1
|
Antwi MB, Lefere S, Clarisse D, Koorneef L, Heldens A, Onghena L, Decroix K, Fijalkowska D, Thommis J, Hellemans M, Hoorens A, Geerts A, Devisscher L, De Bosscher K. PPARα-ERRα crosstalk mitigates metabolic dysfunction-associated steatotic liver disease progression. Metabolism 2025; 164:156128. [PMID: 39743041 DOI: 10.1016/j.metabol.2024.156128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/12/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND AND AIMS Metabolic dysfunction-associated steatotic liver disease (MASLD), the most prevalent liver disease worldwide, continues to rise. More effective therapeutic strategies are urgently needed. We investigated how targeting two key nuclear receptors involved in hepatic energy metabolism, peroxisome proliferator-activated receptor alpha (PPARα) and estrogen-related receptor alpha (ERRα), ameliorates MASLD. METHODS The PPARα agonist pemafibrate and/or ERRα inverse agonist C29 were administered in a short- and long-term Western diet plus fructose model, and a diabetic-background streptozotocin-Western diet model (STZ-WD). Liver and adipose tissue morphology, histological samples, serum metabolites, RNA and protein levels were analysed and scanning electron microscopy was performed. In addition, we performed cell-based assays and immunohistochemistry and immunofluorescence stainings with light and super-resolution confocal microscopy of healthy, MASLD and MASH human livers. RESULTS The ligand combinations' efficacy was highlighted by reduced liver steatosis across all mouse models, alongside improvements in body weight, inflammation, and fibrosis in both long-term models. Additionally, tumour formation was prevented in the STZ-WD mice model. Cell-based assays demonstrated that ERRα inhibits PPARα's activity, explaining why ERRα blockage improves inflammatory and lipid metabolism gene profiles and enhances lipid-lowering effects. Complementary RNA sequencing and shotgun proteomics, combined with enrichment analysis, jointly identified downregulated serum amyloid A1/A2 as essential components underlying the combination treatment's effectiveness. MASLD/MASH patient livers showed reduced PPARα and increased ERRα levels supporting disrupted NR crosstalk in the hepatocyte nucleus. CONCLUSION Our study supports that dual nuclear receptor targeting, which simultaneously increases PPARα and diminishes ERRα activity, may represent a viable novel strategy against MASLD. IMPACT AND IMPLICATIONS Our research introduces a novel therapeutic strategy against MASLD by simultaneously increasing PPARα activity while diminishing ERRα activity. With PPARα agonists already tested in phase III clinical trials, ERRα ligands/modulators need further (clinical) development to make our findings applicable to both MASLD patients and physicians.
Collapse
Affiliation(s)
- Milton Boaheng Antwi
- Translational Nuclear Receptor Research, UGent Department of Biomolecular Medicine, VIB Center for Medical Biotechnology, Ghent, Belgium; Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium; Hepatology Research Unit, Department Internal Medicine and Pediatrics, Liver Research Center, Ghent University, Belgium; Department for Basic and Applied Medical Sciences, Gut-Liver Immunopharmacology unit, Ghent University, Ghent, Belgium
| | - Sander Lefere
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium; Hepatology Research Unit, Department Internal Medicine and Pediatrics, Liver Research Center, Ghent University, Belgium
| | - Dorien Clarisse
- Translational Nuclear Receptor Research, UGent Department of Biomolecular Medicine, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Lisa Koorneef
- Translational Nuclear Receptor Research, UGent Department of Biomolecular Medicine, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Anneleen Heldens
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium; Hepatology Research Unit, Department Internal Medicine and Pediatrics, Liver Research Center, Ghent University, Belgium
| | - Louis Onghena
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium; Hepatology Research Unit, Department Internal Medicine and Pediatrics, Liver Research Center, Ghent University, Belgium
| | - Kylian Decroix
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium; Department for Basic and Applied Medical Sciences, Gut-Liver Immunopharmacology unit, Ghent University, Ghent, Belgium
| | - Daria Fijalkowska
- Translational Nuclear Receptor Research, UGent Department of Biomolecular Medicine, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Jonathan Thommis
- Translational Nuclear Receptor Research, UGent Department of Biomolecular Medicine, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Madeleine Hellemans
- Translational Nuclear Receptor Research, UGent Department of Biomolecular Medicine, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Anne Hoorens
- Department of Pathology, Ghent University Hospital, Ghent University, 9000 Ghent, Belgium
| | - Anja Geerts
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium; Hepatology Research Unit, Department Internal Medicine and Pediatrics, Liver Research Center, Ghent University, Belgium
| | - Lindsey Devisscher
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium; Department for Basic and Applied Medical Sciences, Gut-Liver Immunopharmacology unit, Ghent University, Ghent, Belgium
| | - Karolien De Bosscher
- Translational Nuclear Receptor Research, UGent Department of Biomolecular Medicine, VIB Center for Medical Biotechnology, Ghent, Belgium.
| |
Collapse
|
2
|
Chávez-López LM, Carballo-López GI, Lugo-Ibarra KDC, Castro-Ceseña AB. A comprehensive framework for managing metabolic dysfunction-associated steatotic liver disease: analyzing novel risk factors and advances in nanotechnology-based treatments and diagnosis. RSC Med Chem 2024; 15:2622-2642. [PMID: 39149095 PMCID: PMC11324041 DOI: 10.1039/d4md00420e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 08/17/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) presents a growing global health challenge requiring innovative approaches for effective management. This comprehensive review examines novel risk factors, including environmental pollutants like heavy metals, and underscores the complexity of personalized medicine tailored to individual patient profiles, influenced by gender and sex differences. Traditional treatments for MASLD, such as glucose- and lipid-lowering agents, show mixed results, highlighting the necessity for larger, long-term studies to establish safety and efficacy. Alternative therapies, including antioxidants, stem cells, and antiplatelets, although promising, demand extensive clinical trials for validation. This review highlights the importance of personalized medicine, considering individual variations and specific factors such as gender and sex, to optimize treatment responses. The shift from metabolic-associated fatty liver disease (MAFLD) to MASLD terminology underscores the metabolic components of the disease, aligning with the multiple-hit theory and highlighting the necessity for comprehensive risk factor management. Our vision advocates for an integrated approach to MASLD, encompassing extensive risk factor analysis and the development of safer, more effective treatments. Primary prevention and awareness initiatives are crucial in addressing the rising prevalence of MASLD. Future research must prioritize larger, long-term studies and personalized medicine principles to ensure the effective use of emerging therapies and technologies. The review underscores the need for continuous exploration and innovation, balancing the benefits and challenges of nanotechnology, to combat MASLD and improve patient outcomes comprehensively.
Collapse
Affiliation(s)
- Lucia M Chávez-López
- Facultad de Medicina, Centro de Estudios Universitarios Xochicalco Campus Ensenada San Francisco 1139, Fraccionamiento Misión C.P. 22830 Ensenada Baja California Mexico
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE) Carretera Ensenada-Tijuana No. 3918, Zona Playitas C.P. 22860 Ensenada Baja California Mexico
| | - Gabriela I Carballo-López
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE) Carretera Ensenada-Tijuana No. 3918, Zona Playitas C.P. 22860 Ensenada Baja California Mexico
| | | | - Ana B Castro-Ceseña
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE) Carretera Ensenada-Tijuana No. 3918, Zona Playitas C.P. 22860 Ensenada Baja California Mexico
- CONAHCYT - Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE) Carretera Ensenada-Tijuana No. 3918, Zona Playitas C.P. 22860 Ensenada Baja California Mexico
| |
Collapse
|
3
|
Iwadare T, Kimura T, Kunimoto H, Okumura T, Wakabayashi SI, Kobayashi H, Yamashita Y, Sugiura A, Tanaka N, Umemura T. Long-Term pemafibrate treatment exhibits limited impact on body fat mass in patients with hypertriglyceridemia accompanying NAFLD. Front Endocrinol (Lausanne) 2024; 15:1329294. [PMID: 38828415 PMCID: PMC11140089 DOI: 10.3389/fendo.2024.1329294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 04/23/2024] [Indexed: 06/05/2024] Open
Abstract
AIM Short-term use of pemafibrate (PEM), a selective modulator of peroxisome proliferator-activated receptor alpha, has been reported to improve abnormal liver function in patients with nonalcoholic fatty liver disease with hypertriglyceridemia (HTG-NAFLD). This study aimed to clarify the effects and predictive factors of long-term 72-week PEM administration on body composition, and laboratory tests in HTG-NAFLD patients. METHODS Fifty-three HTG-NAFLD patients receiving a 72-week PEM regimen were retrospectively enrolled. Routine blood and body composition results were analyzed immediately before and at the end of the study period. RESULTS PEM treatment significantly improved liver enzyme levels such as aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase, and gamma-glutamyl transferase, along with lipid profiles including triglyceride, total cholesterol, and low-density lipoprotein cholesterol. PEM did not have any detectable impact on body composition parameters. The factors of female, higher AST (≥ 46 U/L) and fat mass (≥ 31.9%), as well as lower soft lean mass (< 61.6%), skeletal muscle mass (< 36%), and skeletal muscle mass index (< 6.9 kg/m2) were significantly associated with the treatment response status of a > 30% decrease in ALT. All patients completed the treatment without any adverse effects. CONCLUSIONS Long-term PEM treatment had a positive impact on liver enzymes and lipid profiles, but it did not result in significant changes in body composition among HTG-NAFLD patients. In predicting the response to PEM treatment, the evaluation of AST and body composition may be useful.
Collapse
Affiliation(s)
- Takanobu Iwadare
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
- Department of Gastroenterology, Nagano Municipal Hospital, Nagano, Japan
| | - Takefumi Kimura
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
- Consultation Center for Liver Diseases, Shinshu University Hospital, Matsumoto, Japan
| | - Hideo Kunimoto
- Department of Gastroenterology, Nagano Municipal Hospital, Nagano, Japan
| | - Taiki Okumura
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shun-Ichi Wakabayashi
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hiroyuki Kobayashi
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yuki Yamashita
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
- Consultation Center for Liver Diseases, Shinshu University Hospital, Matsumoto, Japan
| | - Ayumi Sugiura
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Naoki Tanaka
- Department of Global Medical Research Promotion, Shinshu University Graduate School of Medicine, Matsumoto, Japan
- International Relations Office, Shinshu University School of Medicine, Matsumoto, Japan
- Research Center for Social Systems, Shinshu University, Matsumoto, Japan
| | - Takeji Umemura
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
- Consultation Center for Liver Diseases, Shinshu University Hospital, Matsumoto, Japan
| |
Collapse
|
4
|
Lei X, Ishida E, Yoshino S, Matsumoto S, Horiguchi K, Yamada E. Calorie Restriction Using High-Fat/Low-Carbohydrate Diet Suppresses Liver Fat Accumulation and Pancreatic Beta-Cell Dedifferentiation in Obese Diabetic Mice. Nutrients 2024; 16:995. [PMID: 38613031 PMCID: PMC11013071 DOI: 10.3390/nu16070995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
In diabetes, pancreatic β-cells gradually lose their ability to secrete insulin with disease progression. β-cell dysfunction is a contributing factor to diabetes severity. Recently, islet cell heterogeneity, exemplified by β-cell dedifferentiation and identified in diabetic animals, has attracted attention as an underlying molecular mechanism of β-cell dysfunction. Previously, we reported β-cell dedifferentiation suppression by calorie restriction, not by reducing hyperglycemia using hypoglycemic agents (including sodium-glucose cotransporter inhibitors), in an obese diabetic mice model (db/db). Here, to explore further mechanisms of the effects of food intake on β-cell function, db/db mice were fed either a high-carbohydrate/low-fat diet (db-HC) or a low-carbohydrate/high-fat diet (db-HF) using similar calorie restriction regimens. After one month of intervention, body weight reduced, and glucose intolerance improved to a similar extent in the db-HC and db-HF groups. However, β-cell dedifferentiation did not improve in the db-HC group, and β-cell mass compensatory increase occurred in this group. More prominent fat accumulation occurred in the db-HC group livers. The expression levels of genes related to lipid metabolism, mainly regulated by peroxisome proliferator-activated receptor α and γ, differed significantly between groups. In conclusion, the fat/carbohydrate ratio in food during calorie restriction in obese mice affected both liver lipid metabolism and β-cell dedifferentiation.
Collapse
Affiliation(s)
| | - Emi Ishida
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Gunma, Japan
| | | | | | | | | |
Collapse
|
5
|
Ding Y, Koda Y, Shashni B, Takeda N, Zhang X, Tanaka N, Nishikawa Y, Nagasaki Y. An orally deliverable ornithine-based self-assembling polymer nanomedicine ameliorates hyperammonemia in acetaminophen-induced acute liver injury. Acta Biomater 2023; 168:515-528. [PMID: 37433359 DOI: 10.1016/j.actbio.2023.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/20/2023] [Accepted: 07/06/2023] [Indexed: 07/13/2023]
Abstract
l-Ornithine (Orn) is a core amino acid responsible for ammonia detoxification in the body via the hepatic urea cycle. Clinical studies in Orn therapy have focused on interventions for hyperammonemia-associated diseases, such as hepatic encephalopathy (HE), a life-threatening neurological symptom affecting more than 80% of patients with liver cirrhosis. However, its low molecular weight (LMW) causes Orn to diffuse nonspecifically and be rapidly eliminated from the body after oral administration, resulting in unfavorable therapeutic efficacy. Hence, Orn is constantly supplied by intravenous infusion in many clinical settings; however, this treatment inevitably decreases patient compliance and limits its application in long-term management. To improve the performance of Orn, we designed self-assembling polyOrn-based nanoparticles for oral administration through ring-opening polymerization of Orn-N-carboxy anhydride initiated with amino-ended poly(ethylene glycol), followed by acylation of free amino groups in the main chain of the polyOrn segment. The obtained amphiphilic block copolymers, poly(ethylene glycol)-block-polyOrn(acyl) (PEG-block-POrn(acyl)), enabled the formation of stable nanoparticles (NanoOrn(acyl)) in aqueous media. We employed the isobutyryl (iBu) group for acyl derivatization in this study (NanoOrn(iBu)). In the healthy mice, daily oral administration of NanoOrn(iBu) for one week did not induce any abnormalities. In the mice exhibiting acetaminophen (APAP)-induced acute liver injury, oral pretreatment with NanoOrn(iBu) effectively reduced systemic ammonia and transaminases levels compared to the LMW Orn and untreated groups. The results suggest that the application of NanoOrn(iBu) is of significant clinical value with the feasibility of oral delivery and improvement in APAP-induced hepatic pathogenesis. STATEMENT OF SIGNIFICANCE: Liver injury is often accompanied by hyperammonemia, a life-threatening condition characterized by elevated blood ammonia levels. Current clinical treatments for reducing ammonia typically entail the invasive approach of intravenous infusion, involving the administration of l-ornithine (Orn) or a combination of Orn and L-aspartate. This method is employed due to the poor pharmacokinetics associated with these compounds. In our pursuit of enhancing therapy, we have developed an orally administrable nanomedicine based on Orn-based self-assembling nanoparticle (NanoOrn(iBu)), which provides sustained Orn supply to the injured liver. Oral administration of NanoOrn(iBu) to healthy mice did not cause any toxic effects. In a mouse model of acetaminophen-induced acute liver injury, oral administration of NanoOrn(iBu) surpassed Orn in reducing systemic ammonia levels and liver damage, thereby establishing NanoOrn(iBu) as a safe and effective therapeutic option.
Collapse
Affiliation(s)
- Yuanyuan Ding
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8573, Japan
| | - Yuta Koda
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8573, Japan
| | - Babita Shashni
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8573, Japan
| | - Naoki Takeda
- Department of Global Medical Research Promotion, Shinshu University Graduate School of Medicine, Matsumoto 390-8621, Japan
| | - Xuguang Zhang
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Naoki Tanaka
- Department of Global Medical Research Promotion, Shinshu University Graduate School of Medicine, Matsumoto 390-8621, Japan
| | - Yuji Nishikawa
- Department of Pathology, Asahikawa Medical University, 1 Chome-1-1, Midorigaoka Higashi 2 Jo, Asahikawa, Hokkaido 078-8510, Japan
| | - Yukio Nagasaki
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8573, Japan; Master's School of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; Center for Research in Radiation, Isotope and Earth System Sciences (CRiES), University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan.
| |
Collapse
|
6
|
Khan MS, Ghumman GM, Baqi A, Shah J, Aziz M, Mir T, Tahir A, Katragadda S, Singh H, Taleb M, Ali SS. Efficacy of Pemafibrate Versus Fenofibrate Administration on Serum Lipid Levels in Patients with Dyslipidemia: Network Meta-Analysis and Systematic Review. Am J Cardiovasc Drugs 2023; 23:547-558. [PMID: 37524955 DOI: 10.1007/s40256-023-00593-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/02/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND Pemafibrate is a novel fibrate class drug that is a highly potent and selective agonist of peroxisome proliferator-activated receptor α (PPARα). We performed the first ever network meta-analysis containing the largest ever group of patients to test the efficacy of pemafibrate in improving lipid levels compared with fenofibrate and placebo in patients with dyslipidemia. METHODS Potentially relevant clinical trials were identified in Medline, PubMed, Embase, clinicaltrials.gov, and Cochrane Controlled Trials registry. Nine randomized controlled trials met the inclusion criteria out of 40 potentially available articles. The primary effect outcome was a change in the levels of triglycerides (TG), high-density lipoproteins (HDL), or low-density lipoproteins (LDL) before and after the treatment. RESULTS A total of 12,359 subjects were included. The mean patient age was 54.73 (years), the mean ratio for female patients was 18.75%, and the mean examination period was 14.22 weeks. The dose for pemafibrate included in our study was 0.1, 0.2, or 0.4 mg twice daily, whereas the dose for fenofibrate was 100 mg/day. Data showed a significant reduction in TG and a mild increase in HDL levels across the pemafibrate group at different doses and fenofibrate 100 mg group (with greatest effect observed with pemafibrate 0.1 mg twice daily). A mild increase in LDL was also observed in all groups, but the increase in LDL in the 0.1 mg twice daily dose group was statistically insignificant. CONCLUSION Pemafibrate 0.1 mg twice daily dose led to highest reduction in TG levels and the highest increase in HDL levels compared with other doses of pemafibrate, fenofibrate, and placebo.
Collapse
Affiliation(s)
| | | | - Abdul Baqi
- Department of Internal Medicine, Mercy Saint Vincent Medical Center, Toledo, OH, USA
| | - Jay Shah
- Department of Cardiology, Mercy Saint Vincent Medical Center, Toledo, OH, USA
| | - Muhammad Aziz
- Department of Gastroenterology, University of Toledo, Toledo, OH, USA
| | - Tanveer Mir
- Department of Internal Medicine, Detroit Medical Center, Wayne State University, Detroit, MI, USA
| | - Ayesha Tahir
- Department of Internal Medicine, Mercy Saint Vincent Medical Center, Toledo, OH, USA
| | - Srinivas Katragadda
- Department of Internal Medicine, Mercy Saint Vincent Medical Center, Toledo, OH, USA
| | - Hemindermeet Singh
- Department of Cardiology, Mercy Saint Vincent Medical Center, Toledo, OH, USA
| | - Mohammed Taleb
- Department of Cardiology, Mercy Saint Vincent Medical Center, Toledo, OH, USA
| | - Syed Sohail Ali
- Department of Cardiology, Mercy Saint Vincent Medical Center, Toledo, OH, USA
| |
Collapse
|
7
|
Zheng Q, Kawaguchi M, Mikami H, Diao P, Zhang X, Zhang Z, Nakajima T, Iwadare T, Kimura T, Nakayama J, Tanaka N. Establishment of Novel Mouse Model of Dietary NASH Rapidly Progressing into Liver Cirrhosis and Tumors. Cancers (Basel) 2023; 15:3744. [PMID: 37509405 PMCID: PMC10378543 DOI: 10.3390/cancers15143744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/09/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH), which is the most severe manifestation of non-alcoholic fatty liver disease (NAFLD), has been recognized as a major hepatocellular carcinoma (HCC) catalyst. However, the molecular mechanism of NASH-liver fibrosis-HCC sequence remains unclear and a specific and effective treatment for NASH has not yet been established. The progress in this field depends on the availability of reliable preclinical models which show the steady progression to NASH, liver cirrhosis, and HCC. However, most of the NASH mouse models that have been described to date develop NASH generally for more than 24 weeks and there is an uncertainty of HCC development. To overcome such shortcomings of experimental NASH studies, we established a novel NASH-HCC mouse model with very high reproducibility, generality, and convenience. We treated male C57BL/6J mice with a newly developed choline-deficient and methionine-restricted high-fat diet, named OYC-NASH2 diet, for 60 weeks. Treatment of OYC-NASH2 diet for 3 weeks revealed marked steatosis, lobular inflammation, and fibrosis, histologically diagnosed as NASH. Liver cirrhosis was observed in all mice with 48-week treatment. Liver nodules emerged at 12 weeks of the treatment, > 2 mm diameter liver tumors developed in all mice at 24 weeks of the treatment and HCC appeared after 36-week treatment. In conclusion, our rapidly progressive and highly reproducible NASH-liver cirrhosis-HCC model is helpful for preclinical development and research on the pathogenesis of human NAFLD-NASH-HCC. Our mouse model would be useful for the development of novel chemicals for NASH-HCC-targeted therapies.
Collapse
Affiliation(s)
- Qianqian Zheng
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (Q.Z.); (P.D.); (X.Z.); (Z.Z.); (T.N.)
| | - Masaya Kawaguchi
- Oriental Yeast Co., Ltd., Itabashi, Tokyo 174-8505, Japan; (M.K.); (H.M.)
| | - Hayato Mikami
- Oriental Yeast Co., Ltd., Itabashi, Tokyo 174-8505, Japan; (M.K.); (H.M.)
| | - Pan Diao
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (Q.Z.); (P.D.); (X.Z.); (Z.Z.); (T.N.)
| | - Xuguang Zhang
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (Q.Z.); (P.D.); (X.Z.); (Z.Z.); (T.N.)
| | - Zhe Zhang
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (Q.Z.); (P.D.); (X.Z.); (Z.Z.); (T.N.)
| | - Takero Nakajima
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (Q.Z.); (P.D.); (X.Z.); (Z.Z.); (T.N.)
| | - Takanobu Iwadare
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (T.I.); (T.K.)
| | - Takefumi Kimura
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (T.I.); (T.K.)
| | - Jun Nakayama
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan;
| | - Naoki Tanaka
- Department of Global Medical Research Promotion, Shinshu University Graduate School of Medicine, Matsumoto 390-8621, Japan
- International Relations Office, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
- Research Center for Social Systems, Shinshu University, Matsumoto 390-8621, Japan
| |
Collapse
|
8
|
Hayashi M, Kuwabara Y, Ito K, Hojo Y, Arai F, Kamijima K, Takeiri M, Wang X, Diao P, Nakayama J, Tanaka N. Development of the Rabbit NASH Model Resembling Human NASH and Atherosclerosis. Biomedicines 2023; 11:384. [PMID: 36830921 PMCID: PMC9953079 DOI: 10.3390/biomedicines11020384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a chronic liver disease which may progress into liver fibrosis and cancer. Since NASH patients have a high prevalence of atherosclerosis and ensuing cardiovascular diseases, simultaneous management of NASH and atherosclerosis is required. Currently, rodents are the most common animal models for NASH and accompanying liver fibrosis, but there are great differences in lipoprotein profiles between rodents and humans, which makes it difficult to reproduce the pathology of NASH patients with atherosclerosis. Rabbits can be a promising candidate for assessing NASH and atherosclerosis because lipoprotein metabolism is more similar to humans compared with rodents. To develop the NASH model using rabbits, we treated the Japanese White rabbit with a newly developed high-fat high-cholesterol diet (HFHCD) containing palm oil 7.5%, cholesterol 0.5%, and ferrous citrate 0.5% for 16 weeks. HFHCD-fed rabbits exhibited NASH at 8 weeks after commencing the treatment and developed advanced fibrosis by the 14th week of treatment. In addition to hypercholesterolemia, atherosclerotic lesion developed in the aorta after 8 weeks. Therefore, this rabbit NASH model might contribute to exploring the concurrent treatment options for human NASH and atherosclerosis.
Collapse
Affiliation(s)
- Momoko Hayashi
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | | | - Kuniji Ito
- Kitayama Labes Co., Ltd., Ina 396-0025, Japan
| | | | | | | | | | - Xiaojing Wang
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
- Department of Gastroenterology, Lishui Hospital, Zhejiang University School of Medicine, Lishui 310030, China
| | - Pan Diao
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Jun Nakayama
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Naoki Tanaka
- Department of Global Medical Research Promotion, Shinshu University Graduate School of Medicine, Matsumoto 390-8621, Japan
- International Relations Office, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
- Research Center for Social Systems, Shinshu University, Matsumoto 390-8621, Japan
| |
Collapse
|
9
|
Dong Q, Bao H, Wang J, Shi W, Zou X, Sheng J, Gao J, Guan C, Xia H, Li J, Kang P, Xu Y, Cui Y, Zhong X. Liver fibrosis and MAFLD: the exploration of multi-drug combination therapy strategies. Front Med (Lausanne) 2023; 10:1120621. [PMID: 37153080 PMCID: PMC10157161 DOI: 10.3389/fmed.2023.1120621] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/22/2023] [Indexed: 05/09/2023] Open
Abstract
In recent years, the prevalence of metabolic-associated fatty liver disease (MAFLD) has reached pandemic proportions as a leading cause of liver fibrosis worldwide. However, the stage of liver fibrosis is associated with an increased risk of severe liver-related and cardiovascular events and is the strongest predictor of mortality in MAFLD patients. More and more people believe that MAFLD is a multifactorial disease with multiple pathways are involved in promoting the progression of liver fibrosis. Numerous drug targets and drugs have been explored for various anti-fibrosis pathways. The treatment of single medicines is brutal to obtain satisfactory results, so the strategies of multi-drug combination therapies have attracted increasing attention. In this review, we discuss the mechanism of MAFLD-related liver fibrosis and its regression, summarize the current intervention and treatment methods for this disease, and focus on the analysis of drug combination strategies for MAFLD and its subsequent liver fibrosis in recent years to explore safer and more effective multi-drug combination therapy strategies.
Collapse
Affiliation(s)
- Qingfu Dong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Haolin Bao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jiangang Wang
- Department of General Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Wujiang Shi
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xinlei Zou
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jialin Sheng
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jianjun Gao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Canghai Guan
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Haoming Xia
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jinglin Li
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Pengcheng Kang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, Fujian, China
- Jiangsu Province Engineering Research Center of Tumor Targeted Nano Diagnostic and Therapeutic Materials, Yancheng Teachers University, Yancheng, Jiangsu, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, Zhejiang, China
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Department of Pharmacy, Changxing People's Hospital, Changxing, Zhejiang, China
- Yi Xu
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Yunfu Cui
| | - Xiangyu Zhong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- *Correspondence: Xiangyu Zhong
| |
Collapse
|
10
|
Iwadare T, Kimura T, Kunimoto H, Tanaka N, Wakabayashi SI, Yamazaki T, Okumura T, Kobayashi H, Yamashita Y, Sugiura A, Joshita S, Umemura T. Higher Responsiveness for Women, High Transaminase Levels, and Fat Percentage to Pemafibrate Treatment for NAFLD. Biomedicines 2022; 10:2806. [PMID: 36359326 PMCID: PMC9687993 DOI: 10.3390/biomedicines10112806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Aim: Pemafibrate (PEM) is a novel selective peroxisome proliferator-activated receptor alpha modulator that is effective for hypertriglyceridemia accompanying non-alcoholic fatty liver disease (HTG-NAFLD). This study aimed to identify the predictors of PEM efficacy for HTG-NAFLD in clinical practice. Methods: We retrospectively enrolled 88 HTG-NAFLD patients treated with PEM for 6 months for the analysis of routine blood and body composition testing. A PEM response was defined as a decrease in serum alanine aminotransferase (ALT) of >30% compared with pre-treatment level. The clinical features related to PEM responsiveness were statistically tested between responders and non-responders. Results: All 88 patients completed the 6 month drug regimen without any adverse effects. PEM treatment significantly decreased liver enzymes, triglycerides, and total cholesterol levels, without any detectable impact on body weight or body composition. Comparisons of baseline clinical features revealed female and greater aspartate aminotransferase (AST), ALT, and fat mass % levels to be significantly associated with a PEM response. The optimal cut-off values to predict responders as determined by receiver operating characteristic analysis were AST 45 U/L, ALT 60 U/L, and fat mass 37%. Conclusions: Female HTG-NAFLD patients with higher transaminase and fat mass % levels may be preferentially indicated for PEM treatment. Additional large-scale prospective studies are warranted to verify our results.
Collapse
Affiliation(s)
- Takanobu Iwadare
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Takefumi Kimura
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
- Consultation Center for Liver Diseases, Shinshu University Hospital, Matsumoto 390-8621, Japan
| | - Hideo Kunimoto
- Department of Gastroenterology, Nagano Municipal Hospital, Nagano 381-8551, Japan
| | - Naoki Tanaka
- Department of Global Medical Research Promotion, Shinshu University Graduate School of Medicine, Matsumoto 390-8621, Japan
- International Relations Office, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Shun-ichi Wakabayashi
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Tomoo Yamazaki
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
- Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Taiki Okumura
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Hiroyuki Kobayashi
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Yuki Yamashita
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Ayumi Sugiura
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Satoru Joshita
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Takeji Umemura
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
- Consultation Center for Liver Diseases, Shinshu University Hospital, Matsumoto 390-8621, Japan
| |
Collapse
|
11
|
Zhou S, You H, Qiu S, Yu D, Bai Y, He J, Cao H, Che Q, Guo J, Su Z. A new perspective on NAFLD: Focusing on the crosstalk between peroxisome proliferator-activated receptor alpha (PPARα) and farnesoid X receptor (FXR). Biomed Pharmacother 2022; 154:113577. [PMID: 35988420 DOI: 10.1016/j.biopha.2022.113577] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 11/19/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is primarily caused by abnormal lipid metabolism and the accumulation of triglycerides in the liver. NAFLD is also associated with hepatic steatosis and nutritional and energy imbalances and is a chronic liver disease associated with a number of factors. Nuclear receptors play a key role in balancing energy and nutrient metabolism, and the peroxisome proliferator-activated receptor alpha (PPARα) and farnesoid X receptor (FXR) regulate lipid metabolism genes, controlling hepatocyte lipid utilization and regulating bile acid (BA) synthesis and transport. They play an important role in lipid metabolism and BA homeostasis. At present, PPARα and FXR are the most promising targets for the treatment of NAFLD among nuclear receptors. This review focuses on the crosstalk mechanisms and transcriptional regulation of PPARα and FXR in the pathogenesis of NAFLD and summarizes PPARα and FXR drugs in clinical trials, laying a theoretical foundation for the targeted treatment of NAFLD and the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Shipeng Zhou
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Huimin You
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shuting Qiu
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dawei Yu
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd, Science City, Guangzhou 510663, China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|