain; Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain.
| | - Noelia Rosales-Conrado
- Dpto. Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - María Eugenia León-González
- Dpto. Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
14
|
Pathak C, Kabra UD. A comprehensive review of multi-target directed ligands in the treatment of Alzheimer's disease. Bioorg Chem 2024; 144:107152. [PMID: 38290187 DOI: 10.1016/j.bioorg.2024.107152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/10/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia affecting specifically older population. AD is an irreversible neurodegenerative CNS disorder associated with complex pathophysiology. Presently, the USFDA has approved only four drugs viz. Donepezil, Rivastigmine, Memantine, and Galantamine for the treatment of AD. These drugs exhibit their neuroprotective effects either by inhibiting cholinesterase enzyme (ChE) or N-methyl-d-aspartate (NMDA) receptor. However, the conventional therapy "one target, one molecule" has failed to provide promising therapeutic effects due to the multifactorial nature of AD. This triggered the development of a novel strategy called Multi-Target Directed Ligand (MTDL) which involved designing one molecule that acts on multiple targets simultaneously. The present review discusses the detailed pathology involved in AD and the various MTDL design strategies bearing different heterocycles, in vitro and in vivo activities of the compounds, and their corresponding structure-activity relationships. This knowledge will allow us to identify and design more effective MTDLs for the treatment of AD.
Collapse
Affiliation(s)
- Chandni Pathak
- Department of Pharmaceutical Chemistry, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, India
| | - Uma D Kabra
- Department of Pharmaceutical Chemistry, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, India.
| |
Collapse
|
15
|
Bon L, Banaś A, Dias I, Melo-Marques I, Cardoso SM, Chaves S, Santos MA. New Multitarget Rivastigmine-Indole Hybrids as Potential Drug Candidates for Alzheimer's Disease. Pharmaceutics 2024; 16:281. [PMID: 38399339 PMCID: PMC10892719 DOI: 10.3390/pharmaceutics16020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia with no cure so far, probably due to the complexity of this multifactorial disease with diverse processes associated with its origin and progress. Several neuropathological hallmarks have been identified that encourage the search for new multitarget drugs. Therefore, following a multitarget approach, nine rivastigmine-indole (RIV-IND) hybrids (5a1-3, 5b1-3, 5c1-3) were designed, synthesized and evaluated for their multiple biological properties and free radical scavenging activity, as potential multitarget anti-AD drugs. The molecular docking studies of these hybrids on the active center of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) suggest their capacity to act as dual enzyme inhibitors with probable greater disease-modifying impact relative to AChE-selective FDA-approved drugs. Compounds 5a3 (IC50 = 10.9 µM) and 5c3 (IC50 = 26.8 µM) revealed higher AChE inhibition than the parent RIV drug. Radical scavenging assays demonstrated that all the hybrids containing a hydroxyl substituent in the IND moiety (5a2-3, 5b2-3, 5c2-3) have good antioxidant activity (EC50 7.8-20.7 µM). The most effective inhibitors of Aβ42 self-aggregation are 5a3, 5b3 and 5c3 (47.8-55.5%), and compounds 5b2 and 5c2 can prevent the toxicity induced by Aβ1-42 to cells. The in silico evaluation of the drug-likeness of the hybrids also showed that all the compounds seem to have potential oral availability. Overall, within this class of RIV-IND hybrids, 5a3 and 5c3 appear as lead compounds for anti-AD drug candidates, deserving further investigation.
Collapse
Affiliation(s)
- Leo Bon
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; (L.B.); (A.B.); (I.D.)
| | - Angelika Banaś
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; (L.B.); (A.B.); (I.D.)
| | - Inês Dias
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; (L.B.); (A.B.); (I.D.)
| | - Inês Melo-Marques
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (I.M.-M.); (S.M.C.)
| | - Sandra M. Cardoso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (I.M.-M.); (S.M.C.)
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Sílvia Chaves
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; (L.B.); (A.B.); (I.D.)
| | - M. Amélia Santos
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; (L.B.); (A.B.); (I.D.)
| |
Collapse
|
16
|
Avendaño-Godoy J, Miranda A, Mennickent S, Gómez-Gaete C. Intramuscularly Administered PLGA Microparticles for Sustained Release of Rivastigmine: In Vitro, In Vivo and Histological Evaluation. J Pharm Sci 2023; 112:3175-3184. [PMID: 37595752 DOI: 10.1016/j.xphs.2023.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Rivastigmine is an acetylcholinesterase (AchE) and butyrylcholinesterase (BchE) inhibitor drug approved by the US Food and Drug Administration (FDA) for the treatment of mild to moderate dementia of Alzheimer's type. However, its first-pass metabolism and gastrointestinal side effects negatively affect the tolerability and efficacy of oral therapy. These adverse effects could be avoided with the use of a sustained -release formulation as an intramuscular (IM) administration system. The objective of this work was to develop polylactic co-glycolic acid (PLGA) microparticles for the sustained release of rivastigmine and to evaluate its stability during storage, tissue tolerance, in vitro release, and in vivo pharmacokinetics after its IM administration. The microparticles were made by the solvent evaporation emulsion method. A series of formulation parameters (the type of polymer used, the amount of polymer used, the initial amount of rivastigmine, and the volume of PVA 0.1% w/v) were studied to achieve an encapsulation efficiency (EE) and a rivastigmine load of 54.8 ± 0.9% and 3.3 ± 0.1%, respectively. The microparticles, whose size was 56.1 ± 2.8 μm, had a spherical shape and a smooth surface. FT-IR analysis showed that there is no chemical interaction between rivastigmine and the polymer. PLGA microparticles maintain rivastigmine retained and stable under normal (5 ± 3 °C) and accelerated storage (25 ± 2 °C and 60 ± 5 % RH) conditions for at least 6 months. The microparticles behaved as a sustained release system both in vitro and in vivo compared to non-encapsulated rivastigmine. The IM administration of the formulation in rats did not produce significant tissue damage. However, it is necessary to reproduce the experiments with multiple doses to rule out a negative effect in terms of tolerability in chronic treatment. To the best of our knowledge, this study is the only one that has obtained the sustained release of rivastigmine from PLGA microparticles after IM administration in an in vivo model.
Collapse
Affiliation(s)
- Javier Avendaño-Godoy
- Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Arnoldo Miranda
- Escuela de Química y Farmacia, Facultad de Medicina y Ciencia, Universidad San Sebastián, Concepción, Chile
| | - Sigrid Mennickent
- Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Carolina Gómez-Gaete
- Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
17
|
Nguyen HD. In silico identification of novel heterocyclic compounds combats Alzheimer's disease through inhibition of butyrylcholinesterase enzymatic activity. J Biomol Struct Dyn 2023; 42:10890-10910. [PMID: 37723904 DOI: 10.1080/07391102.2023.2259482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/09/2023] [Indexed: 09/20/2023]
Abstract
Increasing evidence indicates that heterocyclic molecules possess properties against butyrylcholinesterase (BChE) enzymatic activity, which is a potential therapeutic target for Alzheimer's disease (AD). Thus, this study aimed to further evaluate the relationship between heterocyclic molecules and their biological activities. A dataset of 38 selective and potent heterocyclic compounds (-log[the half‑maximal inhibitory concentration (pIC50)]) values ranging from 8.02 to 10.05) was applied to construct a quantitative structure-activity relationship (QSAR) study, including Bayesian model average (BMA), artificial neural network (ANN), multiple nonlinear regression (MNLR), and multiple linear regression (MLR) models. Four models met statistical acceptance in internal and external validation. The ANN model was superior to other models in predicting the pIC50 of the outcome. The descriptors put into the models were found to be comparable with the target-ligand complex X-ray structures, making these models interpretable. Three selected molecules possess drug-like properties (pIC50 values ranged from 9.19 to 9.54). The docking score between candidates and the BChE receptor (RCSB ID 6EYF) ranged from -8.4 to -9.0 kcal/mol. Remarkably, the pharmacokinetics, biological activities, molecular dynamics, and physicochemical properties of compound 18 (C20H22N4O, pIC50 value = 9.33, oxadiazole derivative group) support its protective effects on AD treatment due to its non-toxic nature, non-carcinogen, cholinergic nature, capability to penetrate the blood-brain barrier, and high gastrointestinal absorption.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy, Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, South Korea
| |
Collapse
|
18
|
Suwanhom P, Nualnoi T, Khongkow P, Tipmanee V, Lomlim L. Novel Lawsone-Quinoxaline Hybrids as New Dual Binding Site Acetylcholinesterase Inhibitors. ACS OMEGA 2023; 8:32498-32511. [PMID: 37720764 PMCID: PMC10500570 DOI: 10.1021/acsomega.3c02683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023]
Abstract
A new family of lawsone-quinoxaline hybrids was designed, synthesized, and evaluated as dual binding site cholinesterase inhibitors (ChEIs). In vitro tests revealed that compound 6d was the most potent AChEI (IC50 = 20 nM) and BChEI (IC50 = 220 nM). The compound 6d did not show cytotoxicity against the SH-SY5Y neuronal cells (GI50 > 100 μM). In silico and enzyme kinetic experiments demonstrated that compound 6d bound to both the catalytic anionic site and the peripheral anionic site of HuAChE. The lawsone-quinoxaline hybrids exhibited potential for further development of potent acetylcholinesterase inhibitors for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Paptawan Suwanhom
- Department
of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Phytomedicine
and Pharmaceutical Biotechnology Excellent Center (PPBEC), Faculty
of Pharmaceutical Sciences, Prince of Songkla
University, Hat Yai, Songkhla 90110, Thailand
| | - Teerapat Nualnoi
- Department
of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Pasarat Khongkow
- Department
of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Varomyalin Tipmanee
- Department
of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Luelak Lomlim
- Department
of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Phytomedicine
and Pharmaceutical Biotechnology Excellent Center (PPBEC), Faculty
of Pharmaceutical Sciences, Prince of Songkla
University, Hat Yai, Songkhla 90110, Thailand
| |
Collapse
|
19
|
Wang T, Jia H. The Sigma Receptors in Alzheimer's Disease: New Potential Targets for Diagnosis and Therapy. Int J Mol Sci 2023; 24:12025. [PMID: 37569401 PMCID: PMC10418732 DOI: 10.3390/ijms241512025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 08/13/2023] Open
Abstract
Sigma (σ) receptors are a class of unique proteins with two subtypes: the sigma-1 (σ1) receptor which is situated at the mitochondria-associated endoplasmic reticulum (ER) membrane (MAM), and the sigma-2 (σ2) receptor, located in the ER-resident membrane. Increasing evidence indicates the involvement of both σ1 and σ2 receptors in the pathogenesis of Alzheimer's disease (AD), and thus these receptors represent two potentially effective biomarkers for emerging AD therapies. The availability of optimal radioligands for positron emission tomography (PET) neuroimaging of the σ1 and σ2 receptors in humans will provide tools to monitor AD progression and treatment outcomes. In this review, we first summarize the significance of both receptors in the pathophysiology of AD and highlight AD therapeutic strategies related to the σ1 and σ2 receptors. We then survey the potential PET radioligands, with an emphasis on the requirements of optimal radioligands for imaging the σ1 or σ2 receptors in humans. Finally, we discuss current challenges in the development of PET radioligands for the σ1 or σ2 receptors, and the opportunities for neuroimaging to elucidate the σ1 and σ2 receptors as novel biomarkers for early AD diagnosis, and for monitoring of disease progression and AD drug efficacy.
Collapse
Affiliation(s)
- Tao Wang
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China;
- Department of Nuclear Medicine, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Hongmei Jia
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China;
| |
Collapse
|
20
|
Vicente-Zurdo D, Brunetti L, Piemontese L, Guedes B, Cardoso SM, Chavarria D, Borges F, Madrid Y, Chaves S, Santos MA. Rivastigmine-Benzimidazole Hybrids as Promising Multitarget Metal-Modulating Compounds for Potential Treatment of Neurodegenerative Diseases. Int J Mol Sci 2023; 24:ijms24098312. [PMID: 37176018 PMCID: PMC10179505 DOI: 10.3390/ijms24098312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
With the goal of combating the multi-faceted Alzheimer's disease (AD), a series of Rivastigmine-Benzimidazole (RIV-BIM) hybrids was recently reported by us as multitarget-directed ligands, thanks to their capacity to tackle important hallmarks of AD. In particular, they exhibited antioxidant activity, acted as cholinesterase inhibitors, and inhibited amyloid-β (Aβ) aggregation. Herein, we moved forward in this project, studying their ability to chelate redox-active biometal ions, Cu(II) and Fe(III), with widely recognized roles in the generation of oxidative reactive species and in protein misfolding and aggregation in both AD and Parkinson's disease (PD). Although Cu(II) chelation showed higher efficiency for the positional isomers of series 5 than those of series 4 of the hybrids, the Aβ-aggregation inhibition appears more dependent on their capacity for fibril intercalation than on copper chelation. Since monoamine oxidases (MAOs) are also important targets for the treatment of AD and PD, the capacity of these hybrids to inhibit MAO-A and MAO-B was evaluated, and they showed higher activity and selectivity for MAO-A. The rationalization of the experimental evaluations (metal chelation and MAO inhibition) was supported by computational molecular modeling studies. Finally, some compounds showed also neuroprotective effects in human neuroblastoma (SH-SY5Y cells) upon treatment with 1-methyl-4-phenylpyridinium (MPP+), a neurotoxic metabolite of a Parkinsonian-inducing agent.
Collapse
Affiliation(s)
- David Vicente-Zurdo
- Centro de Química Estrutural, Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Avenida Complutense s/n, 28040 Madrid, Spain
| | - Leonardo Brunetti
- Centro de Química Estrutural, Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy
| | - Luca Piemontese
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy
| | - Beatriz Guedes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3000-370 Coimbra, Portugal
| | - Sandra M Cardoso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3000-370 Coimbra, Portugal
- FMUC-Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal
| | - Daniel Chavarria
- CIQUP-IMS, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Fernanda Borges
- CIQUP-IMS, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Yolanda Madrid
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Avenida Complutense s/n, 28040 Madrid, Spain
| | - Sílvia Chaves
- Centro de Química Estrutural, Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - M Amélia Santos
- Centro de Química Estrutural, Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| |
Collapse
|
21
|
Vicente-Zurdo D, Gómez-Gómez B, Romero-Sánchez I, Rosales-Conrado N, León-González ME, Madrid Y. Cytotoxicity, uptake and accumulation of selenium nanoparticles and other selenium species in neuroblastoma cell lines related to Alzheimer's disease by using cytotoxicity assays, TEM and single cell-ICP-MS. Anal Chim Acta 2023; 1249:340949. [PMID: 36868776 DOI: 10.1016/j.aca.2023.340949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/23/2023] [Accepted: 02/05/2023] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease, representing 80% of the total dementia cases. The "amyloid cascade hypothesis" stablishes that the aggregation of the beta-amyloid protein (Aβ42) is the first event that subsequently triggers AD development. Selenium nanoparticles stabilized with chitosan (Ch-SeNPs) have demonstrated excellent anti-amyloidogenic properties in previous works, leading to an improvement of AD aetiology. Here, the in vitro effect of selenium species in AD model cell line has been study to obtain a better assessment of their effects in AD treatment. For this purpose, mouse neuroblastoma (Neuro-2a) and human neuroblastoma (SH-SY5Y) cell lines were used. Cytotoxicity of selenium species, such as selenomethionine (SeMet), Se-methylselenocysteine (MeSeCys) and Ch-SeNPs, has been determined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry methods. Intracellular localisation of Ch-SeNPs, and their pathway through SH-SY5Y cell line, have been evaluated by transmission electron microscopy (TEM). The uptake and accumulation of selenium species by both neuroblastoma cell lines have been quantified at single cell level by single cell- Inductively Coupled Plasma with Mass Spectrometry detection (SC-ICP-MS), with a previous optimisation of transport efficiency using gold nanoparticles (AuNPs) ((69 ± 3) %) and 2.5 mm calibration beads ((92 ± 8) %). Results showed that Ch-SeNPs would be more readily accumulated by both cell lines than organic species being accumulation ranges between 1.2 and 89.5 fg Se cell-1 for Neuro-2a and 3.1-129.8 fg Se cell-1 for SH-SY5Y exposed to 250 μM Ch-SeNPs. Data obtained were statistically treated using chemometric tools. These results provide an important insight into the interaction of Ch-SeNPs with neuronal cells, which could support their potential use in AD treatment.
Collapse
Affiliation(s)
- David Vicente-Zurdo
- Analytical Chemistry Department, Faculty of Chemistry Sciences, Complutense University of Madrid, E-28040, Madrid, Spain.
| | - Beatriz Gómez-Gómez
- Analytical Chemistry Department, Faculty of Chemistry Sciences, Complutense University of Madrid, E-28040, Madrid, Spain.
| | - Iván Romero-Sánchez
- Analytical Chemistry Department, Faculty of Chemistry Sciences, Complutense University of Madrid, E-28040, Madrid, Spain
| | - Noelia Rosales-Conrado
- Analytical Chemistry Department, Faculty of Chemistry Sciences, Complutense University of Madrid, E-28040, Madrid, Spain
| | - María Eugenia León-González
- Analytical Chemistry Department, Faculty of Chemistry Sciences, Complutense University of Madrid, E-28040, Madrid, Spain
| | - Yolanda Madrid
- Analytical Chemistry Department, Faculty of Chemistry Sciences, Complutense University of Madrid, E-28040, Madrid, Spain
| |
Collapse
|
22
|
Ailioaie LM, Ailioaie C, Litscher G. Photobiomodulation in Alzheimer's Disease-A Complementary Method to State-of-the-Art Pharmaceutical Formulations and Nanomedicine? Pharmaceutics 2023; 15:916. [PMID: 36986776 PMCID: PMC10054386 DOI: 10.3390/pharmaceutics15030916] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Alzheimer's disease (AD), as a neurodegenerative disorder, usually develops slowly but gradually worsens. It accounts for approximately 70% of dementia cases worldwide, and is recognized by WHO as a public health priority. Being a multifactorial disease, the origins of AD are not satisfactorily understood. Despite huge medical expenditures and attempts to discover new pharmaceuticals or nanomedicines in recent years, there is no cure for AD and not many successful treatments are available. The current review supports introspection on the latest scientific results from the specialized literature regarding the molecular and cellular mechanisms of brain photobiomodulation, as a complementary method with implications in AD. State-of-the-art pharmaceutical formulations, development of new nanoscale materials, bionanoformulations in current applications and perspectives in AD are highlighted. Another goal of this review was to discover and to speed transition to completely new paradigms for the multi-target management of AD, to facilitate brain remodeling through new therapeutic models and high-tech medical applications with light or lasers in the integrative nanomedicine of the future. In conclusion, new insights from this interdisciplinary approach, including the latest results from photobiomodulation (PBM) applied in human clinical trials, combined with the latest nanoscale drug delivery systems to easily overcome protective brain barriers, could open new avenues to rejuvenate our central nervous system, the most fascinating and complex organ. Picosecond transcranial laser stimulation could be successfully used to cross the blood-brain barrier together with the latest nanotechnologies, nanomedicines and drug delivery systems in AD therapy. Original, smart and targeted multifunctional solutions and new nanodrugs may soon be developed to treat AD.
Collapse
Affiliation(s)
- Laura Marinela Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania
| | - Constantin Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania
| | - Gerhard Litscher
- President of ISLA (International Society for Medical Laser Applications), Research Unit of Biomedical Engineering in Anesthesia and Intensive Care Medicine, Research Unit for Complementary and Integrative Laser Medicine, Traditional Chinese Medicine (TCM) Research Center Graz, Department of Anesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 39, 8036 Graz, Austria
| |
Collapse
|
23
|
Reiland KM, Eckroat TJ. Selective butyrylcholinesterase inhibition by isatin dimers and 3-indolyl-3-hydroxy-2-oxindole dimers. Bioorg Med Chem Lett 2022; 77:129037. [DOI: 10.1016/j.bmcl.2022.129037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/06/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022]
|