1
|
Kaczmarek R, Piñeros AR, Patterson PE, Bertolini TB, Perrin GQ, Sherman A, Born J, Arisa S, Arvin MC, Kamocka MM, Martinez MM, Dunn KW, Quinn SM, Morris JJ, Wilhelm AR, Kaisho T, Munoz-Melero M, Biswas M, Kaplan MH, Linnemann AK, George LA, Camire RM, Herzog RW. Factor VIII trafficking to CD4+ T cells shapes its immunogenicity and requires several types of antigen-presenting cells. Blood 2023; 142:290-305. [PMID: 37192286 PMCID: PMC10375270 DOI: 10.1182/blood.2022018937] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/18/2023] Open
Abstract
Despite >80 years of clinical experience with coagulation factor VIII (FVIII) inhibitors, surprisingly little is known about the in vivo mechanism of this most serious complication of replacement therapy for hemophilia A. These neutralizing antidrug alloantibodies arise in ∼30% of patients. Inhibitor formation is T-cell dependent, but events leading up to helper T-cell activation have been elusive because of, in part, the complex anatomy and cellular makeup of the spleen. Here, we show that FVIII antigen presentation to CD4+ T cells critically depends on a select set of several anatomically distinct antigen-presenting cells, whereby marginal zone B cells and marginal zone and marginal metallophilic macrophages but not red pulp macrophages (RPMFs) participate in shuttling FVIII to the white pulp in which conventional dendritic cells (DCs) prime helper T cells, which then differentiate into follicular helper T (Tfh) cells. Toll-like receptor 9 stimulation accelerated Tfh cell responses and germinal center and inhibitor formation, whereas systemic administration of FVIII alone in hemophilia A mice increased frequencies of monocyte-derived and plasmacytoid DCs. Moreover, FVIII enhanced T-cell proliferation to another protein antigen (ovalbumin), and inflammatory signaling-deficient mice were less likely to develop inhibitors, indicating that FVIII may have intrinsic immunostimulatory properties. Ovalbumin, which, unlike FVIII, is absorbed into the RPMF compartment, fails to elicit T-cell proliferative and antibody responses when administered at the same dose as FVIII. Altogether, we propose that an antigen trafficking pattern that results in efficient in vivo delivery to DCs and inflammatory signaling, shape the immunogenicity of FVIII.
Collapse
Affiliation(s)
- Radoslaw Kaczmarek
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Annie R. Piñeros
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Paige E. Patterson
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Thais B. Bertolini
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - George Q. Perrin
- Department of Pediatrics, University of Florida, Gainesville, FL
| | | | - Jameson Born
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Sreevani Arisa
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Matthew C. Arvin
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Malgorzata M. Kamocka
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Michelle M. Martinez
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Kenneth W. Dunn
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Sean M. Quinn
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Division of Hematology and Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Johnathan J. Morris
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Division of Hematology and Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Amelia R. Wilhelm
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Division of Hematology and Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
- Laboratory for Inflammatory Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Maite Munoz-Melero
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Moanaro Biswas
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Mark H. Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - Amelia K. Linnemann
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
- Indiana Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
| | - Lindsey A. George
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Division of Hematology and Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Rodney M. Camire
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Division of Hematology and Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Roland W. Herzog
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
2
|
Jajosky R, Patel SR, Wu SC, Patel K, Covington M, Vallecillo-Zúniga M, Ayona D, Bennett A, Luckey CJ, Hudson KE, Hendrickson JE, Eisenbarth SC, Josephson CD, Zerra PE, Stowell SR, Arthur CM. Prior immunization against an intracellular antigen enhances subsequent red blood cell alloimmunization in mice. Blood 2023; 141:2642-2653. [PMID: 36638335 PMCID: PMC10356576 DOI: 10.1182/blood.2022016588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Antibodies against red blood cell (RBC) alloantigens can increase morbidity and mortality among transfusion recipients. However, alloimmunization rates can vary dramatically, as some patients never generate alloantibodies after transfusion, whereas others not only become alloimmunized but may also be prone to generating additional alloantibodies after subsequent transfusion. Previous studies suggested that CD4 T-cell responses that drive alloantibody formation recognize the same alloantigen engaged by B cells. However, because RBCs express numerous antigens, both internally and externally, it is possible that CD4 T-cell responses directed against intracellular antigens may facilitate subsequent alloimmunization against a surface RBC antigen. Here, we show that B cells can acquire intracellular antigens from RBCs. Using a mouse model of donor RBCs expressing 2 distinct alloantigens, we demonstrate that immune priming to an intracellular antigen, which would not be detected by any currently used RBC compatibility assays, can directly influence alloantibody formation after exposure to a subsequent distinct surface RBC alloantigen. These findings suggest a previously underappreciated mechanism whereby transfusion recipient responders may exhibit an increased rate of alloimmunization because of prior immune priming toward intracellular antigens.
Collapse
Affiliation(s)
- Ryan Jajosky
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, National Center for Functional Glycomics, Harvard School of Medicine, Boston, MA
| | - Seema R. Patel
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta/Emory University School of Medicine, Atlanta, GA
| | - Shang-Chuen Wu
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, National Center for Functional Glycomics, Harvard School of Medicine, Boston, MA
| | - Kashyap Patel
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, National Center for Functional Glycomics, Harvard School of Medicine, Boston, MA
| | - Mischa Covington
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, National Center for Functional Glycomics, Harvard School of Medicine, Boston, MA
| | - Mary Vallecillo-Zúniga
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, National Center for Functional Glycomics, Harvard School of Medicine, Boston, MA
| | - Diyoly Ayona
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, National Center for Functional Glycomics, Harvard School of Medicine, Boston, MA
| | - Ashley Bennett
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - C. John Luckey
- Department of Pathology, University of Virginia, Charlottesville, VA
| | - Krystalyn E. Hudson
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, NY
| | | | - Stephanie C. Eisenbarth
- Center for Human Immunology, Department of Medicine, Northwestern University School of Medicine, Chicago, IL
| | - Cassandra D. Josephson
- Cancer and Blood Disorders Institute and Blood Bank/Transfusion Medicine Division, Johns Hopkins All Children’s Hospital, St. Petersburg, FL
- Departments of Oncology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Patricia E. Zerra
- Center for Transfusion Medicine and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Sean R. Stowell
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, National Center for Functional Glycomics, Harvard School of Medicine, Boston, MA
- Center for Transfusion Medicine and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Connie M. Arthur
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, National Center for Functional Glycomics, Harvard School of Medicine, Boston, MA
| |
Collapse
|