1
|
Li Y, Liu R, Zhao Z. Targeting Brain Drug Delivery with Macromolecules Through Receptor-Mediated Transcytosis. Pharmaceutics 2025; 17:109. [PMID: 39861756 PMCID: PMC11769103 DOI: 10.3390/pharmaceutics17010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Brain diseases pose significant treatment challenges due to the restrictive nature of the blood-brain barrier (BBB). Recent advances in targeting macromolecules offer promising avenues for overcoming these obstacles through receptor-mediated transcytosis (RMT). We summarize the current progress in targeting brain drug delivery with macromolecules for brain diseases. This exploration details the transport mechanisms across the BBB, focusing on RMT and its use of natural ligands for drug delivery. Furthermore, the review examines macromolecular ligands such as antibodies, peptides, and aptamers that leverage RMT for effective BBB traversal. Advancements in macromolecules-based delivery systems for brain diseases are summarized, emphasizing their therapeutic potential and limitations. Finally, emerging RMT strategies, including viral vectors, exosomes, and boron neutron capture therapy, are discussed for their precision in brain-targeted treatments. This comprehensive overview underscores the potential of RMT-based approaches to revolutionize brain disease therapy.
Collapse
Affiliation(s)
- Yuanke Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China
| | - Ruiying Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Zhen Zhao
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
2
|
Zheng MZ, Yang ZQ, Cai SL, Zheng LT, Xue Y, Chen L, Lin J. Blood-brain barrier and blood-brain tumor barrier penetrating peptide-drug conjugate as targeted therapy for the treatment of lung cancer brain metastasis. Lung Cancer 2024; 196:107957. [PMID: 39303402 DOI: 10.1016/j.lungcan.2024.107957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Lung cancer is the leading cause of cancer deaths worldwide. Brain metastasis of lung cancer, which counts for nearly 50% of late-stage lung cancer patients, is a sign of a really poor prognosis. However, the presence of blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB) limits the penetration of drugs from the blood into the brain and thus restricts their accumulation in brain tumors. Systematic delivery of drugs into brain and brain tumor lesion using BBB and BBTB penetrating vehicles represents a promising strategy to overcome the BBB and BBTB limitations. Hence, we validated one of our previously identified BBB/BBTB penetrating peptide and its drug conjugate form for the treatment of lung cancer brain metastasis. With in vitro experiment, we first validated that the receptor LRP1, which mediated the peptide penetration of the BBB, was expressed on lung cancer cells and thus can be targeted by the peptide to overcome BBTB. With this delivery peptide, we constructed peptide-paclitaxel conjugate (the PDC) and in vitro validation showed that the PDC can across the BBB and efficiently kill lung cancer cells. We therefore constructed mouse lung cancer brain metastasis xenograft. In vivo anti-tumor validations showed that the PDC efficiently inhibited the proliferation of the brain resident lung cancer cells and significantly expanded the survival of the mouse xenograft, with no visible damages to the organs. Overall, our study provided potential therapeutic drugs for the treatment of lung cancer brain metastasis that may be clinically effective in the near future.
Collapse
Affiliation(s)
- Meng-Zhu Zheng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; Song Li's Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Yazhou Bay, Sanya 572000, China
| | - Zhan-Qun Yang
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China; Peking University Third Hospital Cancer Center, Peking University Third Hospital, Beijing 100191, China
| | - Sun-Li Cai
- Natural Medicine Institute of Zhejiang YangShengTang Co., LTD, Hangzhou, Zhejiang, China
| | - Li-Ting Zheng
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China; Peking University Third Hospital Cancer Center, Peking University Third Hospital, Beijing 100191, China
| | - Yuan Xue
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China; Peking University Third Hospital Cancer Center, Peking University Third Hospital, Beijing 100191, China
| | - Long Chen
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China; Peking University Third Hospital Cancer Center, Peking University Third Hospital, Beijing 100191, China.
| | - Jian Lin
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; Song Li's Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Yazhou Bay, Sanya 572000, China; Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China; Peking University Third Hospital Cancer Center, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
3
|
Duan M, Cao R, Yang Y, Chen X, Liu L, Ren B, Wang L, Goh BC. Blood-Brain Barrier Conquest in Glioblastoma Nanomedicine: Strategies, Clinical Advances, and Emerging Challenges. Cancers (Basel) 2024; 16:3300. [PMID: 39409919 PMCID: PMC11475686 DOI: 10.3390/cancers16193300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Glioblastoma (GBM) is a prevalent type of malignancy within the central nervous system (CNS) that is associated with a poor prognosis. The standard treatment for GBM includes the surgical resection of the tumor, followed by radiotherapy and chemotherapy; yet, despite these interventions, overall treatment outcomes remain suboptimal. The blood-brain barrier (BBB), which plays a crucial role in maintaining the stability of brain tissue under normal physiological conditions of the CNS, also poses a significant obstacle to the effective delivery of therapeutic agents to GBMs. Recent preclinical studies have demonstrated that nanomedicine delivery systems (NDDSs) offer promising results, demonstrating both effective GBM targeting and safety, thereby presenting a potential solution for targeted drug delivery. In this review, we first explore the various strategies employed in preclinical studies to overcome the BBB for drug delivery. Subsequently, the results of the clinical translation of NDDSs are summarized, highlighting the progress made. Finally, we discuss potential strategies for advancing the development of NDDSs and accelerating their translational research through well-designed clinical trials in GBM therapy.
Collapse
Affiliation(s)
- Mengyun Duan
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou 434023, China; (M.D.); (X.C.)
| | - Ruina Cao
- Department of Anesthesiology, Maternal and Child Health Hospital of Hubei Province, Wuhan 430070, China;
| | - Yuan Yang
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan 430060, China;
| | - Xiaoguang Chen
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou 434023, China; (M.D.); (X.C.)
| | - Lian Liu
- Department of Pharmacology, Health Science Center, Yangtze University, Jingzhou 434023, China;
| | - Boxu Ren
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou 434023, China; (M.D.); (X.C.)
| | - Lingzhi Wang
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore;
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Boon-Cher Goh
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore;
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Department of Haematology-Oncology, National University Cancer Institute, Singapore 119228, Singapore
| |
Collapse
|
4
|
Smerdi D, Moutafi M, Kotsantis I, Stavrinou LC, Psyrri A. Overcoming Resistance to Temozolomide in Glioblastoma: A Scoping Review of Preclinical and Clinical Data. Life (Basel) 2024; 14:673. [PMID: 38929657 PMCID: PMC11204771 DOI: 10.3390/life14060673] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Glioblastoma (GB) is the most common and most aggressive primary brain tumor in adults, with an overall survival almost 14.6 months. Optimal resection followed by combined temozolomide chemotherapy and radiotherapy, also known as Stupp protocol, remains the standard of treatment; nevertheless, resistance to temozolomide, which can be obtained throughout many molecular pathways, is still an unsurpassed obstacle. Several factors influence the efficacy of temozolomide, including the involvement of other DNA repair systems, aberrant signaling pathways, autophagy, epigenetic modifications, microRNAs, and extracellular vesicle production. The blood-brain barrier, which serves as both a physical and biochemical obstacle, the tumor microenvironment's pro-cancerogenic and immunosuppressive nature, and tumor-specific characteristics such as volume and antigen expression, are the subject of ongoing investigation. In this review, preclinical and clinical data about temozolomide resistance acquisition and possible ways to overcome chemoresistance, or to treat gliomas without restoration of chemosensitinity, are evaluated and presented. The objective is to offer a thorough examination of the clinically significant molecular mechanisms and their intricate interrelationships, with the aim of enhancing understanding to combat resistance to TMZ more effectively.
Collapse
Affiliation(s)
- Dimitra Smerdi
- Department of Medical Oncology, Second Department of Internal Medicine, “Attikon” University General Hospital, Athens Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Myrto Moutafi
- Department of Medical Oncology, Second Department of Internal Medicine, “Attikon” University General Hospital, Athens Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Ioannis Kotsantis
- Department of Medical Oncology, Second Department of Internal Medicine, “Attikon” University General Hospital, Athens Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Lampis C. Stavrinou
- Department of Neurosurgery and Neurotraumatology, “Attikon” University General Hospital, Athens Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Amanda Psyrri
- Department of Medical Oncology, Second Department of Internal Medicine, “Attikon” University General Hospital, Athens Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| |
Collapse
|
5
|
Preston JD, Jansen CS, Kosaraju S, Niyogusaba T, Zhuang TZ, Iwamoto SW, Hutto SK, Lechowicz MJ, Allen PB. Cutaneous T-cell lymphoma with CNS involvement: a case series and review of the literature. CNS Oncol 2023; 12:CNS105. [PMID: 37877303 PMCID: PMC10701703 DOI: 10.2217/cns-2023-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/26/2023] [Indexed: 10/26/2023] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) is a rare hematologic malignancy that traditionally presents with cutaneous lesions, though metastases are not uncommon in progressive disease. We describe four cases of CTCL with central nervous system (CNS) involvement, detailing the history, pathological characteristics, treatment response, and progression. Median time from initial diagnosis to CNS metastasis was ∼5.4 years (range 3.4-15.5 years) and survival after metastasis was ∼160 days (range 19 days-4.4 years). No patients achieved long-term (>5 years) survival, though some displayed varying degrees of remission following CNS-directed therapy. We conclude that clinicians must be attentive to the development of CNS metastases in patients with CTCL. The growing body of literature on such cases will inform evolving therapeutic guidelines on this rare CTCL complication.
Collapse
Affiliation(s)
- Joshua D Preston
- Medical Scientist Training Program, Emory University School of Medicine, Atlanta, GA 30322, USA
- Nutrition & Health Sciences, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | - Caroline S Jansen
- Medical Scientist Training Program, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Siddhartha Kosaraju
- Division of Neuroradiology, Department of Radiology & Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Tim Niyogusaba
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Tony Z Zhuang
- Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sally W Iwamoto
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Spencer K Hutto
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mary Jo Lechowicz
- Department of Hematology & Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Pamela B Allen
- Department of Hematology & Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
6
|
Song G, Plumlee P, Ahn JY, Wong ST, Zhao H. Translational strategies and systems biology insights for blood-brain barrier opening and delivery in brain tumors and Alzheimer's disease. Biomed Pharmacother 2023; 167:115450. [PMID: 37703663 PMCID: PMC10591819 DOI: 10.1016/j.biopha.2023.115450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023] Open
Abstract
The blood-brain barrier (BBB) plays a critical role in determining the effectiveness of systemic treatments for brain diseases. Over the years, several innovative approaches in BBB opening and drug delivery have been developed and progressed into clinical testing phases, including focused ultrasound (FUS) with circulating microbubbles, mannitol-facilitated delivery of anti-neoplastic drugs, receptor-mediated transcytosis (RMT) by antibody-drug conjugates (ADCs), and viral vectors for gene therapy. We provided a comprehensive review of the most recent clinical applications of these approaches in managing brain tumors and Alzheimer's disease (AD), two major devastating brain diseases. Moreover, the spatial-temporal molecular heterogeneity of the BBB under disease states emphasized the importance of utilizing emerging spatial systems biology approaches to unravel novel targets for intervention within BBB and tailor strategies for enhancing drug delivery to the brain. SEARCH STRATEGY AND SELECTION CRITERIA: Data for this Review were identified by searches of clinicaltrials.gov, MEDLINE, Current Contents, PubMed, and references from relevant articles using the search terms "blood-brain barrier", "CNS drug delivery", "BBB modulation", "clinical trials", "systems biology", "primary or metastatic brain tumors", "Alzheimer's disease". Abstracts and reports from meetings were included only when they related directly to previously published work. Only articles published in English between 1980 and 2023 were included.
Collapse
Affiliation(s)
- Gefei Song
- T. T. and W. F. Chao Center for BRAIN and Department of Systems Medicine and Bioengineering, Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Houston TX 77030, USA
| | - Pierce Plumlee
- T. T. and W. F. Chao Center for BRAIN and Department of Systems Medicine and Bioengineering, Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Houston TX 77030, USA
| | - Ju Young Ahn
- T. T. and W. F. Chao Center for BRAIN and Department of Systems Medicine and Bioengineering, Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Houston TX 77030, USA; Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Stephen Tc Wong
- T. T. and W. F. Chao Center for BRAIN and Department of Systems Medicine and Bioengineering, Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Houston TX 77030, USA; Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Hong Zhao
- T. T. and W. F. Chao Center for BRAIN and Department of Systems Medicine and Bioengineering, Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Houston TX 77030, USA.
| |
Collapse
|
7
|
Yamaguchi J, di Luccio E, Hirotsu T. State-of-the-Art Cancer Biology, Biodiagnostics and Therapeutics in Japan. Biomedicines 2023; 11:2905. [PMID: 38001906 PMCID: PMC10669596 DOI: 10.3390/biomedicines11112905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Early cancer detection is key to improving patient survival and quality of life and reducing cancer treatments' financial burden [...].
Collapse
Affiliation(s)
- Junichi Yamaguchi
- Hirotsu Bioscience Inc., New Otani Garden Court 22F, 4-1 Kioi-cho, Chiyoda-ku, Tokyo 102-0094, Japan; (E.d.L.)
| | | | | |
Collapse
|
8
|
Martins C, Sarmento B. Multi-ligand functionalized blood-to-tumor sequential targeting strategies in the field of glioblastoma nanomedicine. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1893. [PMID: 37186374 DOI: 10.1002/wnan.1893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 05/17/2023]
Abstract
Glioblastoma (GBM) is an unmet clinical need characterized by a standard of care (SOC) 5-year survival rate of only 5%, and a treatment mostly palliative. Significant hurdles in GBM therapies include an effective penetration of therapeutics through the brain protective barrier, namely the blood-brain barrier (BBB), and a successful therapeutic delivery to brain-invading tumor cells post-BBB crossing. These hurdles, along with the poor prognosis and critical heterogeneity of the disease, have shifted attention to treatment modalities with capacity to precisely and sequentially target (i) BBB cells, inducing blood-to-brain transport, and (ii) GBM cells, leading to a higher therapeutic accumulation at the tumor site. This sequential targeting allows therapeutic molecules to reach the brain parenchyma and compromise molecular processes that support tumor cell invasion. Besides improving formulation and pharmacokinetics constraints of drugs, nanomedicines offer the possibility of being surface functionalized with multiple possibilities of targeting ligands, while delivering the desired therapeutic cargos to the biological sites of interest. Targeting ligands exploit the site-specific expression or overexpression of specific molecules on BBB and GBM cells, triggering brain plus tumor transport. Since the efficacy of single-ligand functionalized nanomedicines is limited due to the GBM anatomical site (brain) and disease complexity, this review presents an overview of multi-ligand functionalized, BBB and GBM sequentially- and dual-targeted nanomedicines reported in literature over the last 10 years. The role of the BBB in GBM progression, treatment options, and the multiple possibilities of currently available targeting ligands will be summarized. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Cláudia Martins
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Bruno Sarmento
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- IUCS-CESPU, Gandra, Portugal
| |
Collapse
|
9
|
Tashima T. Proteolysis-Targeting Chimera (PROTAC) Delivery into the Brain across the Blood-Brain Barrier. Antibodies (Basel) 2023; 12:43. [PMID: 37489365 PMCID: PMC10366925 DOI: 10.3390/antib12030043] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/03/2023] [Accepted: 06/16/2023] [Indexed: 07/26/2023] Open
Abstract
Drug development for neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease has challenging difficulties due to the pharmacokinetic impermeability based on the blood-brain barrier (BBB) as well as the blurriness of pharmacodynamic targets based on their unclarified pathogenesis and complicated progression mechanisms. Thus, in order to produce innovative central nervous system (CNS) agents for patients suffering from CNS diseases, effective, selective delivery of CNS agents into the brain across the BBB should be developed. Currently, proteolysis-targeting chimeras (PROTACs) attract rising attention as a new modality to degrade arbitrary intracellular proteins by the ubiquitin-proteasome system. The internalizations of peptide-based PROTACs by cell-penetrating peptides and that of small molecule-based PROTACs through passive diffusion lack cell selectivity. Therefore, these approaches may bring off-target side effects due to wrong distribution. Furthermore, efflux transporters such as multiple drug resistance 1 (MDR1) expressed at the BBB might interrupt the entry of small molecule-based PROTACs into the brain. Nonetheless, intelligent delivery using machinery systems to absorb the nutrition into the brain for homeostasis, such as carrier-mediated transport (CMT) or receptor-mediated transcytosis (RMT), can be established. PROTACs with N-containing groups that are recognized by the proton-coupled organic cation antiporter might cross the BBB through CMT. PROTAC-antibody conjugates (PACs) might cross the BBB through RMT. Subsequently, such small molecule-based PROTACs released in the brain interstitial fluid would be transported into cells such as neurons through passive diffusion and then demonstrate arbitrary protein degradation. In this review, I introduce the potential and advantages of PROTAC delivery into the brain across the BBB through CMT or RMT using PACs in a non-invasive way.
Collapse
Affiliation(s)
- Toshihiko Tashima
- Tashima Laboratories of Arts and Sciences, 1239-5 Toriyama-cho, Kohoku-ku, Yokohama 222-0035, Japan
| |
Collapse
|
10
|
Mardi N, Salahpour-Anarjan F, Nemati M, Shahsavari Baher N, Rahbarghazi R, Zarebkohan A. Exosomes; multifaceted nanoplatform for targeting brain cancers. Cancer Lett 2023; 557:216077. [PMID: 36731592 DOI: 10.1016/j.canlet.2023.216077] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
At the moment, anaplastic changes within the brain are challenging due to the complexity of neural tissue, leading to the inefficiency of therapeutic protocols. The existence of a cellular interface, namely the blood-brain barrier (BBB), restricts the entry of several macromolecules and therapeutic agents into the brain. To date, several nano-based platforms have been used in laboratory settings and in vivo conditions to overcome the barrier properties of BBB. Exosomes (Exos) are one-of-a-kind of extracellular vesicles with specific cargo to modulate cell bioactivities in a paracrine manner. Regarding unique physicochemical properties and easy access to various biofluids, Exos provide a favorable platform for drug delivery and therapeutic purposes. Emerging data have indicated that Exos enable brain penetration of selective cargos such as bioactive factors and chemotherapeutic compounds. Along with these statements, the application of smart delivery approaches can increase delivery efficiency and thus therapeutic outcomes. Here, we highlighted the recent advances in the application of Exos in the context of brain tumors.
Collapse
Affiliation(s)
- Narges Mardi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Salahpour-Anarjan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdieh Nemati
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasim Shahsavari Baher
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Tashima T. Delivery of Drugs into Cancer Cells Using Antibody-Drug Conjugates Based on Receptor-Mediated Endocytosis and the Enhanced Permeability and Retention Effect. Antibodies (Basel) 2022; 11:antib11040078. [PMID: 36546903 PMCID: PMC9774242 DOI: 10.3390/antib11040078] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Innumerable people worldwide die of cancer every year, although pharmaceutical therapy has actualized many benefits in human health. For background, anti-cancer drug development is difficult due to the multifactorial pathogenesis and complicated pathology of cancers. Cancer cells excrete hydrophobic low-molecular anti-cancer drugs by overexpressed efflux transporters such as multiple drug resistance 1 (MDR1) at the apical membrane. Mutation-driven drug resistance is also developed in cancer. Moreover, the poor distribution of drug to cancer cells is a serious problem, because patients suffer from off-target side effects. Thus, highly selective and effective drug delivery into solid cancer cells across the membrane should be established. It is known that substances (10-100 nm in diameter) such as monoclonal antibodies (mAbs) (approximately 14.2 nm in diameter) or nanoparticles spontaneously gather in solid tumor stroma or parenchyma through the capillary endothelial fenestration, ranging from 200-2000 nm, in neovasculatures due to the enhanced permeability and retention (EPR) effect. Furthermore, cancer antigens, such as HER2, Nectin-4, or TROP2, highly selectively expressed on the surface of cancer cells act as a receptor for receptor-mediated endocytosis (RME) using mAbs against such antigens. Thus, antibody-drug conjugates (ADCs) are promising anti-cancer pharmaceutical agents that fulfill accurate distribution due to the EPR effect and due to antibody-antigen binding and membrane permeability owing to RME. In this review, I introduce the implementation and possibility of highly selective anti-cancer drug delivery into solid cancer cells based on the EPR effect and RME using anti-cancer antigens ADCs with payloads through suitable linkers.
Collapse
Affiliation(s)
- Toshihiko Tashima
- Tashima Laboratories of Arts and Sciences, 1239-5 Toriyama-cho, Kohoku-ku, Yokohama 222-0035, Japan
| |
Collapse
|
12
|
New Iron Metabolic Pathways and Chelation Targeting Strategies Affecting the Treatment of All Types and Stages of Cancer. Int J Mol Sci 2022; 23:ijms232213990. [PMID: 36430469 PMCID: PMC9696688 DOI: 10.3390/ijms232213990] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
There is new and increasing evidence from in vitro, in vivo and clinical studies implicating the pivotal role of iron and associated metabolic pathways in the initiation, progression and development of cancer and in cancer metastasis. New metabolic and toxicity mechanisms and pathways, as well as genomic, transcription and other factors, have been linked to cancer and many are related to iron. Accordingly, a number of new targets for iron chelators have been identified and characterized in new anticancer strategies, in addition to the classical restriction of/reduction in iron supply, the inhibition of transferrin iron delivery, the inhibition of ribonucleotide reductase in DNA synthesis and high antioxidant potential. The new targets include the removal of excess iron from iron-laden macrophages, which affects anticancer activity; the modulation of ferroptosis; ferritin iron removal and the control of hyperferritinemia; the inhibition of hypoxia related to the role of hypoxia-inducible factor (HIF); modulation of the function of new molecular species such as STEAP4 metalloreductase and the metastasis suppressor N-MYC downstream-regulated gene-1 (NDRG1); modulation of the metabolic pathways of oxidative stress damage affecting mitochondrial function, etc. Many of these new, but also previously known associated iron metabolic pathways appear to affect all stages of cancer, as well as metastasis and drug resistance. Iron-chelating drugs and especially deferiprone (L1), has been shown in many recent studies to fulfill the role of multi-target anticancer drug linked to the above and also other iron targets, and has been proposed for phase II trials in cancer patients. In contrast, lipophilic chelators and their iron complexes are proposed for the induction of ferroptosis in some refractory or recurring tumors in drug resistance and metastasis where effective treatments are absent. There is a need to readdress cancer therapy and include therapeutic strategies targeting multifactorial processes, including the application of multi-targeting drugs involving iron chelators and iron-chelator complexes. New therapeutic protocols including drug combinations with L1 and other chelating drugs could increase anticancer activity, decrease drug resistance and metastasis, improve treatments, reduce toxicity and increase overall survival in cancer patients.
Collapse
|
13
|
Elastin-like Polypeptide Hydrogels for Tunable, Sustained Local Chemotherapy in Malignant Glioma. Pharmaceutics 2022; 14:pharmaceutics14102072. [PMID: 36297507 PMCID: PMC9608313 DOI: 10.3390/pharmaceutics14102072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma (GBM) is a primary brain tumor that carries a dismal prognosis, which is primarily attributed to tumor recurrence after surgery and resistance to chemotherapy. Since the tumor recurrence appears near the site of surgical resection, a concept of immediate and local application of chemotherapeutic after initial tumor removal could lead to improved treatment outcome. With the ultimate goal of developing a locally-applied, injectable drug delivery vehicle for GBM treatment, we created elastin-like polypeptide (ELP) hydrogels. The ELP hydrogels can be engineered to release anti-cancer drugs over an extended period. The purpose of this study was to evaluate the biomechanical properties of ELP hydrogels, to characterize their ability to release doxorubicin over time, and to investigate, in vitro, the anti-proliferative effect of Dox-laden ELP hydrogels on GBM. Here, we present microstructural differences, swelling ratio measurements, drug release characteristics, and in vitro effects of different ELP hydrogel compositions. We found that manipulation of the ELP–collagen ratio allows for tunable drug release, that the released drug is taken up by cells, and that incubation with a small volume of ELP-Dox hydrogel drastically reduced survival and proliferation of GBM cells in vitro. These results underscore the potential of ELP hydrogels as a local delivery strategy to improve prognosis for GBM patients after tumor resection.
Collapse
|
14
|
Nakagawa-Saito Y, Saitoh S, Mitobe Y, Sugai A, Togashi K, Suzuki S, Kitanaka C, Okada M. HDAC Class I Inhibitor Domatinostat Preferentially Targets Glioma Stem Cells over Their Differentiated Progeny. Int J Mol Sci 2022; 23:ijms23158084. [PMID: 35897656 PMCID: PMC9332065 DOI: 10.3390/ijms23158084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) are in general characterized by higher resistance to cell death and cancer therapies than non-stem differentiated cancer cells. However, we and others have recently revealed using glioma stem cells (GSCs) as a model that, unexpectedly, CSCs have specific vulnerabilities that make them more sensitive to certain drugs compared with their differentiated counterparts. We aimed in this study to discover novel drugs targeting such Achilles’ heels of GSCs as anti-GSC drug candidates to be used for the treatment of glioblastoma, the most therapy-resistant form of brain tumors. Here we report that domatinostat (4SC-202), a class I HDAC inhibitor, is one such candidate. At concentrations where it showed no or minimal growth inhibitory effect on differentiated GSCs and normal cells, domatinostat effectively inhibited the growth of GSCs mainly by inducing apoptosis. Furthermore, GSCs that survived domatinostat treatment lost their self-renewal capacity. These results suggested that domatinostat is a unique drug that selectively eliminates GSCs not only physically by inducing cell death but also functionally by inhibiting their self-renewal. Our findings also imply that class I HDACs and/or LSD1, another target of domatinostat, may possibly have a specific role in the maintenance of GSCs and therefore could be an attractive target in the development of anti-GSC therapies.
Collapse
Affiliation(s)
- Yurika Nakagawa-Saito
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan; (Y.N.-S.); (Y.M.); (A.S.); (K.T.); (S.S.)
| | - Shinichi Saitoh
- Department of Immunology, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan;
| | - Yuta Mitobe
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan; (Y.N.-S.); (Y.M.); (A.S.); (K.T.); (S.S.)
- Department of Neurosurgery, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Asuka Sugai
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan; (Y.N.-S.); (Y.M.); (A.S.); (K.T.); (S.S.)
| | - Keita Togashi
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan; (Y.N.-S.); (Y.M.); (A.S.); (K.T.); (S.S.)
- Department of Ophthalmology and Visual Sciences, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Shuhei Suzuki
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan; (Y.N.-S.); (Y.M.); (A.S.); (K.T.); (S.S.)
- Department of Clinical Oncology, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Chifumi Kitanaka
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan; (Y.N.-S.); (Y.M.); (A.S.); (K.T.); (S.S.)
- Research Institute for Promotion of Medical Sciences, Faculty of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
- Correspondence: (C.K.); (M.O.); Tel.: +81-23-628-5212 (C.K.); +81-23-628-5214 (M.O.)
| | - Masashi Okada
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan; (Y.N.-S.); (Y.M.); (A.S.); (K.T.); (S.S.)
- Correspondence: (C.K.); (M.O.); Tel.: +81-23-628-5212 (C.K.); +81-23-628-5214 (M.O.)
| |
Collapse
|